• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 4
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 68
  • 17
  • 17
  • 11
  • 10
  • 9
  • 9
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Antenna design using optimization techniques over various computaional electromagnetics. Antenna design structures using genetic algorithm, Particle Swarm and Firefly algorithms optimization methods applied on several electromagnetics numerical solutions and applications including antenna measurements and comparisons

Abdussalam, Fathi M.A. January 2018 (has links)
Dealing with the electromagnetic issue might bring a sort of discontinuous and nondifferentiable regions. Thus, it is of great interest to implement an appropriate optimisation approach, which can preserve the computational resources and come up with a global optimum. While not being trapped in local optima, as well as the feasibility to overcome some other matters such as nonlinear and phenomena of discontinuous with a large number of variables. Problems such as lengthy computation time, constraints put forward for antenna requirements and demand for large computer memory, are very common in the analysis due to the increased interests in tackling high-scale, more complex and higher-dimensional problems. On the other side, demands for even more accurate results always expand constantly. In the context of this statement, it is very important to find out how the recently developed optimization roles can contribute to the solution of the aforementioned problems. Thereafter, the key goals of this work are to model, study and design low profile antennas for wireless and mobile communications applications using optimization process over a computational electromagnetics numerical solution. The numerical solution method could be performed over one or hybrid methods subjective to the design antenna requirements and its environment. Firstly, the thesis presents the design and modelling concept of small uni-planer Ultra- Wideband antenna. The fitness functions and the geometrical antenna elements required for such design are considered. Two antennas are designed, implemented and measured. The computed and measured outcomes are found in reasonable agreement. Secondly, the work is also addressed on how the resonance modes of microstrip patches could be performed using the method of Moments. Results have been shown on how the modes could be adjusted using MoM. Finally, the design implications of balanced structure for mobile handsets covering LTE standards 698-748 MHz and 2500-2690 MHz are explored through using firefly algorithm method. The optimised balanced antenna exhibits reasonable matching performance including near-omnidirectional radiations over the dual desirable operating bands with reduced EMF, which leads to a great immunity improvement towards the hand-held. / General Secretariat of Education and Scientific Research Libya
62

Modelling and analysis of complex electromagnetic problems using FDTD subgridding in hybrid computational methods. Development of hybridised Method of Moments, Finite-Difference Time-Domain method and subgridded Finite-Difference Time-Domain method for precise computation of electromagnetic interaction with arbitrarily complex geometries

Ramli, Khairun N. January 2011 (has links)
The main objective of this research is to model and analyse complex electromagnetic problems by means of a new hybridised computational technique combining the frequency domain Method of Moments (MoM), Finite-Difference Time-Domain (FDTD) method and a subgridded Finite-Difference Time-Domain (SGFDTD) method. This facilitates a significant advance in the ability to predict electromagnetic absorption in inhomogeneous, anisotropic and lossy dielectric materials irradiated by geometrically intricate sources. The Method of Moments modelling employed a two-dimensional electric surface patch integral formulation solved by independent linear basis function methods in the circumferential and axial directions of the antenna wires. A similar orthogonal basis function is used on the end surface and appropriate attachments with the wire surface are employed to satisfy the requirements of current continuity. The surface current distributions on structures which may include closely spaced parallel wires, such as dipoles, loops and helical antennas are computed. The results are found to be stable and showed good agreement with less comprehensive earlier work by others. The work also investigated the interaction between overhead high voltage transmission lines and underground utility pipelines using the FDTD technique for the whole structure, combined with a subgridding method at points of interest, particularly the pipeline. The induced fields above the pipeline are investigated and analysed. FDTD is based on the solution of Maxwell¿s equations in differential form. It is very useful for modelling complex, inhomogeneous structures. Problems arise when open-region geometries are modelled. However, the Perfectly Matched Layer (PML) concept has been employed to circumvent this difficulty. The establishment of edge elements has greatly improved the performance of this method and the computational burden due to huge numbers of time steps, in the order of tens of millions, has been eased to tens of thousands by employing quasi-static methods. This thesis also illustrates the principle of the equivalent surface boundary employed close to the antenna for MoM-FDTD-SGFDTD hybridisation. It depicts the advantage of using hybrid techniques due to their ability to analyse a system of multiple discrete regions by employing the principle of equivalent sources to excite the coupling surfaces. The method has been applied for modelling human body interaction with a short range RFID antenna to investigate and analyse the near field and far field radiation pattern for which the cumulative distribution function of antenna radiation efficiency is presented. The field distributions of the simulated structures show reasonable and stable results at 900 MHz. This method facilitates deeper investigation of the phenomena in the interaction between electromagnetic fields and human tissues. / Ministry of Higher Education Malaysia and Universiti Tun Hussein Onn Malaysia (UTHM)
63

