Spelling suggestions: "subject:"exponent"" "subject:"exponential""
141 |
Global in time existence and blow-up results for a semilinear wave equation with scale-invariant damping and massPalmieri, Alessandro 24 October 2018 (has links)
The PhD thesis deals with global in time existence results and blow-up result for a semilinear wave model with scale-invariant damping and mass. Since the time-dependent coefficients for the considered model make somehow the damping and the mass a threshold term between effective and non-effective terms, it turns out that a fundamental role in the description of qualitative properties of solutions to this semilinear model and to the corresponding linear homogeneous Cauchy problem is played by the multiplicative constants appearing in those coefficients. For coefficients that make the damping term dominant, we can use the standard approach for the classical damped wave model with L^2 − L^2 estimates and the so-called test function method. On the other hand, when the interaction among those coefficients is balanced, then, it is possible to observe how typical tools for hyperbolic models, as for example Kato’s lemma, provide sharp global in time existence results and sharp blow-up results for super- and sub-Strauss type exponents, respectively.
|
142 |
Investigating the Transition from Non-Fickian to Fickian Dispersion With Increasing Length Scale and Flow Rate In Sand Packs: An Experimental ApproachObi, Victor Chizoba 20 July 2023 (has links)
No description available.
|
143 |
Gait Variability for Predicting Individual Performance in Military-Relevant TasksUlman, Sophia Marie 03 October 2019 (has links)
Human movement is inherently complex, requiring the control and coordination of many neurophysiological and biomechanical degrees-of-freedom, and the extent to which individuals exhibit variation in their movement patterns is captured by the construct of motor variability (MV). MV is being used increasingly to describe movement quality and function among clinical populations and elderly individuals. However, current evidence presents conflicting views on whether increased MV offers benefits or is a hindrance to performance. To better understand the utility of MV for performance prediction, we focused on current research needs in the military domain. Dismounted soldiers, in particular, are expected to perform at a high level in complex environments and under demanding physical conditions. Hence, it is critical to understand what strategies allow soldiers to better adapt to fatigue and diverse environmental factors, and to develop predictive tools for estimating changes in soldier performance. Different aspects of performance such as motor learning, experience, and adaptability to fatigue were investigated when soldiers performed various gait tasks, and gait variability (GV) was quantified using four different types of measures (spatiotemporal, joint kinematics, detrended fluctuation analysis, and Lyapunov exponents).
During a novel obstacle course task, we found that frontal plane coordination variability of the hip-knee and knee-ankle joint couples exhibited strong association with rate of learning the novel task, explaining 62% of the variance, and higher joint kinematic variability during the swing phase of baseline gait was associated with faster learning rate. In a load carriage task, GV measures were more sensitive than average gait measures in discriminating between experience and load condition: experienced cadets exhibited reduced GV (in spatiotemporal measures and joint kinematics) and lower long-term local dynamic stability at the ankle, compared to the novice group. In the final study investigating multiple measures of obstacle performance, and variables predictive of changes in performance following intense whole-body fatigue, joint kinematic variability of baseline gait explained 28-59% of the variance in individual performances changes.
In summary, these results support the feasibility of anticipating and augmenting task performance based on individual motor variability. This work also provides guidelines for future research and the development of training programs specifically for improving military training, performance prediction, and performance enhancement. / Doctor of Philosophy / All people move with some level of inherent variability, even when doing the same activity, and the extent to which individuals exhibit variation in their movement patterns is captured by the construct of motor variability (MV). MV is being increasingly used to describe movement quality and function among clinical populations and elderly individuals. However, it is still unclear whether increased MV offers benefits or is a hindrance to performance. To better understand the utility of MV for performance prediction, we focused on current research needs in the military domain. Dismounted soldiers, in particular, are expected to perform at a high level in complex environments and under demanding physical conditions. Hence, it is critical to understand what strategies allow soldiers to better adapt to fatigue and diverse environmental factors, and to develop tools that might predict changes in soldier performance. Different aspects of performance were investigated, including learning a new activity, experience, and adaptability to fatigue, and gait variability was quantified through different approaches. When examining how individual learn a novel obstacle course task, we found that certain aspects of gait variability had strong associations with learning rate. In a load carriage task, variability measures were determined to be more sensitive to difference in experience level and load condition compared to typical average measures of gait. Specifically, variability increased with load, and the experienced group was less variable overall and more stable in the long term. Lastly, a subset of gait variability measures were associated with individual differences in fatigue-related changes in performance during an obstacle course. In summary, the results presented here support that it may be possible to both anticipate and enhance task performance based on individual variability. This work also provides guidelines for future research and the development of training programs specifically for improving military training, performance prediction, and performance enhancement.
