• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 11
  • 4
  • Tagged with
  • 70
  • 70
  • 47
  • 43
  • 39
  • 28
  • 26
  • 25
  • 24
  • 20
  • 20
  • 20
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Über die Modellierung und Simulation zufälliger Phasenfluktuationen

Scheunert, Christian 25 June 2010 (has links)
Nachrichtentechnische Systeme werden stets durch unvermeidbare zufällige Störungen beeinflußt. Neben anderen Komponenten sind davon besonders Oszillatoren betroffen. Die durch die Störungen verursachten zufälligen Schwankungen in der Oszillatorausgabe können als Amplituden- und Phasenabweichungen modelliert werden. Dabei zeigt sich, daß vor allem zufällige Phasenfluktuationen von Bedeutung sind. Zufällige Phasenfluktuationen können unter Verwendung stochastischer Prozesse zweiter Ordnung mit kurzem oder langem Gedächtnis modelliert werden. Inhalt der Dissertation ist die Herleitung eines Verfahrens zur Simulation zufälliger Phasenfluktuationen von Oszillatoren mit kurzem Gedächtnis unter Berücksichtigung von Datenblattangaben.
52

Moment-Closure Approximations for Contact Processes in Adaptive Networks

Demirel, Güven 14 May 2013 (has links)
Complex networks have been used to represent the fundamental structure of a multitude of complex systems from various fields. In the network representation, the system is reduced to a set of nodes and links that denote the elements of the system and the connections between them respectively. Complex networks are commonly adaptive such that the structure of the network and the states of nodes evolve dynamically in a coupled fashion. Adaptive networks lead to peculiar complex dynamics and network topologies, which can be investigated by moment-closure approximations, a coarse-graining approach that enables the use of the dynamical systems theory. In this thesis, I study several contact processes in adaptive networks that are defined by the transmission of node states. Employing moment-closure approximations, I establish analytical insights into complex phenomena emerging in these systems. I provide a detailed analysis of existing alternative moment-closure approximation schemes and extend them in several directions. Most importantly, I consider developing analytical approaches for models with complex update rules and networks with complex topologies. I discuss four different contact processes in adaptive networks. First, I explore the effect of cyclic dominance in opinion formation. For this, I propose an adaptive network model: the adaptive rock-paper-scissors game. The model displays four different dynamical phases (stationary, oscillatory, consensus, and fragmented) with distinct topological and dynamical properties. I use a simple moment-closure approximation to explain the transitions between these phases. Second, I use the adaptive voter model of opinion formation as a benchmark model to test and compare the performances of major moment-closure approximation schemes in the literature. I provide an in-depth analysis that leads to a heightened understanding of the capabilities of alternative approaches. I demonstrate that, even for the simple adaptive voter model, highly sophisticated approximations can fail due to special dynamic correlations. As a general strategy for targeting such problematic cases, I identify and illustrate the design of new approximation schemes specific to the complex phenomena under investigation. Third, I study the collective motion in mobile animal groups, using the conceptual framework of adaptive networks of opinion formation. I focus on the role of information in consensus decision-making in populations consisting of individuals that have conflicting interests. Employing a moment-closure approximation, I predict that uninformed individuals promote democratic consensus in the population, i.e. the collective decision is made according to plurality. This prediction is confirmed in a fish school experiment, constituting the first example of direct verification for the predictions of adaptive network models. Fourth, I consider a challenging problem for moment-closure approximations: growing adaptive networks with strongly heterogeneous degree distributions. In order to capture the dynamics of such networks, I develop a new approximation scheme, from which analytical results can be obtained by a special coarse-graining procedure. I apply this analytical approach to an epidemics problem, the spreading of a fatal disease on a growing population. I show that, although the degree distribution has a finite variance at any finite infectiousness, the model lacks an epidemic threshold, which is a genuine adaptive network effect. Diseases with very low infectiousness can thus persist and prevail in growing populations.:1. Introduction .................................................................................. 1 2. Moment-closure approximations of complex networks ................. 5 3. Cyclic dominance in adaptive network models of opinion formation .......... 25 4. Performance of moment-closure approximations of adaptive networks .... 35 5. Information and consensus in a fish school ................................. 65 6. Epidemic spreading on growing heterogeneous adaptive networks ......... 83 7. Conclusions ................................................................................. 101 Appendix A: Moment expansion for node update rules ................... 107
53

