• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 6
  • 5
  • Tagged with
  • 54
  • 47
  • 38
  • 22
  • 22
  • 22
  • 15
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Adaptive Estimation using Gaussian Mixtures

Pfeifer, Tim 25 October 2023 (has links)
This thesis offers a probabilistic solution to robust estimation using a novel adaptive estimator. Reliable state estimation is a mandatory prerequisite for autonomous systems interacting with the real world. The presence of outliers challenges the Gaussian assumption of numerous estimation algorithms, resulting in a potentially skewed estimate that compromises reliability. Many approaches attempt to mitigate erroneous measurements by using a robust loss function – which often comes with a trade-off between robustness and numerical stability. The proposed approach is purely probabilistic and enables adaptive large-scale estimation with non-Gaussian error models. The introduced Adaptive Mixture algorithm combines a nonlinear least squares backend with Gaussian mixtures as the measurement error model. Factor graphs as graphical representations allow an efficient and flexible application to real-world problems, such as simultaneous localization and mapping or satellite navigation. The proposed algorithms are constructed using an approximate expectation-maximization approach, which justifies their design probabilistically. This expectation-maximization is further generalized to enable adaptive estimation with arbitrary probabilistic models. Evaluating the proposed Adaptive Mixture algorithm in simulated and real-world scenarios demonstrates its versatility and robustness. A synthetic range-based localization shows that it provides reliable estimation results, even under extreme outlier ratios. Real-world satellite navigation experiments prove its robustness in harsh urban environments. The evaluation on indoor simultaneous localization and mapping datasets extends these results to typical robotic use cases. The proposed adaptive estimator provides robust and reliable estimation under various instances of non-Gaussian measurement errors.
42

A Novel Approach for Cancelation of Nonaligned Inter Spreading Factor Interference in LoRa Systems

Zhang, Qiaohan, Bizon, Ivo, Kumar, Atul, Martinez, Ana Belen, Chafii, Marwa, Fettweis, Gerhard 22 April 2024 (has links)
Long Range (LoRa) has become a key enabler technology for low power wide area networks. However, due to its ALOHA-based medium access scheme, LoRa has to cope with collisions that limit the capacity and network scalability. Collisions between randomly overlapped signals modulated with different spreading factors (SFs) result in inter-SF interference, which increases the packet loss likelihood when signal-to-interference ratio (SIR) is low. This issue cannot be resolved by channel coding since the probability of error distance is not concentrated around the adjacent symbol. In this paper, we analytically model this interference, and propose an interference cancellation method based on the idea of segmentation of the received signal. This scheme has three steps. First, the SF of the interference signal is identified, then the equivalent data symbol and complex amplitude of the interference are estimated. Finally, the estimated interference signal is subtracted from the received signal before demodulation. Unlike conventional serial interference cancellation (SIC), this scheme can directly estimate and reconstruct the non-aligned inter-SF interference without synchronization. Simulation results show that the proposed method can significantly reduce the symbol error rate (SER) under low SIR compared with the conventional demodulation. Moreover, it also shows high robustness to fractional sample timing offset (STO) and carrier frequency offset (CFO) of interference. The presented results clearly show the effectiveness of the proposed method in terms of the SER performance.
43

Adaptive and efficient quantile estimation / From deconvolution to Lévy processes