|
144 |
[pt] CONTINUIDADE HOLDER PARA OS EXPOENTES DE LYAPUNOV DE COCICLOS LINEARES ALEATÓRIOS / [en] HOLDER CONTINUITY FOR LYAPUNOV EXPONENTS OF RANDOM LINEAR COCYCLESMARCELO DURAES CAPELEIRO PINTO 27 May 2021 (has links)
[pt] Uma medida de probabilidade com suporte compacto em um grupo de
matrizes determina uma sequência de matrizes aleatórias i.i.d. Considere o
processo multiplicativo correspondente e suas médias geométricas. O teorema
de Furstenberg-Kesten, análogo da lei dos grandes números neste cenário,
garante que as médias geométricas desse processo multiplicativo convergem
quase certamente para uma constante, chamada de expoente de Lyapunov
maximal da medida dada. Este conceito pode ser reformulado no contexto
mais geral da teoria ergódica usando cociclos lineares aleatórios sobre o shift
de Bernoulli. Uma questão natural diz respeito às propriedades de regularidade do
expoente de Lyapunov como uma função dos seus dados. Sob uma condição
de irredutibilidade e em um cenário específico (que foi posteriormente generalizado
por vários autores) Le Page estabeleceu a continuidade de Holder
do expoente de Lyapunov. Recentemente, Baraviera e Duarte obtiveram uma
prova direta e elegante deste tipo de resultado. Seu argumento usa a fórmula
de Furstenberg e as propriedades de regularidade da medida estacionária.
Seguindo sua abordagem, neste trabalho obtemos um novo resultado
mostrando que, sob a mesma hipótese de irredutibilidade, o expoente de
Lyapunov depende Hölder continuamente da medida, relativamente à métrica
de Wasserstein, generalizando assim o resultado de Baraviera e Duarte. / [en] A compactly supported probability measure on a group of matrices determines
a sequence of i.i.d. random matrices. Consider the corresponding multiplicative
process and its geometric averages. Furstenberg-Kesten s theorem,
the analogue of the law of large numbers in this setting, ensures that the
geometric averages of this multiplicative process converge almost surely to a
constant, called the maximal Lyapunov exponent of the given measure. This
concept can be reformulated in the more general context of ergodic theory
using random linear cocycles over the Bernoulli shift.
A natural question concerns the regularity properties of the Lyapunov
exponent as a function of the data. Under an irreducibility condition and
in a specific setting (which was later generalized by various authors) Le
Page established the Holder continuity of the Lyapunov exponent. Recently,
Baraviera and Duarte obtained a direct and elegant proof of this type of result.
Their argument uses Furstenberg s formula and the regularity properties of the
stationary measure.
Following their approach, in this work we obtain a new result showing
that under the same irreducibility hypothesis, the Lyapunov exponent depends
Holder continuously on the measure, relative to the Wasserstein metric, thus
generalizing the result of Baraviera and Duarte.
|
145 |
Étude du codage réseau au niveau de la couche physique pour les canaux bidirectionnels à relais / Physical-layer network coding for two-way relay channelsSmirani, Sinda 10 February 2014 (has links)
Le codage réseau est apparu comme une technique alternative au routage au niveau de la couche réseau permettant d'améliorer le débit et d'optimiser l'utilisation de la capacité du réseau. Récemment, le codage réseau a été appliqué au niveau de la couche physique des réseaux sans-fil pour profiter de la superposition naturelle des signaux effectuée par le lien radio. Le codage réseau peut être vue comme un traitement interne du réseau pour lequel différentes techniques de relayage peuvent être utilisées. Cette thèse étudie un ensemble de traitements ayant des compromis variés en terme de performance et complexité. Nous considérons le canal bidirectionnel à relais, un modèle de canal de communication typique dans les réseaux coopératifs, où deux terminaux s'échangent mutuellement des messages par l'intermédiaire d'un relais. La communication se déroule en deux phases, une phase à accès multiple et une phase de broadcast. Pour ce scénario, nous analysons, dans une première partie, une stratégie de "decode-and-forward". Nous considérons, pour cette étude, des alphabets de taille finie et nous calculons les probabilités moyennes d'erreur de bout-en-bout en se basant sur la métrique d'exposant d'erreur du codage aléatoire. Puis, nous dérivons les régions des débits atteignables par rapport à une probabilité d'erreur maximale tolérable au niveau de chaque nœud. Dans une deuxième partie de la thèse, nous proposons deux schémas de codage réseau pratiques, avec