Data-driven Interpolation Methods Applied to Antenna System Responses : Implementation of and Benchmarking / Datadrivna interpolationsmetoder applicerade på systemsvar från antenner : Implementering av och prestandajämförelse

Åkerstedt, Lucas January 2023 (has links)
With the advances in the telecommunications industry, there is a need to solve the in-band full-duplex (IBFD) problem for antenna systems. One premise for solving the IBFD problem is to have strong isolation between transmitter and receiver antennas in an antenna system. To increase isolation, antenna engineers are dependent on simulation software to calculate the isolation between the antennas, i.e., the mutual coupling. Full-wave simulations that accurately calculate the mutual coupling between antennas are timeconsuming, and there is a need to reduce the required time. In this thesis, we investigate how implemented data-driven interpolation methods can be used to reduce the simulation times when applied to frequency domain solvers. Here, we benchmark the four different interpolation methods vector fitting, the Loewner framework, Cauchy interpolation, and a modified version of Nevanlinna-Pick interpolation. These four interpolation methods are benchmarked on seven different antenna frequency responses, to investigate their performance in terms of how many interpolation points they require to reach a certain root mean squared error (RMSE) tolerance. We also benchmark different frequency sampling algorithms together with the interpolation methods. Here, we have predetermined frequency sampling algorithms such as linear frequency sampling distribution, and Chebyshevbased frequency sampling distributions. We also benchmark two kinds of adaptive frequency sampling algorithms. The first type is compatible with all of the four interpolation methods, and it selects the next frequency sample by analyzing the dynamics of the previously generated interpolant. The second adaptive frequency sampling algorithm is solely for the modified NevanlinnaPick interpolation method, and it is based on the free parameter in NevanlinnaPick interpolation. From the benchmark results, two interpolation methods successfully decrease the RMSE as a function of the number of interpolation points used, namely, vector fitting and the Loewner framework. Here, the Loewner framework performs slightly better than vector fitting. The benchmark results also show that vector fitting is less dependent on which frequency sampling algorithm is used, while the Loewner framework is more dependent on the frequency sampling algorithm. For the Loewner framework, Chebyshev-based frequency sampling distributions proved to yield the best performance. / Med de snabba utvecklingarna i telekomindustrin så har det uppstått ett behov av att lösa det så kallad i-band full-duplex (IBFD) problemet. En premiss för att lösa IBFD-problemet är att framgångsrikt isolera transmissionsantennen från mottagarantennen inom ett antennsystem. För att öka isolationen mellan antennerna måste antenningenjörer använda sig av simulationsmjukvara för att beräkna isoleringen (den ömsesidiga kopplingen mellan antennerna). Full-wave-simuleringar som noggrant beräknar den ömsesidga kopplingen är tidskrävande. Det finns därför ett behov av att minska simulationstiderna. I denna avhandling kommer vi att undersöka hur våra implementerade och datadrivna interpoleringsmetoder kan vara till hjälp för att minska de tidskrävande simuleringstiderna, när de används på frekvensdomänslösare. Här prestandajämför vi de fyra interpoleringsmetoderna vector fitting, Loewner ramverket, Cauchy interpolering, och modifierad Nevanlinna-Pick interpolering. Dessa fyra interpoleringsmetoder är prestandajämförda på sju olika antennsystemsvar, med avseende på hur många interpoleringspunkter de behöver för att nå en viss root mean squared error (RMSE)-tolerans. Vi prestandajämför också olika frekvenssamplingsalgoritmer tillsammas med interpoleringsmetoderna. Här använder vi oss av förbestämda frekvenssamplingsdistributioner så som linjär samplingsdistribution och Chebyshevbaserade samplingsdistributioner. Vi använder oss också av två olika sorters adaptiv frekvenssamplingsalgoritmer. Den första sortens adaptiv frekvenssamplingsalgoritm är kompatibel med alla de fyra interpoleringsmetoderna, och den väljer nästa frekvenspunkt genom att analysera den föregående interpolantens dynamik. Den andra adaptiva frekvenssamplingsalgoritmen är enbart till den modifierade Nevanlinna-Pick interpoleringsalgoritmen, och den baserar sitt val av nästa frekvenspunkt genom att använda sig av den fria parametern i Nevanlinna-Pick interpolering. Från resultaten av prestandajämförelsen ser vi att två interpoleringsmetoder framgångsrikt lyckas minska medelvärdetsfelet som en funktion av antalet interpoleringspunkter som används. Dessa två metoder är vector fitting och Loewner ramverket. Här så presterar Loewner ramverket aningen bättre än vad vector fitting gör. Prestandajämförelsen visar också att vector fitting inte är lika beroende av vilken frekvenssamplingsalgoritm som används, medan Loewner ramverket är mer beroende på vilken frekvenssamplingsalgoritm som används. För Loewner ramverket så visade det sig att Chebyshev-baserade frekvenssamplingsalgoritmer presterade bättre.
64

