• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 14
  • 4
  • 2
  • Tagged with
  • 92
  • 71
  • 56
  • 54
  • 54
  • 37
  • 28
  • 26
  • 21
  • 21
  • 21
  • 19
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Layer structure and the galerkin finite element method for a system of weakly coupled singularly perturbed convection-diffusion equations with multiple scales

Roos, Hans-Görg, Schopf, Martin 17 April 2020 (has links)
We consider a system of weakly coupled singularly perturbed convection-diffusion equations with multiple scales. Based on sharp estimates for first order derivatives, Linß [T. Linß, Computing 79 (2007) 23–32.] analyzed the upwind finite-difference method on a Shishkin mesh. We derive such sharp bounds for second order derivatives which show that the coupling generates additional weak layers. Finally, we prove the first robust convergence result for the Galerkin finite element method for this class of problems on modified Shishkin meshes introducing a mesh grading to cope with the weak layers. Numerical experiments support our theory.
72

Interactive PDF Documents in Math Education Focused on Tests for Differential Equations

Kuráňová, Silvie 04 May 2012 (has links)
The progress of blended learning has given rise to the need to prepare quality electronic materials, especially those which use the greatest advantage of an electronic document – its interactivity. This paper presents several types of PDF materials – interactive exercises, tests and games created by LaTeX packages (AcroTeX eDucation Bundle) with a contribution of other supporting instruments (3D graphics, fancytooltips, AcroFLeX). Differential equations, as an important tool of continuous mathematical modeling, have been chosen to demonstrate the still increasing power of PDF documents. This strategy allowed me to introduce innovative approaches in explaining and exercising this part of mathematics at the same time. To create such materials some LaTeX knowledge is needed; nevertheless this article is for all math teachers who are looking for quality interactive materials.
73

Solving optimal PDE control problems : optimality conditions, algorithms and model reduction

Prüfert, Uwe 16 May 2016 (has links)
This thesis deals with the optimal control of PDEs. After a brief introduction in the theory of elliptic and parabolic PDEs, we introduce a software that solves systems of PDEs by the finite elements method. In the second chapter we derive optimality conditions in terms of function spaces, i.e. a systems of PDEs coupled by some pointwise relations. Now we present algorithms to solve the optimality systems numerically and present some numerical test cases. A further chapter deals with the so called lack of adjointness, an issue of gradient methods applied on parabolic optimal control problems. However, since optimal control problems lead to large numerical schemes, model reduction becomes popular. We analyze the proper orthogonal decomposition method and apply it to our model problems. Finally, we apply all considered techniques to a real world problem.:Introduction The state equation Optimal control and optimality conditions Algorithms The \"lack of adjointness\" Numerical examples Efficient solution of PDEs and KKT- systems A real world application Functional analytical basics Codes of the examples
74

Business Cycle Models with Embodied Technological Change and Poisson Shocks

Schlegel, Christoph 28 May 2004 (has links)
The first part analyzes an Endogenous Business Cycle model with embodied technological change. Households take an optimal decision about their spending for consumption and financing of R&D. The probability of a technology invention occurring is an increasing function of aggregate R&D expenditure in the whole economy. New technologies bring higher productivity, but rather than applying to the whole capital stock, they require a new vintage of capital, which first has to be accumulated before the productivity gain can be realized. The model offers some valuable features: Firstly, the response of output following a technology shock is very gradual; there are no jumps. Secondly, R&D is an ongoing activity; there are no distinct phases of research and production. Thirdly, R&D expenditure is pro-cyclical and the real interest rate is counter-cyclical. Finally, long-run growth is without scale effects. The second part analyzes a RBC model in continuous time featuring deterministic incremental development of technology and stochastic fundamental inventions arriving according to a Poisson process. In a special case an analytical solution is presented. In the general case a delay differential equation (DDE) has to be solved. Standard numerical solution methods fail, because the steady state is path dependent. A new solution method is presented which is based on a modified method of steps for DDEs. It provides not only approximations but also upper and lower bounds for optimal consumption path and steady state. Furthermore, analytical expressions for the long-term equilibrium distributions of the stationary variables of the model are presented. The distributions can be described as extended Beta distributions. This is deduced from a methodical result about a delay extension of the Pearson system.
75

