• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 11
  • 8
  • Tagged with
  • 40
  • 19
  • 15
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Synthesen und Strukturen neuer Lanthanoid- und Quecksilberkomplexe mit polyfunktionellen Ligandensystemen / Synthesis and structure of new lanthanoids and mercury complexes with polyfunctional ligandsystems

Labahn, Thomas 30 October 2002 (has links)
No description available.
32

Entwicklung von Lanthanoid-Tags für die biomolekulare NMR-Spektroskopie / Development of lanthanide-binding tags for biomolecular NMR spectroscopy

Peters, Fabian 15 December 2010 (has links)
No description available.
33

Paramagnetisch markierte Oligonukleotide / Paramagnetically tagged oligonucleotides

Wöltjen, Edith 01 July 2009 (has links)
No description available.
34

Spektroskopische Untersuchungen zur Komplexbildung von Cm(III) und Eu(III) mit organischen Modellliganden sowie ihrer chemischen Bindungsform in menschlichem Urin (in vitro) / Spectroscopic Investigations on the Complex Formation of Cm(III) and Eu(III) with Organic Model Ligands as well as their Chemical Binding Form in Human Urine (In Vitro)

Heller, Anne 04 August 2011 (has links) (PDF)
Dreiwertige Actinide (An(III)) und Lanthanide (Ln(III)) stellen im Falle ihrer Inkorporation eine ernste Gefahr für die Gesundheit des Menschen dar. An(III) sind künstlich erzeugte, stark radioaktive Elemente, die insbesondere bei der nuklearen Energiegewinnung in Kernkraftwerken entstehen. Durch Störfälle oder nicht fachgerechte Lagerung radioaktiven Abfalls können sie in die Umwelt und die Nahrungskette des Menschen gelangen. Ln(III) sind hingegen nicht radioaktive Elemente, die natürlicherweise vorkommen und für vielfältige Anwendungen in Technik und Medizin abgebaut werden. Folglich kann der Mensch sowohl mit An(III) als auch Ln(III) in Kontakt kommen bzw. sie inkorporieren. Es ist daher von enormer Wichtigkeit, das Verhalten dieser Elemente im menschlichen Körper aufzuklären. Während makroskopische Vorgänge wie Verteilung, Anreicherung und Ausscheidung bereits sehr gut untersucht sind, ist das Wissen hinsichtlich der chemischen Bindungsform (Speziation) von An(III) und Ln(III) in Körperflüssigkeiten noch sehr lückenhaft. In der vorliegenden Arbeit wurde daher erstmals die chemische Bindungsform von Cm(III) und Eu(III) in natürlichem menschlichem Urin (in vitro) spektroskopisch aufgeklärt und die gebildeten Komplexe identifiziert. Hierzu wurden auch grundlegende Untersuchungen zur Komplexierung von Cm(III) und Eu(III) in synthetischem Modellurin sowie mit den urinrelevanten organischen Modellliganden Harnstoff, Alanin, Phenylalanin, Threonin und Citrat durchgeführt und die noch unbekannten Komplexbildungskonstanten bestimmt. Abschließend wurden alle experimentellen Ergebnisse mit Literaturdaten und Vorherberechnungen mittels thermodynamischer Modellierung verglichen. Auf Grund der hervorragenden Lumineszenzeigenschaften von Cm(III) und Eu(III) konnte insbesondere auch die Eignung der zeitaufgelösten laserinduzierten Fluoreszenzspektroskopie (TRLFS) als Methode zur Untersuchung dieser Metallionen in unbehandelten, komplexen biologischen Flüssigkeiten demonstriert werden. Die Ergebnisse dieser Arbeit liefern damit neue Erkenntnisse zu den biochemischen Reaktionen von An(III) und Ln(III) in Körperflüssigkeiten auf molekularer Ebene und tragen zu einem besseren Verständnis der bekannten, makroskopischen Effekte dieser Elemente bei. Darüber hinaus sind sie die Grundlage weiterführender in-vivo-Untersuchungen. / In case of incorporation, trivalent actinides (An(III)) and lanthanides (Ln(III)) pose a serious health risk to humans. An(III) are artificial, highly radioactive elements which are mainly produced during the nuclear fuel cycle in nuclear power plants. Via hazardous accidents or nonprofessional storage of radioactive waste, they can be released in the environment and enter the human food chain. In contrast, Ln(III) are nonradioactive, naturally occurring elements with multiple applications in technique and medicine. Consequently it is possible that humans get in contact and incorporate both, An(III) and Ln(III). Therefore, it is of particular importance to elucidate the behaviour of these elements in the human body. While macroscopic processes such as distribution, accumulation and excretion are studied quite well, knowledge about the chemical binding form (speciation) of An(III) and Ln(III) in various body fluids is still sparse. In the present work, for the first time, the speciation of Cm(III) and Eu(III) in natural human urine (in vitro) has been investigated spectroscopically and the formed complex identified. For this purpose, also basic investigations on the complex formation of Cm(III) and Eu(III) in synthetic model urine as well as with the urinary relevant, organic model ligands urea, alanine, phenylalanine, threonine and citrate have been performed and the previously unknown complex stability constants determined. Finally, all experimental results were compared to literature data and predictions calculated by thermodynamic modelling. Since both, Cm(III) and Eu(III), exhibit unique luminescence properties, particularly the suitability of time-resolved laser-induced fluorescence spectroscopy (TRLFS) could be demonstrated as a method to investigate these metal ions in untreated, complex biofluids. The results of this work provide new scientific findings on the biochemical reactions of An(III) and Ln(III) in human body fluids on a molecular scale and contribute to a better understanding of the known macroscopic effects of these elements. Furthermore, they are the basis of subsequent in vivo investigations.
35

