Spelling suggestions: "subject:"lineares""
121 |
Numerical solution of the stochastic collection equation: comparison of the linear discrete method and the method of momentsSimmel, Martin 19 December 2016 (has links)
The Linear Discrete Method (LDM; SIMMEL 2000; SIMMEL ET AL. 2000) is used to solve the Stochastic Collection Equation (SCE) numerically. Comparisons are made to the Method of Moments (MOM; TzIVION ET AL. 1999) which is suggested as a reference for numerical solutions of the SCE. Simulations for both methods are shown for the GoLOVIN kernel (for which an analytical solution is available) and the hydrodynamic kernel after LONG (1974) as it is used by TZIVION ET AL. (1999). Different bin resolutions are investigated and the simulation times are compared. In addition, LDM simulations using the hydrodynamic kernel after BÖHM (1992b) are presented. The results show that for the GoLOVIN kernel, LDM is slightly closer to the analytic
solution than MOM. For the LONG kernel, the low resolution results of LDM and MOM are of similar quality compared to the reference solution. For the BÖHM kernel, only LDM simulations were carried out which show good correspondence between low and high resolution results. / Die lineare diskrete Methode (LDM; SIMMEL 2000; SIMMEL ET AL. 2000) wird dazu benutzt, die Gleichung für stochastisches Einsammeln (stochastic collection equation, SCE) numerisch zu lösen. Dabei werden Vergleiche gezogen zur Methode der Momente (Method of Moments, MOM; TzIVION ET AL. 1999), die als Referenz für numerische Lösungen der SCE vorgeschlagen wurde. Simulationsrechnungen für beide Methoden werden für die Koaleszenzfunktion nach GoLOVIN (für die eine analytische Lösung existiert) und die hydrodynamische Koaleszenzfunktion nach LONG (1974) wie sie von TZIVION ET AL. (1999) verwendet wird, gezeigt. Verschiedene Klassenauflösungen werden untersucht und die Simulationszeiten verglichen. Zusätzlich werden LDM-Simulationen mit der hydrodynamischen Koaleszenzfunktion nach BÖHM (1992b) gezeigt. Die Ergebnisse für die Koaleszenzfunktion nach GoLOVIN zeigen, daß die LDM der analytischen Lösung etwas näher kommt als MOM. Für die Koaleszenzfunktion nach LONG sind die Ergebnisse von LDM und MOM mit niedriger Auflösung von ähnlicher Qualität verglichen mit der Referenzlösung. Für die Koaleszenzfunktion nach BÖHM wurden nur Simulationen mit der LDM durchgeführt, die eine gute Übereinstimmung der Ergebnisse mit niedriger und hoher Auflösung zeigen.
|
122 |
Basics of Linear ThermoelasticityMeyer, Arnd, Springer, Rolf January 2015 (has links)
In this preprint, we look onto the theory of linear thermoelasticity. At the beginning, this theory is shortly repeated and afterwards applied to transversely isotropic materials. Then, the corresponding weak formulation is derived, which is the starting point for a FE-discretisation. In the last part, we explain how we added this material behaviour to an adaptive Finite-Element-code and show some numerical results.:1 Introduction
2 Theoretical Background
3 Special Cases of Linear Thermoelasticity
4 Weak Formulation
5 Implementation
6 Numerical Examples
A. Results of the Computation
|
123 |
LTL over Description Logic AxiomsBaader, Franz, Ghilardi, Silvio, Lutz, Carsten 16 June 2022 (has links)
Most of the research on temporalized Description Logics (DLs) has concentrated on the case where temporal operators can occur within DL concept descriptions. In this setting, reasoning usually becomes quite hard if rigid roles, i.e., roles whose interpretation does not change over time, are available. In this paper, we consider the case where temporal operators are allowed to occur only in front of DL axioms (i.e., ABox assertions and general concept inclusion axioms), but not inside of concepts descriptions. As the temporal component, we use linear temporal logic (LTL) and in the DL component we consider the basic DL ALC. We show that reasoning in the presence of rigid roles becomes considerably simpler in this setting.