Nodale Spektralelemente und unstrukturierte Gitter - Methodische Aspekte und effiziente Algorithmen

Fladrich, Uwe 15 December 2011 (has links)
Die Dissertation behandelt methodische und algorithmische Aspekte der Spektralelementemethode zur räumlichen Diskretisierung partieller Differentialgleichungen. Die Weiterentwicklung einer symmetriebasierten Faktorisierung ermöglicht effiziente Operatoren für Tetraederelemente. Auf Grundlage einer umfassenden Leistungsanalyse werden Engpässe in der Implementierung der Operatoren identifiziert und durch algorithmische Modifikationen der Methode eliminiert.
76

Refinements of the Solution Theory for Singular SPDEs

Martin, Jörg 14 August 2018 (has links)
Diese Dissertation widmet sich der Untersuchung singulärer stochastischer partieller Differentialgleichungen (engl. SPDEs). Wir entwickeln Erweiterungen der bisherigen Lösungstheorien, zeigen fundamentale Beziehungen zwischen verschiedenen Ansätzen und präsentieren Anwendungen in der Finanzmathematik und der mathematischen Physik. Die Theorie parakontrollierter Systeme wird für diskrete Räume formuliert und eine schwache Universalität für das parabolische Anderson Modell bewiesen. Eine fundamentale Relation zwischen Hairer's modellierten Distributionen und Paraprodukten wird bewiesen: Wir zeigen das sich der Raum modellierter Distributionen durch Paraprodukte beschreiben lässt. Dieses Resultat verallgemeinert die Fourierbeschreibung von Hölderräumen mittels Littlewood-Paley Theorie. Schließlich wird die Existenz von Lösungen der stochastischen Schrödingergleichung auf dem ganzen Raum bewiesen und eine Anwendung Hairer's Theorie zur Preisermittlung von Optionen aufgezeigt. / This thesis is concerned with the study of singular stochastic partial differential equations (SPDEs). We develop extensions to existing solution theories, present fundamental interconnections between different approaches and give applications in financial mathematics and mathematical physics. The theory of paracontrolled distribution is formulated for discrete systems, which allows us to prove a weak universality result for the parabolic Anderson model. This thesis further shows a fundamental relation between Hairer's modelled distributions and paraproducts: The space of modelled distributions can be characterized completely by using paraproducts. This can be seen a generalization of the Fourier description of Hölder spaces. Finally, we prove the existence of solutions to the stochastic Schrödinger equation on the full space and provide an application of Hairer's theory to option pricing.
77

Physics-based Machine Learning Approaches to Complex Systems and Climate Analysis