Effects of non-covalent interactions on electronic structure and anisotropy in lanthanide-based single-molecule magnets: theoretical studies

Dubrovin, Vasilii 08 November 2021 (has links)
This work describes theoretical studies on molecular and electronic structures of lanthanide-based single-molecule magnets focusing on their magnetic properties. In this work, two main problems are covered: the structural ordering of endohedral fullerenes in different supramolecular arrangements, and the magnetic anisotropy of lanthanides in different charge coordinations. The basic methodes used in this work are density functional theory and multiconfigurational self-consistent field.:CHAPTER 1. THEORETICAL FOUNDATIONS OF RARE-EARTH MAGNETISM 12 1.1. Single-molecule magnetism and 4f-elements 14 1.1.1. Electronic structure of 4f-elements 16 1.1.2. LS-coupling scheme 19 1.1.3. Parameterization of the Crystal-Field splitting effect. 20 1.1.4. Zeeman splitting for a free ion 24 1.1.5. Spin Hamiltonian and pseudospin approximation 24 1.1.6. Kramers theorem 25 1.1.7. Weak and strong molecular interactions. 26 1.2. Computational methods in application to Ln-based SMMs 27 1.2.1. Density functional theory (DFT). 28 1.2.2. Multiconfigurational methods in quantum chemistry 33 1.3. Role of molecular structure in single-molecular magnetism 41 1.3.1. Complexes of SMMs with organic molecules 45 1.3.2. SMMs deposited on surfaces 46 CHAPTER 2. STRUCTURAL ORDERING IN COCRYSTALS OF EMFs AND Ni(OEP) 49 2.1. Ordering in endohedral metallofullerenes 49 2.2. Modeling details 51 2.3. Conformer analysis 54 2.4. Electrostatic potential 58 CHAPTER 3. ISOMERISM OF Dy2ScN@C80 DEPOSITED ON SURFACES 61 3.1. Modeling details 62 3.2. Cluster conformation analysis 69 3.3. Charge density analysis 75 CHAPTER 4. Ho|MgO AS A SINGLE-ATOMIC MAGNET. FV-MAGNETISM. 80 4.1. DFT description of Ln|MgO 85 4.2. Ho|MgO system: ab initio calculations 92 4.3. Magnetic properties of lanthanides with FV magnetism 99 4.4. Generalized ligand field and spin Hamiltonians for FV systems. 101 CHAPTER 5. FV-MAGNETISM IN [Ln2+] METALLOCENE COMPLEXES 107 5.1. TbII(CpiPr5)2 DFT-model 108 5.2. FV-interaction in terms of ab initio multiconfigurational approach 113 5.3. Point-charge model 115
36