complexité réduite, qui se basent sur la stratégie de relayage "compress-and-forward" (CF). Le premier schéma utilise un codage en réseau de points imbriqués (nested lattices). Le deuxième schéma est une version améliorée qui permet d'atteindre des débits de données supérieurs pour l'utilisateur qui a les meilleures conditions canal. Nous construisons les régions des débits atteignables par les deux schémas proposés tout en optimisant la répartition du temps alloué à chacune des deux phases de transmission. Après l'étude du régime asymptotique, nous analysons le schéma de codage CF avec des réseaux de points de dimension finie. Nous nous concentrons sur le problème de la transmission analogique où la distorsion est optimisée. Enfin, nous étudions l'application d'un schéma de codage, basé sur la stratégie CF avec des réseaux de points imbriqués, pour le canal bidirectionnel à canaux parallèles. Ainsi, nous présentons deux régions de débits atteignables selon la technique de traitement, conjoint ou séparé, des sous-canaux par le relais. / Network coding has emerged as an alternative technique to routing that enhances the throughput at the network layer. Recently, network coding has been applied at the physical layer to take advantage of the natural signal superposition that occurs in the radio link. In this context, the physical-layer network coding can be seen as an in-network processing strategy for which multiple forwarding schemes can be proposed. This thesis investigates a set of processing schemes tailored to the network coding at the physical layer with various compromises between performance and complexity. We consider a two-way relay channel, a typical communication system in cooperative networks, where two terminals communicate with each other via a relay node. This communication occurs during two transmission phases, namely a multiple-access phase and a broadcast phase. For TWRC scenario, we first analyze a decode-and-forward strategy with finite size alphabets. We calculate the end-to-end average error probabilities based on random coding error exponents. Then, we derive the achievable rate regions with respect to a maximal probability of error allowed at each terminal. Next, we propose two low-complexity and practical schemes based on compress-and-forward relaying strategy. The first scheme employs nested lattice coding. The second is an improved version which enables higher data rates for the user experiencing the best channel conditions. We present an information-theoretic framework to reconstruct the achievable rate regions of both schemes by considering optimal time division between both transmission phases. After the asymptotic regime analysis, we study single-layer lattice coding scheme with finite dimension lattices. We focus on the analog transmission problem where the distortion is optimized. Finally, we investigate single-layer lattice coding scheme for parallel Gaussian two-way relay channel. We present two achievable rate regions based on whether the relay processes all the sub-channels jointly or separately.
|
146 |
Stochastische Differentialgleichungen mit unendlichem GedächtnisRiedle, Markus 02 July 2003 (has links)
Für einen R^d-wertigen stochastischen Prozess X auf R bezeichne X_t den Segmentprozess X_t:={X(t+u): u = 0. Es wird folgende affine stochastische Differentialgleichung mit unendlichem Gedächtnis betrachtet: dX(t)=L(X_t)dt + dW(t) für t >= 0, X_0=F, (A) wobei L:B -> R^d ein lineares stetiges Funktional, W einen Wiener-Prozess mit Werten in R^d sowie B einen semi-normierten linearen Unterraum von {f:(-00, 0] -> R^d} bezeichnen. Die Anfangsbedingung F ist eine B-wertige Zufallsvariable. Die Lösung X der Gleichung (A) lässt sich mittels einer Formel der Variation der Konstanten darstellen. Für die Existenz einer stationären Lösung werden hinreichende und notwendige Bedingungen vorgestellt. Für eine spezielle Klasse von Funktionalen L kann Gleichung (A) auf ein System gewöhnlicher stochastischer Gleichungen ohne Gedächtnis reduziert werden. Diese Reduktion wird im Detail untersucht, insbesondere gewinnt man hierdurch ein einfaches äquivalentes Kriterium für die Existenz stationärer Lösungen von Gleichungen mit Funktionalen L dieser Klasse. Durch Einbettung der Gleichung (A) in den Bidualraum B** gelingt die Bestimmung der Lyapunov-Exponenten der Lösung. Hierzu wird ein neuer Zusammenhang der Lösung der sogenannten adjungierten Gleichung von (A) und einer Spektralzerlegung des Raumes B benutzt. Die Untersuchung der stetigen Abhängigkeit der Lösung von dem Funktional L und der Anfangsbedingung F ermöglicht die Behandlung