Gelbrecht, Maximilian 20 July 2021 (has links)
Komplexe Systeme wie das Klima der Erde bestehen aus vielen Komponenten, die durch eine komplizierte Kopplungsstruktur miteinander verbunden sind. Für die Analyse solcher Systeme erscheint es daher naheliegend, Methoden aus der Netzwerktheorie, der Theorie dynamischer Systeme und dem maschinellen Lernen zusammenzubringen. Durch die Kombination verschiedener Konzepte aus diesen Bereichen werden in dieser Arbeit drei neuartige Ansätze zur Untersuchung komplexer Systeme betrachtet. Im ersten Teil wird eine Methode zur Konstruktion komplexer Netzwerke vorgestellt, die in der Lage ist, Windpfade des südamerikanischen Monsunsystems zu identifizieren. Diese Analyse weist u.a. auf den Einfluss der Rossby-Wellenzüge auf das Monsunsystem hin. Dies wird weiter untersucht, indem gezeigt wird, dass der Niederschlag mit den Rossby-Wellen phasenkohärent ist. So zeigt der erste Teil dieser Arbeit, wie komplexe Netzwerke verwendet werden können, um räumlich-zeitliche Variabilitätsmuster zu identifizieren, die dann mit Methoden der nichtlinearen Dynamik weiter analysiert werden können. Die meisten komplexen Systeme weisen eine große Anzahl von möglichen asymptotischen Zuständen auf. Um solche Zustände zu beschreiben, wird im zweiten Teil die Monte Carlo Basin Bifurcation Analyse (MCBB), eine neuartige numerische Methode, vorgestellt. Angesiedelt zwischen der klassischen Analyse mit Ordnungsparametern und einer gründlicheren, detaillierteren Bifurkationsanalyse, kombiniert MCBB Zufallsstichproben mit Clustering, um die verschiedenen Zustände und ihre Einzugsgebiete zu identifizieren. Bei von Vorhersagen von komplexen Systemen ist es nicht immer einfach, wie Vorwissen in datengetriebenen Methoden integriert werden kann. Eine Möglichkeit hierzu ist die Verwendung von Neuronalen Partiellen Differentialgleichungen. Hier wird im letzten Teil der Arbeit gezeigt, wie hochdimensionale räumlich-zeitlich chaotische Systeme mit einem solchen Ansatz modelliert und vorhergesagt werden können. / Complex systems such as the Earth's climate are comprised of many constituents that are interlinked through an intricate coupling structure. For the analysis of such systems it therefore seems natural to bring together methods from network theory, dynamical systems theory and machine learning. By combining different concepts from these fields three novel approaches for the study of complex systems are considered throughout this thesis. In the first part, a novel complex network construction method is introduced that is able to identify the most important wind paths of the South American Monsoon system. Aside from the importance of cross-equatorial flows, this analysis points to the impact Rossby Wave trains have both on the precipitation and low-level circulation. This connection is then further explored by showing that the precipitation is phase coherent to the Rossby Wave. As such, the first part of this thesis demonstrates how complex networks can be used to identify spatiotemporal variability patterns within large amounts of data, that are then further analysed with methods from nonlinear dynamics. Most complex systems exhibit a large number of possible asymptotic states. To investigate and track such states, Monte Carlo Basin Bifurcation analysis (MCBB), a novel numerical method is introduced in the second part. Situated between the classical analysis with macroscopic order parameters and a more thorough, detailed bifurcation analysis, MCBB combines random sampling with clustering methods to identify and characterise the different asymptotic states and their basins of attraction. Forecasts of complex system are the next logical step. When doing so, it is not always straightforward how prior knowledge in data-driven methods. One possibility to do is by using Neural Partial Differential Equations. Here, it is demonstrated how high-dimensional spatiotemporally chaotic systems can be modelled and predicted with such an approach in the last part of the thesis.
78