Inmovilización de complejos organometálicos en soportes sólidos para aplicación en catálisis

Such-Basañez, Ion 20 February 2015 (has links)
La memoria de tesis titulada “Inmovilización de complejos organometálicos en soportes sólidos para aplicación en catálisis” presenta una serie de trabajos encaminados a la obtención de catalizadores híbridos, que sean estables, activos, selectivos y reutilizables en reacciones de hidrogenación e hidroformilación de olefinas. Para ello, se han estudiado diversos métodos para inmovilizar complejos metálicos en materiales carbonosos y sólidos inorgánicos: adsorción física, anclaje por formación de un enlace covalente e intercambio iónico. Estos catalizadores se han usado en las reacciones mencionadas, analizando sus propiedades catalíticas (actividad y selectividad), así como la robustez de los mismos y las posibilidades de reutilización.
65

R-*, Réflexion au Service de l'Évolution des Systèmes de Systèmes

Labéjof, Jonathan 20 December 2012 (has links) (PDF)
Dans un monde de plus en plus connecté, le besoin d'interconnecter des systèmes hétérogènes apparait de plus en plus présent. Les Systèmes de Systèmes (SoS) sont une approche de supervision et de contrôle global où les systèmes constituants sont caractérisés comme des sous-systèmes du SoS. Certains de ces sous-systèmes peuvent être sujets à un environnement dynamique leur demandant d'évoluer pour répondre à de nouvelles exigences, voire de s'adapter s'ils doivent répondre à un besoin de disponibilité. La principale difficulté dans la gestion des évolutions possibles est qu'elles peuvent impacter plusieurs sous-systèmes connectés, et par extension, une vision globale comme celle proposée par un système de systèmes. Ainsi, les problèmes d'évolution et d'adaptation d'un SoS se posent. Dans un cadre d'ingénierie logicielle, cette thèse propose l'approche R-* qui soutient l'hypothèse que plus un système est Réflexif, et plus il devient capable de s'adapter, et donc d'évoluer. Trois contributions majeures et un cas d'utilisation évalu ́e sont proposés pour justifier l'intérêt de R-*. R-DDS et R-MOM ajoutent la capacité de réflexivité dans des sous-systèmes de communication asynchrones, et R-EMS ajoute la capacité de réflexivité sur la vision globale d'un SoS, incluant ses sous-syst'emes et son environnement. R-DDS ajoute la réflexivité à l'intergiciel de Service de Distribution de Données dédié aux domaines du temps-réel et de l'embarqué. R-MOM remonte en abstraction pour proposer la réflexivité au niveau des fonctionalités d'un intergiciel asynchrone. R-EMS est un système de gestion d'environnement réflexif en support de l'utilisation d'un SoS. Finalement, le cas d'utilisation est une implémentation d'un sous-modèle du système de systèmes TACTICOS de THALES, qui servira également d'environnement d'évaluation.
66