anwendungsorientierter Aspekte. In Verbindung mit den Ergebnissen über reduzierbare Gleichungen wird ein Verfahren zur Approximation der Lösung von Gleichung (A) durch Ornstein-Uhlenbeck-Prozesse vorgestellt. Eine allgemeine Klasse von Ito-Differentialgleichungen mit nichtlinearen vergangenheitsabhängigen Drift- und Dispersionskoeffizienten wird eingeführt, in der die Gleichung (A) als eine spezielle affine Gleichung verstanden werden kann. Für diese allgemeinen Gleichungen wird ein Existenz- und Eindeutigkeitssatz nachgewiesen. / For an R^d-valued stochastic process X denote the segment process by X_t:={X(t+u): u = 0. We consider the following affine stochastic differential equation with infinite delay: dX(t)=L(X_t)dt + dW(t) for t >= 0, X_0= F, (A) where L:B -> R^d denotes a linear continuous functional, W denotes a Wiener process with values in R^d and B is a semi-normed linear subspace of {f: (-00, 0] -> R^d}. The initial condition F is a B-valued random variable. The solution X of equation (A) can be represented by a variation of constants formula. We provide sufficient and necessary conditions for the existence of a stationary solution. For a special class of functionals L the equation (A) can be reduced to a system of ordinary stochastic differential equations without memory. This reduction is studied in detail. In particular, we deduce a simple equivalent condition for the existence of stationary solutions of equations with functionals L in this class. The embedding of equation (A) into the bidualspace B** enables us to calculate the Lyapunov exponents of the solution. For this purpose we exploit a new connection between the solution of the so-called adjoint equation of (A) and a spectral decompositon of the space B. By considering the continuous dependence of the solution on the functional L and the initial condition F we obtain results useful in applications. In conjunction with results on reducible equations we establish an approximation scheme for the solution of equation (A) by Ornstein-Uhlenbeck processes. Moreover, we introduce a general class of Ito differential equations with non-linear drift and dispersion hereditary coefficients. We deduce a result on the existence of unique solutions for this general class of equations. Equation (A) can be regarded as a special affine equation in this class.
|
147 |
Exposants de Lyapunov et potentiel aléatoire / Lyapunov exponents and random potentialLe, Thi Thu Hien 02 June 2015 (has links)
Dans le cadre de cette thèse, nous nous intéressons à ”l’exposant de Lyapu-nov” pour deux modèles en milieu aléatoire : la marche aléatoire en potentiel aléatoire, le mouvement brownien en potentiel poissonnien.Dans la première partie de la thèse (chapitre II), on étudie une marche aléatoire dans un potentiel aléatoire donné par une famille de variables aléa¬toires i.i.d. non-négatives. La continuité des exposants de Lyapunov par rap¬port à la loi du potentiel est démontrée dans le cas transient, c’est-à-dire en dimension d ≥ 3 ou en dimension 2 pour un potentiel borné inférieurement. On poursuit avec l’étude des exposants critiques : l’exposant de volume ξ et l’exposant de fluctuation X. On obtient l’une des inégalités suggérée par la conjecture de KPZ sous une condition de courbure de la forme asymptotique. Les exposants de Lyapunov jouent un rôle important dans cette étude.La deuxième partie de la thèse (chapitre III) est surtout consacrée à l’étude du brownien dans un potentiel aléatoire de longue portée. On débute cependant par un potentiel classique à portée finie. Sznitman (1987-1998) a étudié plusieurs aspects de ce modèle. Un premier résultat de cette partie est la continuité des exposants de Lyapunov par rapport au paramètre du pro¬cessus de Poisson. On étudie ensuite le modèle proposé par Lacoin (2012) qui est un modèle avec un potentiel à longue portée. Il a obtenu des estimations des exposants critiques sensiblement différentes de celles de Wüthrich (1998) pour le modèle de Sznitman. Dans cette thèse, on poursuit l’étude du modèle de Lacoin. On montre l’existence des exposants de Lyapunov, le théorème de la forme limite et une estimation de grandes déviations. / In this thesis, we are interested in Lyapunov exponent for two models in random media : random walk in random potential, Brownian motion in Poisson potential.In the first part (chapter II), we study a random walk in a random potential given by a family of i.i.d random non-negative variables. The continuity of Lyapunov exponents with respect to the law of potential is shown in the case transient, that is, in the dimension d ≥ 3 or