• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 11
  • 4
  • Tagged with
  • 71
  • 71
  • 47
  • 43
  • 40
  • 28
  • 27
  • 25
  • 24
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Rabinowitz-Floer homology on Brieskorn manifolds

Fauck, Alexander 19 May 2016 (has links)
In dieser Dissertation werden Kontaktstrukturen auf beliebigen differenzierbaren Mannigfaltigkeiten ungerader Dimension untersucht. Dies geschiet vermöge der Rabinowitz-Floer-Homologie (RFH), welche 2009 von Cieliebak und Frauenfelder eingeführt wurde. Ein großer Teil der Arbeit widmet sich den technischen Problemen bei der Definition von RFH. Insbesondere wird die Transversalität für die benötigten Modulräume gezeigt. In einem weiteren Abschnitt wird bewiesen, dass RFH im wesentlichen invariant unter subkrittischer Henkelanklebung ist. Schließlich enthält die Arbeit die Berechnung von RFH für einige Brieskorn-Mannigfaltigkeiten. Die dabei gewonnenen Resultate werden dazu verwendet zu zeigen, dass es auf jeder Mannigfaltigkeit, welche füllbare Kontaktstukturen zulässt, entweder unendlich viele verschiedene füllbare Kontaktstrukturen gibt, oder eine Kontaktstruktur mit unendlich vielen verschiedenen Füllungen oder das für alle füllbaren Kontaktstrukturen die RFH von unendlicher Dimension ist für alle Grade. / This thesis considers fillable contact structures on odd-dimensional manifolds. For that purpose, Rabinowitz-Floer homology (RFH) is used which was introduced by Cieliebak and Frauenfelder in 2009. A major part of the thesis is devoted to technical problems in the definition of RFH. In particular, it is shown that the moduli spaces involved are cut out transversally. Moreover, it is proved that RFH is essentially invariant under subcritical handle attachment. Finally, RFH is calculated for some Brieskorn manifolds. The obtained results are then used to show for every manifold, which supports fillable contact structures, that there exist either infinitely many different fillable contact structures, or one contact structure with infinitely many different fillings or for every fillable contact structure holds that RFH is infinite dimensional in every degree.
32

Self-Organizing Control for Autonomous Robots / A Dynamical Systems Approach Based on the Principle of Homeokinesis / Selbstorganisierende Steuerung für Autonomer Roboter / Ein Dynamischer Systeme-Ansatz basierend auf dem Prinzip der Homeokinese

Hesse, Frank 19 January 2009 (has links)
No description available.
33

Modellierung dynamischer Prozesse mit radialen Basisfunktionen / Modeling of dynamical processes using radial basis functions