Analysis and Design of Conformal Array Antennas

Persson, Patrik January 2002 (has links)
Today there is a great need for communication between people and even between things, using systems onboard e.g. aircraft, cars, ships and satellites. As a consequence, these communications needs require antennas mounted on or integrated in the surfaces of different vehicles or platforms, i.e. conformal antennas. In order to ensure proper operation of the communication systems it is important to be able to determine the characteristics of these antennas. This thesis is about the analysis and design of conformal antennas using high frequency asymptotic methods. Commonly used eigenfunction solutions or numerical methods such as FDTD, FEM or MoM are difficult to use for arbitrarily shaped electrically large surfaces. However, the high frequency approximation approach together with an accurate ray tracing procedure offers a convenient solution for these surfaces. The geodesics (ray paths) on the surfaces are key parameters in the analysis and they are discussed in detail. In the first part of the thesis singly and doubly curved perfectly electrical conducting (PEC) surfaces are studied, with respect to the mutual coupling among aperture type elements. A synthesis problem is also considered where the effect of the mutual coupling is taken into account. As expected, the mutual coupling must be included in the synthesis procedure to be able to realize the prescribed pattern, especially in the shaped main lobe. Furthermore, the polarization of the antenna elements is very important when considering antennas on generally shaped surfaces. For such antennas the polarization must most likely be controlled in some way for a proper function. For verification of the results two experimental antennas were built at Ericsson Microwave Systems AB, Mölndal, Sweden. The first antenna is a circular cylinder with an array of rectangular waveguide fed apertures and the second antenna is a doubly curved surface (paraboloid) with circular waveguide fed apertures. It is found that it is possible to obtain very accurate results with the asymptotic method when it is combined with the Method of Moments, i.e. a hybrid method is used. The agreement compared to measurements is good at levels as low as –80 dB in many cases. The second part of the thesis is about the development of a high frequency approximation for surface field calculations on a dielectric covered PEC circular cylinder. When using conformal antennas in practice they have to be covered with a radome for protection and with the method developed here this cover can be included in the analysis. The method is a combination of two different solutions, one valid in the non-paraxial region of the cylinder and the other is valid in the paraxial region. The method is verified against measurements and reference results obtained from a spectral domain moment method code. / QC 20100616
67

Abnormal Returns of Swedish Equity Funds : Are Managers Skilled or Lucky?

Johansson, Tom-Filip, Määttä, Tommi January 2012 (has links)
The fund market has grown substantially during the past decades and the majority of Swedish citizens are invested in funds directly or through pension savings. There is mixed evidence on the performance of Swedish equity funds depending on the method employed and the time period studied. In this study, we set out to estimate abnormal performance using acknowledged methods during a time-period that is both longer and more recent than previous studies. Our sample is survivorship-free and consists of 150 mutual equity funds during January 1993 to December 2011. We use a four-factor model to estimate abnormal performance compared to an index and additional risk factors. We find that the average performance is neutral net of costs and that funds outperform with 1.7 percent before costs, the difference is approximately the average management fee. Over time, we find that the average abnormal performance and the share of funds that have significant outperformance have decreased while the share of significant underperformance has increased. Since the study of fund performance started in the 1960's the twin questions has been; does funds outperform the market and is this a result of pure chance or are managers skilled? Since we observe funds with significant positive and negative abnormal performance, we want to know if the results can attributed to luck or skill. We employ the latest technique, a bootstrap simulation, to test for skill or luck. This is the first study to employ the bootstrap to distinguish skill from luck in sample of Swedish funds. By ranking funds on performance after costs, we find that the performance of the majority of funds can be attributed to skill or "bad skill". The evidence is strongest in the top 95th percentile and above, and from the bottom 50th percentile and below.
68