in the dimension d = 2 for a lower bounded potential. Next, we consider the critical exponents : the exponent of volume ξ and the exponent of fluctuation X. We give an inequality suggested by the KPZ conjecture under a condition of asymptotic form. Lyapunov exponents play an important role in this work.The second part (chapter III) is mainly devoted to the study Brownian motion in a long-range random potential. However, we begin with a classical finite-range potential. Sznitman (1987-1998) investigated several aspects of this model. The first result of this part is the continuity of the Lyapunov exponents with respect to the parameter of the Poisson process. Then, we study the model proposed by Lacoin (2012) which is a long-range potential model. He obtained some estimations of critical exponents that are significantly different from those of Wüthrich (1998) for the model of Sznitman.In this thesis, we pursue the study of Lacoin model. We show the existence of Lyapunov exponents, the shape limit theorem and an estimation of large deviations
|
148 |
[en] THEOREMS FOR UNIQUELY ERGODIC SYSTEMS / [pt] TEOREMAS LIMITE PARA SISTEMAS UNICAMENTE ERGÓDICOSALINE DE MELO MACHADO 31 January 2019 (has links)
[pt] Os resultados fundamentais da teoria ergódica – o teorema de Birkhoff e o teorema de Kingman – se referem a convergência em quase todo ponto de um processo ergódico aditivo e subaditivo, respectivamente. É bem conhecido que dado um sistema unicamente ergódico e um observável contínuo, as médias de Birkhoff correspondentes convergem em todo ponto e uniformemente. Desta forma, é natural também se perguntar o que acontece com o teorema de Kingman quando o sistema é unicamente ergódico. O primeiro objetivo desta dissertação é responder a essa pergunta utilizando o trabalho de A. Furman. Mais ainda, apresentamos algumas extensões e aplicações desse resultado para cociclos lineares, que foram obtidas por S. Jitomirskaya e R. Mavi. Nosso segundo objetivo é provar um novo resultado sobre taxas de convergências de médias de Birkhoff, para um certo tipo de processo unicamente ergódico: uma translação diofantina no toro com um
observável Holder contínuo. / [en] The fundamental results in ergodic theory – the Birkhoff theorem and the Kingman theorem – refer to the almost everywhere convergence of additive and respectively subadditive ergodic processes. It is well known that given a uniquely ergodic system and a continuous observable, the corresponding Birkhoff averages converge everywhere and uniformly. It is therefore natural to ask what happens with Kingman s theorem when the system is uniquely ergodic. The first objective of this dissertation is to answer this question following the work of A. Furman. Moreover, we present some extensions and applications of this result for linear cocycles, which were obtained by S. Jitomirskaya and R. Mavi. Our second objective is to prove a new result regarding the rate of convergence of the Birkhoff averages for a certain type of uniquely ergodic process: a Diophantine torus translation with Holder continuous observable.
|
149 |
Gaussian Critical Line in Anisotropic Mixed Quantum Spin Chains / Gaußsche kritische Linie in anisotropen, gemischten QuantenspinkettenBischof, Rainer 18 March 2013 (has links) (PDF)
By numerical methods, two models of anisotropic mixed quantum spin chains, consisting of spins of two different sizes, Sa = 1/2 and Sb = 1 as well as Sb = 3/2, are studied with respect to their critical properties at quantum phase transitions in a selected region of parameter space. The quantum spin chains are made up of basecells of four spins, according to the structure Sa − Sa − Sb − Sb. They are described by the XXZ Hamiltonian, that extends the quantum Heisenberg model by a variable anisotropic exchange interaction. As additional control parameter, an alternating exchange constant between nearest-neighbour spins is introduced. Insight gained by complementary
application of exact diagonalization and quantum Monte Carlo simulations, as well as appropriate methods of analysis, is embedded in the broad existing knowledge on homogeneous quantum spin chains. In anisotropic homogeneous quantum spin chains, there exist phase boundaries with continuously varying critical exponents, the