Modeling and Optimization of Electrode Configurations for Piezoelectric Material

Schulze, Veronika 30 October 2023 (has links)
Piezoelektrika haben ein breit gefächertes Anwendungsspektrum in Industrie, Alltag und Forschung. Dies erfordert ein genaues Wissen über das Materialverhalten der betrachteten piezoelektrischen Elemente, was mit dem Lösen von simulationsgestützten inversen Parameteridentifikationsproblemen einhergeht. Die vorliegende Arbeit befasst sich mit der optimalen Versuchsplanung (OED) für dieses Problem. Piezoelektrische Materialien weisen die Eigenschaft auf, sich als Reaktion auf angelegte Potentiale oder Kräfte mechanisch oder elektrisch zu verändern (direkter und indirekter piezoelektrischer Effekt). Um eine Spannung anzulegen und den indirekten piezoelektrischen Effekt auszunutzen, werden Elektroden aufgebracht, deren Konfiguration einen erheblichen Einfluss auf mögliche Systemantworten hat. Daher werden das Potential, die Anzahl und die Größe der Elektroden zunächst im zweidimensionalen Fall optimiert. Das piezoelektrische Verhalten basiert im betrachteten Kleinsignalbereich auf zeitabhängigen, linearen partiellen Differentialgleichungen. Die Herleitung sowie Existenz und Eindeutigkeit der Lösungen werden gezeigt. Zur Berechnung der elektrischen Ladung und der Impedanz, die für das Materialidentifikationsproblem und damit für die Versuchsplanung relevant sind, werden zeit- und frequenzabhängige Simulationen auf Basis der Finite Elemente Methode (FEM) mit dem FEM Simulationstool FEniCS durchgeführt. Es wird auf Nachteile bei der Berechnung der Ableitungen eingegangen und erste adjungierte Gleichungen formuliert. Die Modellierung des Problems der optimalen Versuchsplanung erfolgt hauptsächlich durch die Kontrolle des Potentials der Dirichlet Randbedingungen des Randwertproblems. Anhand mehrerer numerischer Beispiele werden die resultierenden Konfigurationen gezeigt. Weitere Ansätze zur Elektrodenmodellierung, z.B. durch Kontrolle der Materialeigenschaften, werden ebenfalls vorgestellt. Schließlich wird auf mögliche Erweiterungen des vorgestellten OED Problems hingewiesen. / Piezoelectrics have a wide range of applications in industry, everyday life and research. This requires an accurate knowledge of the material behavior, which implies the solution of simulation-based inverse identification problems. This thesis focuses on the optimal design of experiments addressing this problem. Piezoelectric materials exhibit the property of mechanical or electrical changes in response to applied potentials or forces (direct and indirect piezoelectric effect). To apply voltage and to exploit the indirect piezoelectric effect, electrodes are attached whose configura- tion have a significant influence on possible system responses. Therefore, the potential, the number and the size of the electrodes are initially optimized in the two-dimensional case. The piezoelectric behavior in the considered small signal range is based on a time dependent linear partial differential equation system. The derivation as well as the exis- tence, uniqueness and regularity of the solutions of the equations are shown. Time- and frequency-dependent simulations based on the finite element method (FEM) with the FEM simulation tool FEniCS are performed to calculate the electric charge and the impedance, which are relevant for the material identification problem and thus for the experimental design. Drawbacks in the derivative calculations are pointed out and a first set of adjoint equations is formulated. The modeling of the optimal experimental design (OED) prob- lem is done mainly by controlling the potential of the Dirichlet boundary conditions of the boundary value problem. Several numerical examples are used to show the resulting configurations and to address the difficulties encountered. Further electrode modeling ap- proaches for example by controlling the material properties are then discussed. Finally, possible extensions of the presented OED problem are pointed out.
79

Probability and Heat Kernel Estimates for Lévy(-Type) Processes

Kühn, Franziska 05 December 2016 (has links) (PDF)
In this thesis, we present a new existence result for Lévy-type processes. Lévy-type processes behave locally like a Lévy process, but the Lévy triplet may depend on the current position of the process. They can be characterized by their so-called symbol; this is the analogue of the characteristic exponent in the Lévy case. Using a parametrix construction, we prove the existence of Lévy-type processes with a given symbol under weak regularity assumptions on the regularity of the symbol. Applications range from existence results for stable-like processes and mixed processes to uniqueness results for Lévy-driven stochastic differential equations. Moreover, we discuss sufficient conditions for the existence of moments of Lévy-type processes and derive estimates for fractional moments.
80

Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung

Wolf, Jörg 31 May 2002 (has links)
In der vorliegenden Arbeit untersuchen wir schwache Lösungen, die zu einem geeigneten Sobolevraum gehören, q-elliptischer und parabolischer Systeme partieller Differentialgleichungen auf deren Regularität für den Fall 1 / In the present work we study the regularity of weak solution to q-elliptic and parabolic systems partial differential equations in appropriate Sobolev spaces in case 1

Page generated in 0.1196 seconds