Trabs, Mathias 07 July 2014 (has links)
Die Schätzung von Quantilen und verwandten Funktionalen wird in zwei inversen Problemen behandelt: dem klassischen Dekonvolutionsmodell sowie dem Lévy-Modell in dem ein Lévy-Prozess beobachtet wird und Funktionale des Sprungmaßes geschätzt werden. Im einem abstrakteren Rahmen wird semiparametrische Effizienz im Sinne von Hájek-Le Cam für Funktionalschätzung in regulären, inversen Modellen untersucht. Ein allgemeiner Faltungssatz wird bewiesen, der auf eine große Klasse von statistischen inversen Problem anwendbar ist. Im Dekonvolutionsmodell beweisen wir, dass die Plugin-Schätzer der Verteilungsfunktion und der Quantile effizient sind. Auf der Grundlage von niederfrequenten diskreten Beobachtungen des Lévy-Prozesses wird im nichtlinearen Lévy-Modell eine Informationsschranke für die Schätzung von Funktionalen des Sprungmaßes hergeleitet. Die enge Verbindung zwischen dem Dekonvolutionsmodell und dem Lévy-Modell wird präzise beschrieben. Quantilschätzung für Dekonvolutionsprobleme wird umfassend untersucht. Insbesondere wird der realistischere Fall von unbekannten Fehlerverteilungen behandelt. Wir zeigen unter minimalen und natürlichen Bedingungen, dass die Plugin-Methode minimax optimal ist. Eine datengetriebene Bandweitenwahl erlaubt eine optimale adaptive Schätzung. Quantile werden auf den Fall von Lévy-Maßen, die nicht notwendiger Weise endlich sind, verallgemeinert. Mittels äquidistanten, diskreten Beobachtungen des Prozesses werden nichtparametrische Schätzer der verallgemeinerten Quantile konstruiert und minimax optimale Konvergenzraten hergeleitet. Als motivierendes Beispiel von inversen Problemen untersuchen wir ein Finanzmodell empirisch, in dem ein Anlagengegenstand durch einen exponentiellen Lévy-Prozess dargestellt wird. Die Quantilschätzer werden auf dieses Modell übertragen und eine optimale adaptive Bandweitenwahl wird konstruiert. Die Schätzmethode wird schließlich auf reale Daten von DAX-Optionen angewendet. / The estimation of quantiles and realated functionals is studied in two inverse problems: the classical deconvolution model and the Lévy model, where a Lévy process is observed and where we aim for the estimation of functionals of the jump measure. From a more abstract perspective we study semiparametric efficiency in the sense of Hájek-Le Cam for functional estimation in regular indirect models. A general convolution theorem is proved which applies to a large class of statistical inverse problems. In particular, we consider the deconvolution model, where we prove that our plug-in estimators of the distribution function and of the quantiles are efficient. In the nonlinear Lévy model based on low-frequent discrete observations of the Lévy process, we deduce an information bound for the estimation of functionals of the jump measure. The strong relationship between the Lévy model and the deconvolution model is given a precise meaning. Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic setup of unknown error distributions is covered. Under minimal and natural conditions we show that the plug-in method is minimax optimal. A data-driven bandwidth choice yields optimal adaptive estimation. The concept of quantiles is generalized to the possibly infinite Lévy measures by considering left and right tail integrals. Based on equidistant discrete observations of the process, we construct a nonparametric estimator of the generalized quantiles and derive minimax convergence rates. As a motivating financial example for inverse problems, we empirically study the calibration of an exponential Lévy model for asset prices. The estimators of the generalized quantiles are adapted to this model. We construct an optimal adaptive quantile estimator and apply the procedure to real data of DAX-options.
44

The Role of Shadow Banking in the Monetary Transmission Mechanism

Mazelis, Falk Henry 29 June 2018 (has links)
Diese Doktorarbeit besteht aus drei Aufsätzen, in welchen die Reaktion von Finanzinstitutionen auf Geldpolitik analysiert wird. In dem ersten Aufsatz finde ich anhand eines Bayesian VAR, dass eine Erhöhung des Leitzinses zu einer zusätzlichen Kreditvergabe in Nichtbanken (NBFI) führt. Banken verleihen wie bereits bekannt weniger. Der Grund für die gegensätzliche Bewegung liegt in der unterschiedliche Art der Finanzierung. Dieser Befund legt nahe, dass die Existenz von NBFI die Volatilität der aggregierten Kreditvergabe zu geldpolitischen Schocks verringern könnte. Zusätzlich bietet die Analyse einen Erklärungsansatz für die Beobachtung, dass sich die Kreditvergabe seit der Finanzkrise stockend entwickelt hat. Im zweiten Aufsatz knüpfe ich an diese empirische Untersuchung an, indem ich ein theoretisches Modell mit unterschiedlichen Arten von Firmenfinanzierung entwerfe. Haushalte müssen sich zwischen festverzinsichlichen und erfolgsbedingten Sparmöglichkeiten entscheiden. Auf Grundlage des Modells von Bernanke, Gertler und Gilchrist (1999) mikrofundiere ich die Entscheidung über Unternehmensgründung in Form von Eigenkapitalinvestitionen. Im dritten Aufsatz entwickele ich ein geschätztes DSGE Modell mit Finanzierungsfriktionen, welches in der Lage ist, die empirischen Ergebnisse zu replizieren. Ich untersuche, wie sich die Regulierung von Schattenbanken auf eine Volkswirtschaft am ZLB auswirkt. Konsumvolatilität wird reduziert, wenn Schattenbankenkredite stattdessen von Banken vergeben werden. Alternativ dazu führt die Behandlung von Schattenbanken wie Investment Fonds dazu, dass eine Volkswirtschaft am ZLB eine mildere Rezession und einen schnelleren Austritt erlebt. Der Grund liegt darin, dass ein Nachfrageschock, der die Volkswirtschaft zum ZLB bringt, eine Reaktion hervorruft, die vergleichbar mit geldpolitischen Schocks ist, da am ZLB keine Möglichkeit der Leitzinsverringerung besteht. / This thesis consists of three essays that analyze the reaction of financial institutions to monetary policy. In the first essay, I use a Bayesian VAR to show that an increase in the monetary policy rate raises credit intermediation by non-bank financial institutions (NBFI). As is well known, credit intermediation by banks is reduced. The movement in opposite directions is explained by the difference in funding. This finding suggests that the existence of NBFI may decrease aggregate volatility following monetary policy shocks. Following this evidence, I construct a theoretical model that includes different types of funding in the second essay. Households face a savings choice between state contingent (equity) and non-state contingent (debt) assets. I use the financial accelerator model of Bernanke, Gertler and Gilchrist (1999) as a basis and microfound the decision by which new net worth in entrepreneurs is created. A Bayesian estimation suggests a change in the survival rate of entrepreneurs, affecting impulse responses. The analysis suggests that models that use the financial accelerator should include endogenous firm entry if variables regarding household portfolios or shocks directly affecting firm net worth are considered. In the third essay, I develop an estimated monetary DSGE model with funding market frictions that is able to replicate the empirical facts. In a counterfactual exercise I study how the regulation of shadow banks affects an economy at the ZLB. Consumption volatility is reduced when shadow bank assets are directly held by commercial banks. Alternatively, regulating shadow banks like investment funds results in a milder recession during, and a quicker escape from, the ZLB. The reason is that a recessionary demand shock that moves the economy to the ZLB has similar effects to a monetary tightening due to the inability to reduce the policy rate below zero.
45