|
124 |
Optimal rates for Lavrentiev regularization with adjoint source conditionsPlato, Robert, Mathé, Peter, Hofmann, Bernd 10 March 2016 (has links) (PDF)
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
|
125 |
Ein linearer Programmierungsansatz zur Lösung von Stopp- und SteuerungsproblemenRöhl, Stefan 08 May 2001 (has links)
Es wird ein Ansatz und ein Algorithmus zur Lösung von stochastischen Stoppproblemen vorgestellt, der auf einer dualen Formulierung zum klassischen Lösungsansatz für Stoppprobleme mittels Variationsungleichungen basiert. Unter bestimmten Voraussetzungen kann man für diese duale Formulierung ein äquivalentes unendlichdimensionales lineares Programm aufstellen, das die Momente des Aufenthaltsmaßes des stochastischen Prozesses bis zum Stoppzeitpunkt und die Momente der Verteilung des Prozesses zum Zeitpunkt des Stoppens als Variablen enthält. Für dieses unendlichdimensionale Problem werden endlichdimensionale Approximationen formuliert und gelöst, wobei die Momente nur bis zu einer endlichen Ordnung berücksichtigt werden. Die Güte der numerischen Resultate hängt davon ab, wie genau der Träger des Maßes zum Stoppzeitpunkt identifiziert werden kann. Aus diesem Grund wird ein Verfeinerungsalgorithmus entwickelt, mit dem diese Identifizierung in einer Reihe von Fällen gelingt und sich sehr genaue Ergebnisse erzielen lassen. Der für Stoppprobleme entwickelte Algorithmus kann auch bei der Ermittlung von optimalen Steuerungen für stetige stochastische Prozesse angewandt werden. Für einzelne Beispiele wird gezeigt, welche Resultate dabei erzielt werden können. / We present an approach to, and an algorithm for solving optimal stopping problems. The approach is based on a dual formulation of the classical method for solving stopping problems using variational inequalities. Under suitable conditions it is possible to express the dual formulation as an infinite-dimensional linear program. This linear program uses the moments of the occupation measure and the moments of the stopping measure as variables. We formulate and solve finite-dimensional approximations to this infinite-dimensional program by restricting the number of moments. The accuracy of the numerical results depend on how well the support of the stopping measure can be identified. To this end we develop an iterative procedure which works very well in many cases. In the second part of the dissertation we show how the algorithm, developed for stopping problems, can be used for solving stochastic control problems.
|
126 |
General linear methods for integrated circuit designVoigtmann, Steffen 01 September 2006 (has links)
Bei der Modellierung elektrischer Schaltungen ergeben sich Algebro-Differentialgleichungen (DAEs) mit proper formuliertem Hauptterm. Diese Gleichungen müssen z.B. bei der transienten Schaltungssimulation numerisch gelöst werden. Bei den klassischen Ansätzen der Linearen Mehrschrittverfahren oder der Runge-Kutta Verfahren ergeben sich Nachteile, die durch Verwendung von Allgemeinen Linearen Verfahren vermieden werden können. Sowohl Lineare Mehrschrittverfahren als auch Runge-Kutta Verfahren sind als Spezialfälle in dieser allgemeineren Klasse enthalten. Darüberhinaus sind aber neue Verfahren mit verbesserten Eigenschaften möglich. In dieser Arbeit werden DAEs der Schaltungssimulation eingehend studiert und Allgemeine Lineare Verfahren für solche Gleichungen untersucht. Die Verfahrenskonstruktion und Implementierungsfragen werden ausführlich diskutiert. Diese Arbeit erscheint im Logos Verlag Berlin (www.logos-verlag.de, ISBN 3-8325-1353-1). / Modelling electrical circuits leads to differential algebraic equations (DAEs) having a properly stated leading term. These equations need to be solved numerically, e.g. in case of a transient analysis of the given circuit. Classical methods such as linear multistep methods or Runge-Kutta schemes suffer from disadvantages that can be overcome by studying general linear schemes. Both Runge-Kutta methods and linear multistep schemes belong to this class as special cases, but there is plenty of room for new methods with improved properties. This work presents both a detailed study of DAEs in the framework of integrated circuit design and a thorough analysis of general linear methods for these kind of equations. The construction and implementation of general linear methods for DAEs is discussed in detail. This work is published by Logos Verlag Berlin (www.logos-verlag.de, ISBN 3-8325-1353-1).