Fast Solvers for Integtral-Equation based Electromagnetic Simulations

Das, Arkaprovo January 2016 (has links) (PDF)
With the rapid increase in available compute power and memory, and bolstered by the advent of efficient formulations and algorithms, the role of 3D full-wave computational methods for accurate modelling of complex electromagnetic (EM) structures has gained in significance. The range of problems includes Radar Cross Section (RCS) computation, analysis and design of antennas and passive microwave circuits, bio-medical non-invasive detection and therapeutics, energy harvesting etc. Further, with the rapid advances in technology trends like System-in-Package (SiP) and System-on-Chip (SoC), the fidelity of chip-to-chip communication and package-board electrical performance parameters like signal integrity (SI), power integrity (PI), electromagnetic interference (EMI) are becoming increasingly critical. Rising pin-counts to satisfy functionality requirements and decreasing layer-counts to maintain cost-effectiveness necessitates 3D full wave electromagnetic solution for accurate system modelling. Method of Moments (MoM) is one such widely used computational technique to solve a 3D electromagnetic problem with full-wave accuracy. Due to lesser number of mesh elements or discretization on the geometry, MoM has an advantage of a smaller matrix size. However, due to Green's Function interactions, the MoM matrix is dense and its solution presents a time and memory challenge. The thesis focuses on formulation and development of novel techniques that aid in fast MoM based electromagnetic solutions. With the recent paradigm shift in computer hardware architectures transitioning from single-core microprocessors to multi-core systems, it is of prime importance to parallelize the serial electromagnetic formulations in order to leverage maximum computational benefits. Therefore, the thesis explores the possibilities to expedite an electromagnetic simulation by scalable parallelization of near-linear complexity algorithms like Fast Multipole Method (FMM) on a multi-core platform. Secondly, with the best of parallelization strategies in place and near-linear complexity algorithms in use, the solution time of a complex EM problem can still be exceedingly large due to over-meshing of the geometry to achieve a desired level of accuracy. Hence, the thesis focuses on judicious placement of mesh elements on the geometry to capture the physics of the problem without compromising on accuracy- a technique called Adaptive Mesh Refinement. This facilitates a reduction in the number of solution variables or degrees of freedom in the system and hence the solution time. For multi-scale structures as encountered in chip-package-board systems, the MoM formulation breaks down for parts of the geometry having dimensions much smaller as compared to the operating wavelength. This phenomenon is popularly known as low-frequency breakdown or low-frequency instability. It results in an ill-conditioned MoM system matrix, and hence higher iteration count to converge when solved using an iterative solver framework. This consequently increases the solution time of simulation. The thesis thus proposes novel formulations to improve the spectral properties of the system matrix for real-world complex conductor and dielectric structures and hence form well-conditioned systems. This reduces the iteration count considerably for convergence and thus results in faster solution. Finally, minor changes in the geometrical design layouts can adversely affect the time-to-market of a commodity or a product. This is because the intermediate design variants, in spite of having similarities between them are treated as separate entities and therefore have to follow the conventional model-mesh-solve workflow for their analysis. This is a missed opportunity especially for design variant problems involving near-identical characteristics when the information from the previous design variant could have been used to expedite the simulation of the present design iteration. A similar problem occurs in the broadband simulation of an electromagnetic structure. The solution at a particular frequency can be expedited manifold if the matrix information from a frequency in its neighbourhood is used, provided the electrical characteristics remain nearly similar. The thesis introduces methods to re-use the subspace or Eigen-space information of a matrix from a previous design or frequency to solve the next incremental problem faster.

Page generated in 0.0241 seconds