Central limit theorems and confidence sets in the calibration of Lévy models and in deconvolution

Söhl, Jakob 03 May 2013 (has links)
Zentrale Grenzwertsätze und Konfidenzmengen werden in zwei verschiedenen, nichtparametrischen, inversen Problemen ähnlicher Struktur untersucht, und zwar in der Kalibrierung eines exponentiellen Lévy-Modells und im Dekonvolutionsmodell. Im ersten Modell wird eine Geldanlage durch einen exponentiellen Lévy-Prozess dargestellt, Optionspreise werden beobachtet und das charakteristische Tripel des Lévy-Prozesses wird geschätzt. Wir zeigen, dass die Schätzer fast sicher wohldefiniert sind. Zu diesem Zweck beweisen wir eine obere Schranke für Trefferwahrscheinlichkeiten von gaußschen Zufallsfeldern und wenden diese auf einen Gauß-Prozess aus der Schätzmethode für Lévy-Modelle an. Wir beweisen gemeinsame asymptotische Normalität für die Schätzer von Volatilität, Drift und Intensität und für die punktweisen Schätzer der Sprungdichte. Basierend auf diesen Ergebnissen konstruieren wir Konfidenzintervalle und -mengen für die Schätzer. Wir zeigen, dass sich die Konfidenzintervalle in Simulationen gut verhalten, und wenden sie auf Optionsdaten des DAX an. Im Dekonvolutionsmodell beobachten wir unabhängige, identisch verteilte Zufallsvariablen mit additiven Fehlern und schätzen lineare Funktionale der Dichte der Zufallsvariablen. Wir betrachten Dekonvolutionsmodelle mit gewöhnlich glatten Fehlern. Bei diesen ist die Schlechtgestelltheit des Problems durch die polynomielle Abfallrate der charakteristischen Funktion der Fehler gegeben. Wir beweisen einen gleichmäßigen zentralen Grenzwertsatz für Schätzer von Translationsklassen linearer Funktionale, der die Schätzung der Verteilungsfunktion als Spezialfall enthält. Unsere Ergebnisse gelten in Situationen, in denen eine Wurzel-n-Rate erreicht werden kann, genauer gesagt gelten sie, wenn die Sobolev-Glattheit der Funktionale größer als die Schlechtgestelltheit des Problems ist. / Central limit theorems and confidence sets are studied in two different but related nonparametric inverse problems, namely in the calibration of an exponential Lévy model and in the deconvolution model. In the first set-up, an asset is modeled by an exponential of a Lévy process, option prices are observed and the characteristic triplet of the Lévy process is estimated. We show that the estimators are almost surely well-defined. To this end, we prove an upper bound for hitting probabilities of Gaussian random fields and apply this to a Gaussian process related to the estimation method for Lévy models. We prove joint asymptotic normality for estimators of the volatility, the drift, the intensity and for pointwise estimators of the jump density. Based on these results, we construct confidence intervals and sets for the estimators. We show that the confidence intervals perform well in simulations and apply them to option data of the German DAX index. In the deconvolution model, we observe independent, identically distributed random variables with additive errors and we estimate linear functionals of the density of the random variables. We consider deconvolution models with ordinary smooth errors. Then the ill-posedness of the problem is given by the polynomial decay rate with which the characteristic function of the errors decays. We prove a uniform central limit theorem for the estimators of translation classes of linear functionals, which includes the estimation of the distribution function as a special case. Our results hold in situations, for which a square-root-n-rate can be obtained, more precisely, if the Sobolev smoothness of the functionals is larger than the ill-posedness of the problem.
46