Fluctuation response patterns of network dynamics - An introduction

Zhang, Xiaozhu, Timme, Marc 01 March 2024 (has links)
Networked dynamical systems, i.e., systems of dynamical units coupled via nontrivial interaction topologies, constitute models of broad classes of complex systems, ranging from gene regulatory and metabolic circuits in our cells to pandemics spreading across continents. Most of such systems are driven by irregular and distributed fluctuating input signals from the environment. Yet how networked dynamical systems collectively respond to such fluctuations depends on the location and type of driving signal, the interaction topology and several other factors and remains largely unknown to date. As a key example, modern electric power grids are undergoing a rapid and systematic transformation towards more sustainable systems, signified by high penetrations of renewable energy sources. These in turn introduce significant fluctuations in power input and thereby pose immediate challenges to the stable operation of power grid systems. How power grid systems dynamically respond to fluctuating power feed-in as well as other temporal changes is critical for ensuring a reliable operation of power grids yet not well understood. In this work, we systematically introduce a linear response theory (LRT) for fluctuation-driven networked dynamical systems. The derivations presented not only provide approximate analytical descriptions of the dynamical responses of networks, but more importantly, also allow to extract key qualitative features about spatio-temporally distributed response patterns. Specifically, we provide a general formulation of a LRT for perturbed networked dynamical systems, explicate how dynamic network response patterns arise from the solution of the linearised response dynamics, and emphasise the role of LRT in predicting and comprehending power grid responses on different temporal and spatial scales and to various types of disturbances. Understanding such patterns from a general, mathematical perspective enables to estimate network responses quickly and intuitively, and to develop guiding principles for, e.g., power grid operation, control and design.
54

Neurodynamische Module zur Bewegungssteuerung autonomer mobiler Roboter

Hild, Manfred 07 January 2008 (has links)
In der vorliegenden Arbeit werden rekurrente neuronale Netze im Hinblick auf ihre Eignung zur Bewegungssteuerung autonomer Roboter untersucht. Nacheinander werden Oszillatoren für Vierbeiner, homöostatische Ringmodule für segmentierte Roboter und monostabile Neuromodule für Roboter mit vielen Freiheitsgraden und komplexen Bewegungsabläufen besprochen. Neben dem mathematisch-theoretischen Hintergrund der Neuromodule steht in gleichberechtigter Weise deren praktische Implementierung auf realen Robotersystemen. Hierzu wird die funktionale Einbettung ins Gesamtsystem ebenso betrachtet, wie die konkreten Aspekte der zugrundeliegenden Hardware: Rechengenauigkeit, zeitliche Auflösung, Einfluss verwendeter Materialien und dergleichen mehr. Interessante elektronische Schaltungsprinzipien werden detailliert besprochen. Insgesamt enthält die vorliegende Arbeit alle notwendigen theoretischen und praktischen Informationen, um individuelle Robotersysteme mit einer angemessenen Bewegungssteuerung zu versehen. Ein weiteres Anliegen der Arbeit ist es, aus der Richtung der klassischen Ingenieurswissenschaften kommend, einen neuen Zugang zur Theorie rekurrenter neuronaler Netze zu schaffen. Gezielte Vergleiche der Neuromodule mit analogen elektronischen Schaltungen, physikalischen Modellen und Algorithmen aus der digitalen Signalverarbeitung können das Verständnis von Neurodynamiken erleichtern. / How recurrent neural networks can help to make autonomous robots move, will be investigated within this thesis. First, oscillators which are able to control four-legged robots will be dealt with, then homeostatic ring modules which control segmented robots, and finally monostable neural modules, which are able to drive complex motion sequences on robots with many degrees of freedom will be focused upon. The mathematical theory of neural modules will be addressed as well as their practical implementation on real robot platforms. This includes their embedding into a major framework and concrete aspects, like computational accuracy, timing and dependance on materials. Details on electronics will be given, so that individual robot systems can be built and equipped with an appropriate motion controller. It is another concern of this thesis, to shed a new light on the theory of recurrent neural networks, from the perspective of classical engineering science. Selective comparisons to analog electronic schematics, physical models, and digital signal processing algorithms can ease the understanding of neural dynamics.
55

Zur Analyse der Überlebensfähigkeit von Unternehmen / Methodisch-theoretische Grundlagen und Simulationsergebnisse / Analysis of economic viability of enterprises / Methodology, theory, and simulation results

Hinners-Tobrägel, Ludger 05 November 1998 (has links)
No description available.
56

Die lokale Struktur von T-Dualitätstripeln / The Local Structure of T-Duality Triples

Schneider, Ansgar 05 November 2007 (has links)
No description available.
57

Eine Symmetrie der visuellen Welt in der Architektur des visuellen Kortex. / A Symmetry of the Visual World in the Architecture of the Visual Cortex.

Schnabel, Michael 18 December 2008 (has links)
No description available.
58

Transport, disorder and reaction in spreading phenomena / Transport, Unordnung und Reaktion in Ausbreitungsphänomenen

Vitaly, Belik 17 December 2008 (has links)
No description available.
59

Approximations and Applications of Nonlinear Filters / Approximation und Anwendung nichtlinearer Filter

Bröcker, Jochen 30 January 2003 (has links)
No description available.
60

Dynamics of Population Coding in the Cortex / Dynamische Populationskodierung im Gehirn

Naundorf, Björn 28 June 2005 (has links)
No description available.

Page generated in 0.0504 seconds