Spelling suggestions: "subject:"cohomology.""
101 |
Etude et Classification des algèbres Hom-associatives / Study and Classification of Hom-associative algebrasAbdou Damdji, Ahmed Zahari 24 May 2017 (has links)
La thèse comporte six chapitres. Dans le premier chapitre, on rappelle les bases de la théorie et on étudie la structure des algèbres Hom-associatives ainsi que les différentes constructions comme la composition avec des endomorphismes qui nous permet de construire de nouveaux objets et d’établir certaines nouvelles propriétés. Parmi les résultats originaux, on peut signaler l’étude des algèbres Hom-associatives simples ainsi que leurs constructions. On a montré que toutes les algèbres Hom-associatives multiplicatives simples s’obtiennent par composition d’algèbres simples et d’automorphismes. Dans le deuxième chapitre, on commence par étudier les propriétés des changements de base dans ces structures algébriques. On a calculé la base de Gröbner de l’idéal engendrant la variété algébrique des algèbres Hom-associatives de dimension 2 où la multiplication µ et l’application linéaire α sont identifiées à leurs constantes de structure relativement à une base donnée. La classification, à isomorphisme près, des algèbres Hom-associatives unitaires et non unitaires est établie en dimension 2 et 3. On a aussi décrit les algèbres de type associatif en se basant sur le théorème de twist de Yau. Dans le troisième chapitre, on étudie certaines propriétés et invariants comme les dérivations, αk-dérivations où k est un entier positif. Dans le quatrième chapitre, on établit la cohomologie de ces algèbres. On a pu lister les algèbres rigides grâce à leur classe de cohomologie puis on s'est 'intéressé aux déformations infinitésimales et dégénérations. D’une part, la cohomologie et déformation de ces algèbres nous a permis d’identifier les algèbres rigides dont le deuxième groupe de cohomologie est nulle, et d’autre part de caractérisation de composante irréductible. Dans le cinquième chapitre, on s’intéresse aux structures Rota-Baxter de poids λ ϵK de ces algèbres. Enfin, dans le dernier chapitre, on a travaillé sur les structures Hom-bialgèbres et leurs invariants. / The purpose of this thesis is to study the structure of Hom-associative algebras and provide classifications. Among the results obtained in this thesis, we provide 2-dimensional and 3-dimensional Hom-associative algebras and give a characterization of multiplicative simple Hom-associative algebras. Moreover we compute some invariants and discuss irreducible components of the corresponding algebraic varieties. The thesis is organized as follows. In the first chapter we give the basics about Hom-associative algebras and provide some new properties. Moreover, we discuss unital Hom-associative algebras. Chapter 2 deals with simple multiplicative Hom-associative algebras. We present one of the main results of this paper, that is a characterization of simple multiplicative Hom-associative algebras. Indeed, we show that they are all obtained by twistings of simple associative algebras. Chapter 3 is dedicated to describe algebraic varieties of Hom-associative algebras and provide classifications, up to isomorphism, of 2-dimensional and 3-dimensional Hom-associative algebras. In chapter 4, we compute their derivations and twisted derivations, whereas in chapter 5, we compute their Hom-Type Hochschild cohomology. In the last section of this chapter, we consider the geometric classification problem using one-parameter formel deformations, and describe the irreducible components. In chapter 6, we compute Rota-Baxter structures of weight k of Hom-associative algebras appearing in our classification. In chapter 7, We work out Hom-bialgebras structures as well as their invariants. Properties and classifications, as well as the calculation of certain invariants such as the first and second cohomology groups, were studied.