KARTOTRAK, integrated software solution for contaminated site characterization

Wagner, Laurent 03 November 2015 (has links) (PDF)
Kartotrak software allows optimal waste classification and avoids unnecessary remediation. It has been designed for those - site owners, safety authorities or contractors, involved in environmental site characterization projects - who need to locate and estimate contaminated soil volumes confidently.
47

Estimating and Correcting the Effects of Model Selection Uncertainty / Estimating and Correcting the Effects of Model Selection Uncertainty

Nguefack Tsague, Georges Lucioni Edison 03 February 2006 (has links)
No description available.
48

Comparative Analysis of Behavioral Models for Adaptive Learning in Changing Environments

Marković, Dimitrije, Kiebel, Stefan J. 16 January 2017 (has links) (PDF)
Probabilistic models of decision making under various forms of uncertainty have been applied in recent years to numerous behavioral and model-based fMRI studies. These studies were highly successful in enabling a better understanding of behavior and delineating the functional properties of brain areas involved in decision making under uncertainty. However, as different studies considered different models of decision making under uncertainty, it is unclear which of these computational models provides the best account of the observed behavioral and neuroimaging data. This is an important issue, as not performing model comparison may tempt researchers to over-interpret results based on a single model. Here we describe how in practice one can compare different behavioral models and test the accuracy of model comparison and parameter estimation of Bayesian and maximum-likelihood based methods. We focus our analysis on two well-established hierarchical probabilistic models that aim at capturing the evolution of beliefs in changing environments: Hierarchical Gaussian Filters and Change Point Models. To our knowledge, these two, well-established models have never been compared on the same data. We demonstrate, using simulated behavioral experiments, that one can accurately disambiguate between these two models, and accurately infer free model parameters and hidden belief trajectories (e.g., posterior expectations, posterior uncertainties, and prediction errors) even when using noisy and highly correlated behavioral measurements. Importantly, we found several advantages of Bayesian inference and Bayesian model comparison compared to often-used Maximum-Likelihood schemes combined with the Bayesian Information Criterion. These results stress the relevance of Bayesian data analysis for model-based neuroimaging studies that investigate human decision making under uncertainty.
49

Comparative Analysis of Behavioral Models for Adaptive Learning in Changing Environments

Marković, Dimitrije, Kiebel, Stefan J. 16 January 2017 (has links)
Probabilistic models of decision making under various forms of uncertainty have been applied in recent years to numerous behavioral and model-based fMRI studies. These studies were highly successful in enabling a better understanding of behavior and delineating the functional properties of brain areas involved in decision making under uncertainty. However, as different studies considered different models of decision making under uncertainty, it is unclear which of these computational models provides the best account of the observed behavioral and neuroimaging data. This is an important issue, as not performing model comparison may tempt researchers to over-interpret results based on a single model. Here we describe how in practice one can compare different behavioral models and test the accuracy of model comparison and parameter estimation of Bayesian and maximum-likelihood based methods. We focus our analysis on two well-established hierarchical probabilistic models that aim at capturing the evolution of beliefs in changing environments: Hierarchical Gaussian Filters and Change Point Models. To our knowledge, these two, well-established models have never been compared on the same data. We demonstrate, using simulated behavioral experiments, that one can accurately disambiguate between these two models, and accurately infer free model parameters and hidden belief trajectories (e.g., posterior expectations, posterior uncertainties, and prediction errors) even when using noisy and highly correlated behavioral measurements. Importantly, we found several advantages of Bayesian inference and Bayesian model comparison compared to often-used Maximum-Likelihood schemes combined with the Bayesian Information Criterion. These results stress the relevance of Bayesian data analysis for model-based neuroimaging studies that investigate human decision making under uncertainty.
50

KARTOTRAK, integrated software solution for contaminated site characterization: presentation of 3D geomodeling software, held at IAMG 2015 in Freiberg

Wagner, Laurent 03 November 2015 (has links)
Kartotrak software allows optimal waste classification and avoids unnecessary remediation. It has been designed for those - site owners, safety authorities or contractors, involved in environmental site characterization projects - who need to locate and estimate contaminated soil volumes confidently.

Page generated in 0.0396 seconds