Gaussian critical lines, along which, in addition to standard scaling relations, further extended scaling relations hold. Reweighting methods, also applied to improved quantum Monte Carlo estimators, and finite-size scaling analysis of simulation data deliver a wealth of numerical results confirming the existence of a Gaussian critical line also in the mixed spin models considered. Extrapolation of exact data offers, apart from confirmation of simulation data, furthermore, insight into the conformal operator content of the model with Sb = 1. / Mittels numerischer Methoden werden zwei Modelle anisotroper gemischter Quantenspinketten, bestehend aus Spins zweier unterschiedlicher Größen, Sa = 1/2 und Sb = 1 sowie Sb = 3/2, hinsichtlich ihrer kritischen Eigenschaften an Quanten-Phasenübergängen in einem ausgewählten Parameterbereich untersucht. Die Quantenspinketten sind aus Basiszellen zu vier Spins, gemäß der Struktur Sa − Sa − Sb − Sb, aufgebaut. Sie werden durch den XXZ Hamiltonoperator beschrieben, der das isotrope Quanten-Heisenberg Modell um eine variable anistrope Austauschwechselwirkung erweitert. Als zusätzlicher Kontrollparameter wird eine alterniernde Kopplungskonstante zwischen unmittelbar benachbarten Spins eingeführt. Die durch komplementäre Anwendung exakter Diagonalisierung und Quanten-Monte-Carlo Simulationen, sowie
entsprechender Analyseverfahren, gewonnenen Erkenntnisse werden in das umfangreiche existierende Wissen über homogene Quantenspinketten eingebettet. Im Speziellen treten in anisotropen homogenen Quantenspinketten Phasengrenzen mit kontinuierlich
variierenden kritischen Exponenten auf, die Gaußschen kritischen Linien,
auf denen neben den herkömmlichen auch erweiterte Skalenrelationen Gültigkeit besitzen. Umgewichtungsmethoden, speziell auch angewandt auf verbesserte Quanten-Monte-Carlo Schätzer, und Endlichkeitsskalenanalyse von Simulationsdaten liefern
eine Fülle von numerischen Ergebnissen, die das Auftreten der Gaußschen kritischen Linie auch in den untersuchten gemischten Quantenspinketten bestätigen. Die Extrapolation exakter Daten bietet, neben der Bestätigung der Simulationsdaten, darüber hinaus Einblick in einen Teil des konformen Operatorinhalts des Modells mit Sb = 1.
|
150 |
[en] QUASIPERIODICITY AND THE POSITIVITY OF LYAPUNOV EXPONENTS / [pt] QUASE PERIODICIDADE E A POSITIVIDADE DOS EXPOENTES DE LYAPUNOVLUCAS BARBOSA GAMA 11 January 2019 (has links)
[pt] O teorema de Benedicks e Carleson afirma que para a família quadrática existe um conjunto de parâmetros, com medida positiva, para os quais o expoente de Lyapunov é positivo no ponto crítico. Nesta dissertação apresentamos uma demonstração rigorosa e detalhada desse célebre resultado. Uma parte importante da demonstração é o estudo do comportamento quase periódico de um conjunto de órbitas. Além disso, um argumento de grandes desvios é utilizado para mostrar que os parâmetros que não satisfazem a propriedade desejada formam um conjunto pequeno. Tais técnicas apresentam um interesse intrínseco, já que têm se mostrado muito proveitosas para o estudo de outros problemas em sistemas dinâmicos. Combinando o teorema de Benedicks e Carleson ao teorema de Singer, conclui-se que para
um conjunto de parâmetros com medida positiva, a função quadrática correspondente não admite atratores periódicos, indicando um comportamento caótico. Neste trabalho, também são estudados critérios para a positividade do expoente de Lyapunov de cociclos quase periódicos de Schrodinger, como o teorema de Herman. O estudo de cociclos de Schrodinger representa um importante tópico na área de física matemática. Mais ainda, algumas das generalizações de tais critérios utilizam as técnicas de Benedicks-Carleson. / [en] The Benedicks and Carleson theorem states that for the quadratic family there exists a set of parameters, with positive measure, for which the Lyapunov exponent is positive at the critical point. In this dissertation we present a rigorous and detailed proof of this famous result. An important part of the proof is the study of the quasi periodic behavior of a set of orbits. In addition, a large deviation argument is used to show that parameters which do not satisfy the desired property form a small set. Such techniques have an intrinsic interest, as they have proven fruitful in the study of other problems in dynamical systems. Combining Benedicks-Carlesons theorem with Singers theorem, we conclude that for a set of parameters with positive measure, the corresponding quadratic function does not admit periodic attractors, indicating its chaotic behavior. In this work we also study criteria for the positivity of the Lyapunov exponent of quasi-periodic Schrodinger cocycles, such as Hermans theorem. The study of the Schrodinger cocycles
represents an important topic in mathematical physics. Moreover, some of the generalizations of such criteria use the techniques of Benedicks-Carleson.
|
Page generated in 0.9473 seconds