|
102 |
Invariants numériques de catégories de fusion : calculs et applications / Numerical invariants of fusion categories : calculations and applicationsMignard, Michaël 14 December 2017 (has links)
Les catégories de fusion pointées sont des catégories de fusion pour lesquelles les objets simples sont inversibles. Nous développons des méthodes basés par ordinateur pour classifier les catégories pointées à équivalence de Morita près, et les appliquons aux catégories pointées de dimensions comprises entre 2 et 32. Nous prouvons qu'il existe 1126 classes de Morita pour de telles catégories. Aussi, nous prouvons que les indicateurs de Frobenius-Schur du centre d'une catégorie pointée de dimension inférieure à 32, accompagnés de structure enrubannée de ce centre, déterminent sa classe de Morita. Ceci est faux en général: les données modulaires, et donc a fortiori les indicateurs et structures enrubannées, ne distinguent pas les catégories modulaires. Nous donnons une famille d'exemples ; en réalité, il existe un nombre arbitrairement grand de catégories modulaires deux-à-deux non équivalentes qui peuvent partager les mêmes données modulaires. / Pointed fusion categories are fusion categories in which all simple objects are invertible. We develop computer-based methods to classify pointed categories up to Morita equivalence, and apply them to pointed fusion categories of dimension from 2 to 31. We prove that there are 1126 Morita classes of such categories. Also, we prove that the Frobenius-Schur indicators of the centers of a pointed category of dimension less than 32, along with its ribbon twist, determine its Morita class. This is not true in general: the modular data, and a fortiori the indicators and the ribbon twists, do not distinguish modular categories. We give a family of examples; in fact, arbitrarly many pairwise non-equivalent modular categories can share the same modular data.
|
103 |
Invariants algébriques et topologiques des courbes et surfaces à singularités quotient / Algebraic and Topological Invariants of Curves and Surfaces with Quotient SingularitiesOrtigas Galindo, Jorge 03 July 2013 (has links)
Le but principal de cette thèse de doctorat est l'étude de l'anneau de cohomologie du complément d'une courbe algébrique réduite dans le plan projectif pondéré complexe dont les composantes irréductibles sont des courbes rationnelles (avec ou sans points singuliers). En particulier, des représentants holomorphes (rationnels) sont obtenus pour les classes de cohomologie. Pour atteindre notre objectif, il est nécessaire de développer une théorie algébrique des courbes sur des surfaces avec des singularités quotient et d'étudier des techniques pour calculer certains invariants particulièrement utiles à travers des Q-résolutions plongées. / The main goal of this PhD thesis is the study of the cohomology ring of the complement of a reduced algebraic curve in the complex weighted projective plane whose irreducible components are all rational (possibly singular) curves. In particular, holomorphic (rational) representatives are found for the cohomology classes. In order to achieve our purpose one needs to develop an algebraic theory of curves on surfaces with quotient singularities and study techniques to compute some particularly useful invariants by means of embedded Q-resolutions.
|
104 |
La naissance de la cohomologie des groupesBasbois, Nicolas 26 October 2009 (has links) (PDF)
Cette thèse étudie d'un point de vue historique la genèse de la cohomologie des groupes, théorie qui vit le jour dans les années 1940. Il s'agit d'une théorie à la fois algébrique, au sens où elle donne des résultats sur les groupes, et topologique par les méthodes qu'elle met en œuvre . Le présent travail analyse les mécanismes par lesquels la topologie et l'algèbre se sont interpénétrées pour donner naissance à cette théorie abstraite et élaborée, en mettant notamment en perspective ce phénomène par rapport à ceux, plus globaux, de la naissance et de l'expansion de l'algèbre moderne. Y sont notamment discutées l'influence d'Emmy Noether dans l'algébrisation de la topologie et les motivations respectives de Heinz Hopf et d'Eilenberg & Mac Lane les ayant menés à l'élaboration de l'homologie des groupes. L'analyse minutieuse de plusieurs articles phares - dus aux auteurs cités précédemment mais aussi à Schur, Vietoris ou encore Eckmann - permet de mettre en lumière le fait que la volonté de répondre à des problèmes mathématiques précis fut peut-être plus motrice, dans l'émergence de cette théorie architectonique qu'est la cohomologie des groupes, que de grandes idées directrices conçues au sein de représentations structurales des mathématiques.