Dittmar, Jörg 20 August 2010 (has links)
No description available.
34

Growth and Scaling during Development and Regeneration

Werner, Steffen 19 August 2016 (has links) (PDF)
Life presents fascinating examples of self-organization and emergent phenomena. In multi-cellular organisms, a multitude of cells interact to form and maintain highly complex body plans. This requires reliable communication between cells on various length scales. First, there has to be the right number of cells to preserve the integrity of the body and its size. Second, there have to be the right types of cells at the right positions to result in a functional body layout. In this thesis, we investigate theoretical feedback mechanisms for both self-organized body plan patterning and size control. The thesis is inspired by the astonishing scaling and regeneration abilities of flatworms. These worms can perfectly regrow their entire body plan even from tiny amputation fragments like the tip of the tail. Moreover, they can grow and actively de-grow by more than a factor of 40 in length depending on feeding conditions, scaling up and down all body parts while maintaining their functionality. These capabilities prompt for remarkable physical mechanisms of pattern formation. First, we explore pattern scaling in mechanisms previously proposed to describe biological pattern formation. We systematically extract requirements for scaling and highlight the limitations of these previous models in their ability to account for growth and regeneration in flatworms. In particular, we discuss a prominent model for the spontaneous formation of biological patterns introduced by Alan Turing. We characterize the hierarchy of steady states of such a Turing mechanism and demonstrate that Turing patterns do not naturally scale. Second, we present a novel class of patterning mechanisms yielding entirely self-organized and self-scaling patterns. Our framework combines a Turing system with our derived principles of pattern scaling and thus captures essential features of body plan regeneration and scaling in flatworms. We deduce general signatures of pattern scaling using dynamical systems theory. These signatures are discussed in the context of experimental data. Next, we analyze shape and motility of flatworms. By monitoring worm motility, we can identify movement phenotypes upon gene knockout, reporting on patterning defects in the locomotory system. Furthermore, we adapt shape mode analysis to study 2D body deformations of wildtype worms, which enables us to characterize two main motility modes: a smooth gliding mode due to the beating of their cilia and an inchworming behavior based on muscle contractions. Additionally, we apply this technique to investigate shape variations between different flatworm species. With this approach, we aim at relating form and function in flatworms. Finally, we investigate the metabolic control of cell turnover and growth. We establish a protocol for accurate measurements of growth dynamics in flatworms. We discern three mechanisms of metabolic energy storage; theoretical descriptions thereof can explain the observed organism growth by rules on the cellular scale. From this, we derive specific predictions to be tested in future experiments. In a close collaboration with experimental biologists, we combine minimal theoretical descriptions with state-of-the-art experiments and data analysis. This allows us to identify generic principles of scalable body plan patterning and growth control in flatworms. / Die belebte Natur bietet uns zahlreiche faszinierende Beispiele für die Phänomene von Selbstorganisation und Emergenz. In Vielzellern interagieren Millionen von Zellen miteinander und sind dadurch in der Lage komplexe Körperformen auszubilden und zu unterhalten. Dies verlangt nach einer zuverlässigen Kommunikation zwischen den Zellen auf verschiedenen Längenskalen. Einerseits ist stets eine bestimmte Zellanzahl erforderlich, sodass der Körper intakt bleibt und seine Größe erhält. Anderseits muss für einen funktionstüchtigen Körper aber auch der richtige Zelltyp an der richtigen Stelle zu finden sein. In der vorliegenden Dissertation untersuchen wir beide Aspekte, die Kontrolle von Wachstum sowie die selbstorganisierte Ausbildung des Körperbaus. Die Dissertation ist inspiriert von den erstaunlichen Skalierungs- und Regenerationsfähigkeiten von Plattwürmern. Diese Würmer können ihren Körper selbst aus winzigen abgetrennten Fragmenten -wie etwa der Schwanzspitze- komplett regenerieren. Darüberhinaus können sie auch, je nach Fütterungsbedingung, um mehr als das 40fache in der Länge wachsen oder schrumpfen und passen dabei alle Körperteile entsprechend an, wobei deren Funktionalität erhalten bleibt. Diese Fähigkeiten verlangen nach bemerkenswerten physikalischen Musterbildungsmechanismen. Zunächst untersuchen wir das Skalierungsverhalten von früheren Ansätzen zur Beschreibung biologischer Musterbildung. Wir leiten daraus Voraussetzung für das Skalieren ab und zeigen auf, dass die bekannten Modelle nur begrenzt auf Wachstum und Regeneration von Plattwürmern angewendet werden können. Insbesondere diskutieren wir ein wichtiges Modell für die spontane Entstehung von biologischen Strukturen, das von Alan Turing vorgeschlagen wurde. Wir charakterisieren die Hierarchie von stationären Zuständen solcher Turing Mechanismen und veranschaulichen, dass diese Turingmuster nicht ohne weiteres skalieren. Daraufhin präsentieren wir eine neuartige Klasse von Musterbildungsmechanismen, die vollständig selbstorgansierte und selbstskalierende Muster erzeugen. Unser Ansatz vereint ein Turing System mit den zuvor hergeleiteten Prinzipien für das Skalieren von Mustern und beschreibt dadurch wesentliche Aspekte der Regeneration und Skalierung von Plattwürmern. Mit Hilfe der Theorie dynamischer Systeme leiten wir allgemeine Merkmale von skalierenden Mustern ab, die wir im Hinblick auf experimentelle Daten diskutieren. Als nächstes analysieren wir Form und Fortbewegung der Würmer. Die Auswertung des Bewegungsverhaltens, nachdem einzelne Gene ausgeschaltet wurden, ermöglicht Rückschlüsse auf die Bedeutung dieser Gene für den Bewegungsapparat. Darüber hinaus wenden wir eine Hauptkomponentenanalyse auf die Verformungen des zweidimensionalen Wurmkörpers während der natürlichen Fortbewegung an. Damit sind wir in der Lage, zwei wichtige Fortbewegungsstrategien der Würmer zu charakterisieren: eine durch den Zilienschlag angetriebene gleichmässige Gleitbewegung und eine raupenartige Bewegung, die auf Muskelkontraktionen beruht. Zusätzlich wenden wir diese Analysetechnik auch an, um Unterschiede in der Gestalt von verschiedenen Plattwurmarten zu untersuchen. Grundsätzlich zielen alle diese Ansätze darauf ab, das Aussehen der Plattwürmer mit den damit verbundenen Funktionen verschiedener Körperteile in Beziehung zu setzen. Schlussendlich erforschen wir den Einfluss des Stoffwechsels auf den Zellaustausch und das Wachstum. Dazu etablieren wir Messungen der Wachstumsdynamik in Plattwürmern. Wir unterscheiden drei Mechanismen für das Speichern von Stoffwechselenergie, deren theoretische Beschreibung es uns ermöglicht, das beobachtete makroskopische Wachstum des Organismus mit dem Verhalten der einzelnen Zellen zu erklären. Basierend darauf leiten wir Vorhersagen ab, die nun experimentell getestet werden. In enger Zusammenarbeit mit Kollegen aus der experimentellen Biologie führen wir minimale theoretische Beschreibungen mit modernsten Experimenten und Analysetechniken zusammen. Dadurch sind wir in der Lage, Grundlagen sowohl der skalierbaren Ausbildung des Körperbaus als auch der Wachstumskontrolle bei Plattwürmern herauszuarbeiten.
35