Steigerung der Quantenausbeute von aufwärtskonvertierenden NaYF4-Nanokristallen

Homann, Christian 26 November 2019 (has links)
Nanopartikel auf Basis von NaYF4 erfreuen sich großer Beliebtheit durch ihre vielseitigen Einsatzmöglichkeiten. Durch die Dotierung mit Ytterbium und Erbium im Wirtsgitter ist es beispielsweise möglich, niedrigenergetisches Infrarotlicht in höher-ergetisches, sichtbares Licht umzuwandeln. Zudem lässt sich NaYF4 auch im Nanometermaßstab präparieren, sodass ein Einsatz in Zellen oder lebenden Organismen möglich ist, wo die zur Anregung verwendete infrarote Strahlung ohne Probleme das Gewebe durchdringen kann. Zu Beginn dieser Arbeit zeigten aufwärtskonvertierende Nanomaterialien wie NaYF4 :Yb,Er jedoch auch nach Umhüllen mit einer inaktiven Schale aus undotiertem NaYF4 nur sehr geringe Lumineszenz-Quantenausbeuten und kurze Energieniveau-Lebenszeiten. Im Rahmen dieser Arbeit wurde die Synthesemethode zur Herstellung von aufwärtskonvertierenden NaYF4 -Nanopartikeln durch den Einsatz neuer Eduktmaterialien modifiziert und die Auswirkung der Modifikationen auf die Partikeleigenschaften näher untersucht. So konnte gezeigt werden, dass durch den Einsatz einer alternativen Fluoridquelle (NaHF2) Partikel mit sehr engen Partikelgrößenverteilungen hergestellt werden können. Jedoch zeigte sich auch, dass die mit NaHF2 präparierten Partikel sich nicht mit einer Schale aus undotiertem NaYF4 umhüllen ließen. Im zweiten Teil dieser Arbeit wurde daher der Fokus auf die Verbesserung der optischen Eigenschaften gelegt. Durch die Verwendung von getrockneten Lösungsmitteln und wasserfreien Seltenerdacetaten, sowie NH4F als Fluoridquelle gelang es erstmals, aufwärtskonvertierende Kern/Schale-Nanopartikel (<50 nm) mit einer sehr hohen Lumineszenz-Quantenausbeute, ähnlich dem des makrokristallinen Referenzmaterials, herzustellen. Auch bei sehr kleinen Kern/Schale-Partikeln (≤15 nm) konnten Quantenausbeuten erzielt werden, die nur um einen Faktor 3-4 niedriger sind als beim Referenzmaterial. Dabei zeigte sich durch die Messung der Energieniveau-Lebenszeiten, dass die größten Verlustprozesse durch die Yb3+ Emission bei 940 nm auftraten und diese durch aufbringen einer Schale unterbunden werden konnten.
37

Synthese und Charakterisierung von Verbindungen der Lanthanoide mit σ-gebundenen Liganden / Synthesis and characterization of compounds of the rare earth elements with σ-donor ligands

Hofmeister, Anja 01 July 2008 (has links)
No description available.
38

Polynukleare Cluster der d-Metalle mit chelatisierenden Liganden / Polynuclear clusters of d-block-elements with chelating ligands