|
105 |
Equations fonctionnelles pour une fonction sur<br />un espace singulierTorrelli, Tristan 06 November 1998 (has links) (PDF)
Afin d'étendre à un cadre singulier des résultats de la théorie du polynôme de Bernstein-Sato, nous étudions ici les polynômes de Bernstein d'une fonction analytique f associée aux sections du module de cohomologie locale algébrique R à support une intersection complète locale X définie par un morphisme analytique g. En effet, il résulte de la construction algébrique des cycles évanescents que les racines de ces polynômes sont étroitement liées aux valeurs propres de la monodromie locale de f sur X.<br /><br />Après avoir donné des résultats sur les polynômes de Bernstein associés aux sections d'un D-Module holonome, nous faisons l'étude du cas g lisse à l'origine, puis f lisse et X hypersurface. Nous étudions ensuite l'existence de polynômes de Bernstein génériques et relatifs des sections de R associées à une déformation analytique, reliant ces questions à la géométrie d'espaces conormaux.<br /><br />Reprenant des idées de B. Malgrange, nous donnons ensuite une construction adaptée à l'étude des polynômes de Bernstein des sections de R lorsque les morphismes g et (f,g) définissent des intersections complètes à singularité isolée à l'origine. Cette construction impose notamment la quasi-homogénéité de g et nécessite des calculs d'annulateurs. Nous nous consacrons enfin aux calculs de polynômes de Bernstein basés sur ces résultats. Nous donnons d'abord un algorithme de calcul lorsque en plus des hypothèses adéquates, nous supposons que la partie initiale de f définit une singularité isolée sur X. Quand de plus f est quasi-homogène, nous obtenons des formules explicites. Nous terminons notre étude par des exemples de calculs lorsque X est un cône quadratique non dégénéré.
|
106 |
Quelques problèmes de géométrie complexe et presque complexeGrivaux, Julien 19 October 2009 (has links) (PDF)
Le travail effectué dans cette thèse consiste à construire et adapter dans d'autres cadres des objets issus de la géométrie algébrique. Nous nous intéressons d'abord à la théorie des classes de Chern pour les faisceaux cohérents. Sur les variétés projectives, elle est complètement achevée dans les anneaux de Chow grâce à l'existence de résolutions globales localement libres et se ramène formellement à la théorie pour les fibrés. Un résultat de Voisin montre que ces résolutions n'existent pas toujours sur des variétés complexes compactes générales. Nous construisons ici par récurrence sur la dimension de la variété de base des classes de Chern en cohomologie de Deligne rationnelle pour les faisceaux analytiques cohérents en imposant la formule de Grothendieck-Riemann-Roch pour les immersions et en utilisant des méthodes de dévissage. Ces classes sont les seules à vérifier la formule de fonctorialité par pull-back, la formule de Whitney et la formule de Grothendieck-Riemann-Roch pour les immersions; elles coïncident donc avec les classes topologiques et les classes d'Atiyah. Elles vérifient aussi le théorème de Grothendieck-Riemann-Roch pour les morphismes projectifs. Notre second travail est l'étude des schémas de Hilbert ponctuels d'une variété symplectique ou presque complexe de dimension 4. Ils ont été construits par Voisin et généralisent les schémas de Hilbert connus pour les surfaces projectives. En utilisant les structures complexes relatives intégrables introduites dans la construction de Voisin, nous pouvons étendre au cas presque complexe ou symplectique la théorie classique. Nous calculons les nombres de Betti, nous construisons les opérateurs de Nakajima, nous étudions l'anneau de cohomologie et la classe de cobordisme de ces schémas de Hilbert, et nous prouvons dans ce contexte un cas particulier de la conjecture de la résolution crêpante de Ruan.