Moment-Closure Approximations for Contact Processes in Adaptive Networks / Moment-Abschluss Näherungen für Kontaktprozesse in Adaptiven Netzwerken

Demirel, Güven 02 July 2013 (has links) (PDF)
Complex networks have been used to represent the fundamental structure of a multitude of complex systems from various fields. In the network representation, the system is reduced to a set of nodes and links that denote the elements of the system and the connections between them respectively. Complex networks are commonly adaptive such that the structure of the network and the states of nodes evolve dynamically in a coupled fashion. Adaptive networks lead to peculiar complex dynamics and network topologies, which can be investigated by moment-closure approximations, a coarse-graining approach that enables the use of the dynamical systems theory. In this thesis, I study several contact processes in adaptive networks that are defined by the transmission of node states. Employing moment-closure approximations, I establish analytical insights into complex phenomena emerging in these systems. I provide a detailed analysis of existing alternative moment-closure approximation schemes and extend them in several directions. Most importantly, I consider developing analytical approaches for models with complex update rules and networks with complex topologies. I discuss four different contact processes in adaptive networks. First, I explore the effect of cyclic dominance in opinion formation. For this, I propose an adaptive network model: the adaptive rock-paper-scissors game. The model displays four different dynamical phases (stationary, oscillatory, consensus, and fragmented) with distinct topological and dynamical properties. I use a simple moment-closure approximation to explain the transitions between these phases. Second, I use the adaptive voter model of opinion formation as a benchmark model to test and compare the performances of major moment-closure approximation schemes in the literature. I provide an in-depth analysis that leads to a heightened understanding of the capabilities of alternative approaches. I demonstrate that, even for the simple adaptive voter model, highly sophisticated approximations can fail due to special dynamic correlations. As a general strategy for targeting such problematic cases, I identify and illustrate the design of new approximation schemes specific to the complex phenomena under investigation. Third, I study the collective motion in mobile animal groups, using the conceptual framework of adaptive networks of opinion formation. I focus on the role of information in consensus decision-making in populations consisting of individuals that have conflicting interests. Employing a moment-closure approximation, I predict that uninformed individuals promote democratic consensus in the population, i.e. the collective decision is made according to plurality. This prediction is confirmed in a fish school experiment, constituting the first example of direct verification for the predictions of adaptive network models. Fourth, I consider a challenging problem for moment-closure approximations: growing adaptive networks with strongly heterogeneous degree distributions. In order to capture the dynamics of such networks, I develop a new approximation scheme, from which analytical results can be obtained by a special coarse-graining procedure. I apply this analytical approach to an epidemics problem, the spreading of a fatal disease on a growing population. I show that, although the degree distribution has a finite variance at any finite infectiousness, the model lacks an epidemic threshold, which is a genuine adaptive network effect. Diseases with very low infectiousness can thus persist and prevail in growing populations.
36

Pattern Formation in Spatially Forced Thermal Convection / Musterbildung in Thermischer Konvektion unter räumlich variierenden Randbedingungen

Weiß, Stephan 14 October 2009 (has links)
No description available.
37

Dynamical modeling with application to friction phenomena / Dynamische Modellierung mit Anwendung auf Reibungsphaenomene

Hornstein, Alexander 09 November 2005 (has links)
No description available.
38

Goal-Oriented Control of Self-Organizing Behavior in Autonomous Robots / Zielgerichtete Steuerung von selbstorganisiertem Verhalten in autonomen Robotern

Martius, Georg 07 September 2009 (has links)
No description available.
39

Directed Chaos in Magnetic Billiard Systems / Gerichtetes Chaos in magnetischen Billiad-Systemen

Prusty, Manamohan 15 December 2006 (has links)
No description available.
40

Modenstruktur und adaptive Regelung der Strahl-Kanten-Strömung / mode structure and adaptive control of the jet-edge-system

Ickler, Arno 30 October 2004 (has links)
No description available.

Page generated in 0.5702 seconds