Vidovic, Denis 28 April 2005 (has links)
No description available.
39

Spektroskopische Untersuchungen zur Komplexbildung von Cm(III) und Eu(III) mit organischen Modellliganden sowie ihrer chemischen Bindungsform in menschlichem Urin (in vitro)

Heller, Anne 17 June 2011 (has links)
Dreiwertige Actinide (An(III)) und Lanthanide (Ln(III)) stellen im Falle ihrer Inkorporation eine ernste Gefahr für die Gesundheit des Menschen dar. An(III) sind künstlich erzeugte, stark radioaktive Elemente, die insbesondere bei der nuklearen Energiegewinnung in Kernkraftwerken entstehen. Durch Störfälle oder nicht fachgerechte Lagerung radioaktiven Abfalls können sie in die Umwelt und die Nahrungskette des Menschen gelangen. Ln(III) sind hingegen nicht radioaktive Elemente, die natürlicherweise vorkommen und für vielfältige Anwendungen in Technik und Medizin abgebaut werden. Folglich kann der Mensch sowohl mit An(III) als auch Ln(III) in Kontakt kommen bzw. sie inkorporieren. Es ist daher von enormer Wichtigkeit, das Verhalten dieser Elemente im menschlichen Körper aufzuklären. Während makroskopische Vorgänge wie Verteilung, Anreicherung und Ausscheidung bereits sehr gut untersucht sind, ist das Wissen hinsichtlich der chemischen Bindungsform (Speziation) von An(III) und Ln(III) in Körperflüssigkeiten noch sehr lückenhaft. In der vorliegenden Arbeit wurde daher erstmals die chemische Bindungsform von Cm(III) und Eu(III) in natürlichem menschlichem Urin (in vitro) spektroskopisch aufgeklärt und die gebildeten Komplexe identifiziert. Hierzu wurden auch grundlegende Untersuchungen zur Komplexierung von Cm(III) und Eu(III) in synthetischem Modellurin sowie mit den urinrelevanten organischen Modellliganden Harnstoff, Alanin, Phenylalanin, Threonin und Citrat durchgeführt und die noch unbekannten Komplexbildungskonstanten bestimmt. Abschließend wurden alle experimentellen Ergebnisse mit Literaturdaten und Vorherberechnungen mittels thermodynamischer Modellierung verglichen. Auf Grund der hervorragenden Lumineszenzeigenschaften von Cm(III) und Eu(III) konnte insbesondere auch die Eignung der zeitaufgelösten laserinduzierten Fluoreszenzspektroskopie (TRLFS) als Methode zur Untersuchung dieser Metallionen in unbehandelten, komplexen biologischen Flüssigkeiten demonstriert werden. Die Ergebnisse dieser Arbeit liefern damit neue Erkenntnisse zu den biochemischen Reaktionen von An(III) und Ln(III) in Körperflüssigkeiten auf molekularer Ebene und tragen zu einem besseren Verständnis der bekannten, makroskopischen Effekte dieser Elemente bei. Darüber hinaus sind sie die Grundlage weiterführender in-vivo-Untersuchungen.:1 Motivation und Zielstellung 2 Speziationsbestimmung exogener Schwermetalle in Biofluiden 2.1 Actinide und Lanthanide 2.2 Biochemisches Verhalten exogener Schwermetalle im Menschen 2.3 Speziationsbestimmung von Metallen 3 Komplexbildung von Curium(III) und Europium(III) mit organischen Modellliganden 3.1 Lumineszenzspektroskopische Eigenschaften von Curium(III) und Europium(III) in Wasser 3.2 Harnstoff – Hauptbestandteil des menschlichen Urins 3.3 Citronensäure – ubiquitäres Biomolekül0 3.4 Aminosäuren – Grundbausteine des Lebens 4 Speziation von Curium(III) und Europium(III) in menschlichen Urinproben 4.1 Charakterisierung und Analyse der natürlichen menschlichen Urinproben 4.2 Bestimmung der Speziation von Curium(III) und Europium(III) in Modellurin 4.3 Bestimmung der Speziation von Curium(III) und Europium(III) in menschlichem Urin 5 Diskussion 5.1 Vergleich der Komplexbildungseigenschaften von Curium(III) und Europium(III) 5.2 Thermodynamische Modellierung der Speziation