|
107 |
Revêtements galoisiens et groupe fondamental d'algèbres de dimension finieLe Meur, Patrick 10 February 2006 (has links) (PDF)
Cette thèse est consacrée à l'étude des revêtements galoisiens et à la recherche du revêtement universel et du groupe fondamental pour les algèbres de dimension finie, connexes et basiques sur un corps algébriquement clos. Pour ce faire, nous partons d'une construction déjà existante: le groupe fondamental associé à toute présentation d'une telle algèbre A par son carquois ordinaire Q et des relations admissibles. Nous commençons par comparer les différentes présentations de A. Les automorphismes de l'algèbre kQ des chemins de Q permettent de relier deux présentations de A et parmi ceux-là, nous distinguons les dilatations et les transvections: elles engendrent le groupe des automorphismes de kQ, en outre, les groupes fondamentaux de deux présentations de A reliées par une dilatation ou une transvection sont liés entre eux par un passage au quotient. Ceci permet d'exhiber un groupe fondamental pour A lorsque le corps de base est de caractéristique nulle et lorsque Q n'a pas de double raccourci. Ces raisonnements se transposent à l'étude des revêtements galoisiens de A puisqu'à chaque présentation de A est associé un revêtement galoisien de A et de groupe le groupe fondamental de la présentation. Ainsi, sous les hypothèses précédentes fournissant le groupe fondamental de A, un revêtement universel de A existe. Ce dernier résultat est également démontré pour un corps de caractéristique quelconque, lorsque A est monomiale et lorsque Q n'a ni flèches multiples ni cycle orienté tout en admettant d'éventuels double raccourcis.
|
108 |
Variétés de drapeaux et opérateurs différentielsJauffret, Colin 11 1900 (has links)
Soit G un groupe algébrique semi-simple sur un corps de caractéristique 0. Ce mémoire discute d'un théorème d'annulation de la cohomologie supérieure du faisceau D des opérateurs différentiels sur une variété de drapeaux de G. On démontre que si P est un sous-groupe parabolique de G, alors H^i(G/P,D)=0 pour tout i>0.
On donne en fait trois preuves indépendantes de ce théorème. La première preuve est de Hesselink et n'est valide que dans le cas où le sous-groupe parabolique est un sous-groupe de Borel. Elle utilise un argument de suites spectrales et le théorème de Borel-Weil-Bott. La seconde preuve est de Kempf et n'est valide que dans le cas où le radical unipotent de P agit trivialement sur son algèbre de Lie. Elle n'utilise que le théorème de Borel-Weil-Bott. Enfin, la troisième preuve est attribuée à Elkik. Elle est valide pour tout sous-groupe parabolique mais utilise le théorème de Grauert-Riemenschneider.
On présente aussi une construction détaillée du faisceau des opérateurs différentiels sur une variété. / Let G be a semisimple algebraic group on a field of characteristic 0. This thesis discusses a vanishing theorem for the higher cohomology of the sheaf D of differential operators on a flag variety of G. We show that if P is a parabolic subgroup of G, then H^i(G/P,D)=0 for all i>0.
In fact, we give three independent proofs of this theorem. The first proof, due to Hesselink, only works if the parabolic subgroup P is a Borel subgroup. It uses a spectral sequence argument as well as the Borel-Weil-Bott theorem. The second proof, due to Kempf, only works if the unipotent radical of P acts trivially on its Lie algebra. It only uses the Borel-Weil-Bott theorem. Finally, the third proof, due to Elkik, is valid for any parabolic subgroup. However, it uses the Grauert-Riemenschneider theorem.
We also present a detailled construction of the sheaf of differential operators on a variety.
|
109 |
Le théorème de Borel-Weil-BottAscah-Coallier, Isabelle January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
|
110 |
Sous-groupes finis des groupes de stabilisateur étendus de MoravaBujard, Cédric 04 June 2012 (has links) (PDF)
L'objet de la thèse est la classification à conjugaison près des sous-groupes finis du groupe de stabilisateur (classique) de Morava S_n et du groupe de stabilisateur étendu G_n(u) associé à une loi de groupe formel F de hauteur n définie sur le corps F_p à p éléments. Une classification complète dans S_n est établie pour tout entier positif n et premier p. De plus, on montre que la classification dans le groupe étendu dépend aussi de F et son unité associée u dans l'anneau des entiers p-adiques. On établit un cadre théorique pour la classification dans G_n(u), on donne des conditions nécessaires et suffisantes sur n, p et u pour l'existence dans G_n(u) d'extensions de sous-groupes finis maximaux de S_n par le groupe de Galois de F_{p^n} sur F_p, et lorsque de telles extensions existent on dénombre leurs classes de conjugaisons. On illustre nos méthodes en fournissant une classification complète et explicite dans le cas n=2.
|
Page generated in 0.048 seconds