|
127 |
Systems biology analysis of iron metabolismLopes, Tiago Jose da Silva 28 November 2011 (has links)
Jede Zelle des Säugetierorganismus benötigt Eisen als Spurenelement für zahlreiche oxidativ-reduktive Elektronentransfer-Reaktionen und für Transport und Speicherung von Sauerstoff. Der Organismus unterhält daher ein komplexes Regulationsnetzwerk für die Aufnahme, Verteilung und Ausscheidung von Eisen. Die intrazelluläre Regulation in den verschiedenen Zelltypen des Körpers ist mit einer globalen hormonellen Signalstruktur verzahnt. Sowohl Eisenmangel wie Eisenüberschuss sind häufige und ernste menschliche Krankheitsbilder. Sie betreffen jede Zelle, aber auch den Organismus als Ganzes. In dieser Dissertation wird ein mathematisches Modell des Eisenstoffwechsels der erwachsenen Maus vorgestellt. In ihm wird die Flussbilanz des Eisens in den wichtigsten Zelltypen in Form von transmembranalen und intrazellulären kinetischen Gleichungen dargestellt, und es werden diese Zellmodelle mit dem zentralen Eisenaustausch-Kompartiment (Blutplasma) des Körpers integriert. Der Eisenstatus wird charakterisiert als Gehalt an labil gebundenen Eisen und an ferritin-gebundenen Eisen für jede Zelle. Der Stoffwechsel wird als Netzwerk von Flussdynamik formuliert. Der experimentelle Input in dieses Modells stammt von verschiedenen Quellen. Radioaktive Tracerdaten, gemessen am intakten Tier (Mausstamm C57BL6 – das am intensivsten studierte Tiermodell) unter varrierten physiologischen Bedingungen lieferten den experimentellen Hintergrund, von dem aus Clearance-Parameter durch numerisches Fitting ermittelt wurden. Es wird gezeigt, dass das Modell mit entsprechend adaptierten Parametersätzen die wichtigsten metabolischen und regulatorischen Ereignisse in Übereinstimmung mit den Messungen darstellen kann. In Zukunft soll die quantitative Übereinstimmung mit Daten aus weiteren genetischen Rekonstruktionen (globale und zell-spezifische knock-outs und konstitutive Expression relevanter Gene des Modellorganismus Maus) hergestellt werden. / Every cell of the mammalian organism needs iron as trace element in numerous oxido-reductive processes as well as for transport and storage of oxygen. The mammalian organism maintains therefore a complex regulatory network of iron uptake, excretion and intra-body distribution. Here a mathematical model of iron metabolism of the adult mouse is presented. It formulates the iron flux balance of the most important cell types of the organism in the form of transmembraneous and intracellular kinetic equations and integrates these cell models with the central exchange compartment (blood plasma) of the body. The iron status is represented as content of labile iron and of ferritin-bound iron in every cell type, and the metabolism is formulated as a network of flux dynamics. The experimental input into the model stems from different sources. Radioactive tracer data measured in the intact animal (mouse strain C57BL6 - the most intensively studied animal model) under various physiological conditions provided the experimental background from which clearance parameters could be obtained by numerical parameter fitting. Future research should render more precise the quantitative representation of genetic reconstructions (global and cell-type-addressed knock-out and constitutive expression of relevant genes of the model mouse strain).