von Curium(III) und Europium(III) in menschlichem Urin 5.3 Ausblick 6 Experimentelles / In case of incorporation, trivalent actinides (An(III)) and lanthanides (Ln(III)) pose a serious health risk to humans. An(III) are artificial, highly radioactive elements which are mainly produced during the nuclear fuel cycle in nuclear power plants. Via hazardous accidents or nonprofessional storage of radioactive waste, they can be released in the environment and enter the human food chain. In contrast, Ln(III) are nonradioactive, naturally occurring elements with multiple applications in technique and medicine. Consequently it is possible that humans get in contact and incorporate both, An(III) and Ln(III). Therefore, it is of particular importance to elucidate the behaviour of these elements in the human body. While macroscopic processes such as distribution, accumulation and excretion are studied quite well, knowledge about the chemical binding form (speciation) of An(III) and Ln(III) in various body fluids is still sparse. In the present work, for the first time, the speciation of Cm(III) and Eu(III) in natural human urine (in vitro) has been investigated spectroscopically and the formed complex identified. For this purpose, also basic investigations on the complex formation of Cm(III) and Eu(III) in synthetic model urine as well as with the urinary relevant, organic model ligands urea, alanine, phenylalanine, threonine and citrate have been performed and the previously unknown complex stability constants determined. Finally, all experimental results were compared to literature data and predictions calculated by thermodynamic modelling. Since both, Cm(III) and Eu(III), exhibit unique luminescence properties, particularly the suitability of time-resolved laser-induced fluorescence spectroscopy (TRLFS) could be demonstrated as a method to investigate these metal ions in untreated, complex biofluids. The results of this work provide new scientific findings on the biochemical reactions of An(III) and Ln(III) in human body fluids on a molecular scale and contribute to a better understanding of the known macroscopic effects of these elements. Furthermore, they are the basis of subsequent in vivo investigations.:1 Motivation und Zielstellung 2 Speziationsbestimmung exogener Schwermetalle in Biofluiden 2.1 Actinide und Lanthanide 2.2 Biochemisches Verhalten exogener Schwermetalle im Menschen 2.3 Speziationsbestimmung von Metallen 3 Komplexbildung von Curium(III) und Europium(III) mit organischen Modellliganden 3.1 Lumineszenzspektroskopische Eigenschaften von Curium(III) und Europium(III) in Wasser 3.2 Harnstoff – Hauptbestandteil des menschlichen Urins 3.3 Citronensäure – ubiquitäres Biomolekül0 3.4 Aminosäuren – Grundbausteine des Lebens 4 Speziation von Curium(III) und Europium(III) in menschlichen Urinproben 4.1 Charakterisierung und Analyse der natürlichen menschlichen Urinproben 4.2 Bestimmung der Speziation von Curium(III) und Europium(III) in Modellurin 4.3 Bestimmung der Speziation von Curium(III) und Europium(III) in menschlichem Urin 5 Diskussion 5.1 Vergleich der Komplexbildungseigenschaften von Curium(III) und Europium(III) 5.2 Thermodynamische Modellierung der Speziation von Curium(III) und Europium(III) in menschlichem Urin 5.3 Ausblick 6 Experimentelles
40

Lanthanide Doped Wide Band Gap Semiconductors: Intra-4f Luminescence and Lattice Location Studies / Lanthanid-dotierte Halbleiter mit großer Bandlücke: Intra-4f Lumineszenz- und Gitterplatzuntersuchungen

Vetter, Ulrich 15 July 2003 (has links)
No description available.

Page generated in 0.0739 seconds