|
128 |
Essays on minimal supersolutions of BSDEs and on cross hedging in incomplete marketsHeyne, Gregor 07 November 2012 (has links)
Im ersten Teil der Arbeit analysieren wir BSDEs mit Generatoren, die monoton in y, convex in z, gemeinsam unterhalbstetig und von unten durch eine affine Funktion der Kontrollvariable beschränkt sind. Das erste Hauptresultat ist der Nachweis der Existenz und Eindeutigkeit einer minimalen Superlösung. Wir zeigen, dass für die minimale Superlösung wichtige Eigenschaften, wie zum Beispiel die Flusseigenschaft und die Projektivität gelten. Es stellt sich heraus, dass das Funktional welches die Endbedingung auf das Infimum über alle Wertprozesse zur Zeit null abbildet nicht nur den gleichen Definitionsbereich wie der Erwartungswert hat, sondern auch einige seiner wichtigsten Eigenschaften, wie monotone Konvergenz und Fatou''s Lemma teilt. Das führt im Weiteren zur Unterhalbstetigkeit und zu dualen Darstellungen dieses Funktionals. Schlussendlich zeigen wir eine Lösung des Nutzenmaximierungsproblems für die Exponentialnutzenfunktion. Im zweiten Teil der Arbeit untersuchen wir die quadratische Absicherung von finanziellen Risikopositionen unter Basisrisiko. Zuerst zeigen wir wie optimal abgesichert wird, wenn die Differenz der Logarithmen von Absicherungsinstrument und Risiko asymptotisch stationär ist. Für lineare Risikopositionen leiten wir explizite Formeln für den Absicherungsfehler her und zeigen, dass für nichtlineare Positionen eine schnelle Simulation möglich ist. Zweitens untersuchen wir ein Modell in dem die Korrelation zwischen Absicherungsinstrument und Basiswert stochastisch ist. Wir nehmen an, dass die Korrelation ein Prozess ist, der sich gemäß einer stochastischen Differentialgleichung mit Werten zwischen -1 und 1 entwickelt. Wir leiten eine Integrabilitätsbedingung bezüglich des Korrelationsprozesses her, die uns erlaubt die optimale quadratische Absicherung durch eine einfache Formel zu beschreiben. Weiterhin zeigen wir, dass unsere Bedingungen von einer großen Klasse von Korrelationsdynamiken erfüllt werden. / In the first part of the thesis we analyze BSDEs with generators that are monotone in y, convex in z, jointly lower semicontinuous, and bounded below by an affine function of the control variable. The first central result establishes existence and uniqueness of a minimal supersolution. We show that our setting allows to derive important properties of the minimal supersolution such as the flow property and the projectivity. We find that the functional which maps the terminal condition to the infimum over all value processes evaluated at time zero is not only defined on the same domain as the original expectation operator, but also shares some of its main properties such as monotone convergence and Fatou''s Lemma. Moreover, this leads to lower semincontinuity and dual representations of the functional. Finally, we demonstrate a solution of the problem of maximizing expected exponential utility. In the second part of the thesis we investigate quadratic hedging of contingent claims with basis risk. We first show how to optimally cross-hedge risk when the logspread between the hedging instrument and the risk is asymptotically stationary. For linear risk positions we derive explicit formulas for the hedge error, while for non-linear positions swift simulation analysis is possible. Secondly, we study a model where the correlation between the hedging instrument and the underlying of the contingent claim is random itself. We assume that the correlation is a process which evolves according to a stochastic differential equation with values between the boundaries -1 and 1. We derive an integrability condition on the correlation process that allows to describe the quadratic hedge by means of a simple hedging formula. Furthermore we show that our conditions are fulfilled by a large class of correlation dynamics.
|
129 |
modelli neokeynesiani per l'analisi delle politiche monetarie ottimali con prezzi vischiosi: un approccio non lineare. / Newkeynesian models for monetary policy analysis under stycky prices: a nonlinear approachCORNARO, ALESSANDRA 09 June 2009 (has links)
La tesi è organizzata come segue: nella prima parte viene presentato il background matematico necessario per studiare il modello, introducendo la nozione di sistema dinamico (capitolo 2). Succesivamente viene introdotto il background economico, con il concetto di determinatezza sia dal punto di vista tecnico, con esempio applicativo, che dal punto di vista dei modelli presenti in letteratura in cui viene impiegato. Nella seconda parte viene presentato il framework analitico, basato sul modello di Woodford. In seguito, si passa studiare il modello con lo strumento della loglinearizzazione, fornendo le relazioni di equilibrio attorno allo stato stazionario. Poi si specifica il modello in un caso particolare e si prosegue per ottenere la versione non lineare del modello, introducendo nuove ipotesi compatibili con il framework analitico, in modo da poter studiare la determinatezza dell'equilibrio. / The thesis is organized as follow: we start presenting, in the first part, the mathematical background we need to study our model, introducing at first the notion of dynamical system, more specifically in the discrete time, as our model required (Chapter 2).
Afterwards, for the economical background (Chapter 3-4), the concept of determinacy of the equilibrium is analyzed from the technical point of view for linear models, providing the analytical conditions that let us obtain a unique and determinate equilibrium.
Once explored the techniques, we give an exhaustive example that allows us to better understand from the mathematical point of view the concept of determinacy and how it is linked to the concept of stability. After that, a brief survey of the models that involved the study of determinacy is exposed, showing the several fields of application.
Then, since in our model of monetary policy we imply different interest-rate policy rules in order to study the stability of the macroeconomic system, we provide a short preamble of the rules for the operating target interest rate set by Central Bank.
In the second part the analytical framework is presented. The starting point is a model for price level determination in a cashless economy, where nominal rigidities are introduced, based on Woodford's work and we give the equilibrium relations of the model in the implicit form (Chapter 5).
Afterwards, we build the model in a particular case (Chapter 6), by specifying the functions involved in the model by using utility function of C.R.R.A. type and linear production function, compatible with the analytical characterization. In this way we get the components of a general economic equilibrium model, consistent with the optimizing behavior of households and firms. The results obtained after the specification of the functions are the same we can find in the analysis proposed by Walsh.
At this point, we obtain the log-linearized version of the model that is the starting point for the study of the stability of the system in the linear case.
This procedure let us find a two equations forward-looking and rational-expectations model for inflation and the output gap.
Then we briefly present the different policy regimes used in the analysis according to our framework, providing the interest-rate relations that close the model
Since our intention is to find a nonlinear version of the model, the step of using the log-linearization is essential in order to understand and to underline how this tool is useful not only for studying the equations around the steady-state but also to make these relations more treatable from a mathematical point of view: in fact it is important in order to figure out the obstacles we faced to build the nonlinear model and to find the solutions proposed in this work.
In the third part (Chapter 7), to reach our purpose to go beyond the log-linearized and simplified version of the model, we try, under some assumption compatible with the behavior of the agents, to provide nonlinear conditions for this model. This is meaningful in order to avoid loss of informations due to the limited analysis around a neighborhood of the steady-state.
Once illustrated the nonlinear model and the equilibrium relation, we study the determinacy of the equilibrium, using the techniques shown in the first part, under two different interest rate specifications that close the model. Chapter 8 concludes.
|
130 |
On Graph Embeddings and a new Minor Monotone Graph Parameter associated with the Algebraic Connectivity of a GraphWappler, Markus 07 June 2013 (has links) (PDF)
We consider the problem of maximizing the second smallest eigenvalue of the weighted Laplacian of a (simple) graph over all nonnegative edge weightings with bounded total weight.
We generalize this problem by introducing node significances and edge lengths.
We give a formulation of this generalized problem as a semidefinite program.
The dual program can be equivalently written as embedding problem. This is fifinding an embedding of the n nodes of the graph in n-space so that their barycenter is at the origin, the distance between adjacent nodes is bounded by the respective edge length, and the embedded nodes are spread as much as possible. (The sum of the squared norms is maximized.)
We proof the following necessary condition for optimal embeddings. For any separator of the graph at least one of the components fulfills the following property: Each straight-line segment between the origin and an embedded node of the component intersects the convex hull of the embedded nodes of the separator.
There exists always an optimal embedding of the graph whose dimension is bounded by the tree-width of the graph plus one.
We defifine the rotational dimension of a graph. This is the minimal dimension k such that for all choices of the node significances and edge lengths an optimal embedding of the graph can be found in k-space.
The rotational dimension of a graph is a minor monotone graph parameter.
We characterize the graphs with rotational dimension up to two.
|
Page generated in 0.0721 seconds