Spelling suggestions: "subject:"número""
221 |
Aspectos computacionais da resolução de um modelo em educaçãoESPIRITO SANTO, Adilson Oliveira do 16 December 1983 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2018-04-12T15:52:57Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_AspectosComputacionaisResolucao.pdf: 1591264 bytes, checksum: 656fb0b7bdff90d2db0892c6ecb579d2 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2018-05-04T14:02:30Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_AspectosComputacionaisResolucao.pdf: 1591264 bytes, checksum: 656fb0b7bdff90d2db0892c6ecb579d2 (MD5) / Made available in DSpace on 2018-05-04T14:02:30Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_AspectosComputacionaisResolucao.pdf: 1591264 bytes, checksum: 656fb0b7bdff90d2db0892c6ecb579d2 (MD5)
Previous issue date: 1983-12-16 / Uma constante preocupação, daqueles que de uma forma direta ou indireta atuam no sistema educacional é a distribuição de uma forma satisfatória dos benefícios da educação a todas as camadas da população de um pais, assim como, a qualidade do ensino. Supondo inexistentes restrições orçamentárias, em [1] é apresentada uma formulação matemática de um modelo educacional, que quando resolvido procura dar sugestões de forma quantitativa a muitas questões envolvidas nesse complexo problema. Neste trabalho, apresentamos a descrição do modelo em sua última versão e analisamos a viabilidade computacional de resolver o modelo (sistema) na forma inteira. O capítulo I está dedicado à descrição e formulação matemática do modelo. No capítulo II apresentamos, resumidamente o sistema MINOS e os dados de SANPA (população hipotética) usada para testar a viabilidade computacional do modelo. Finalmente no capítulo III, foi feito um relatório das experiências computacionais realizadas com o modelo, na tentativa de resolvê-lo na forma inteira.
|
222 |
CÁLCULO FINITO: DEMONSTRAÇÕES E APLICAÇÕESKondo, Pedro Kiochi 30 September 2014 (has links)
Made available in DSpace on 2017-07-21T20:56:33Z (GMT). No. of bitstreams: 1
Pedro Kiochi Kondo.pdf: 1227541 bytes, checksum: daffb8a8bc299356bce288603753944c (MD5)
Previous issue date: 2014-09-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work some topics of the Discrete or Finite Calculus are developed. In particular, we study difference operators, factorial powers, Stirling numbers of the first and second type, the Newton’s formula of differences, the fundamental theorem of the Finite Calculus, the summation process, and the Bernoulli numbers and Bernoulli polynomials. Then we show the effectiveness of the theory for the calculation of closed formulas for the value of many finite sums. We also study the classical problem of obtaining the polynomials which express the value of the sums of powers of natural numbers. / Neste trabalho desenvolvemos alguns tópicos do Cálculo Discreto ou Finito. Em particular, estudamos operadores de diferenças, potências fatoriais, números de Stirling do primeiro e do segundo tipo, a fórmula de diferenças de Newton, o teorema fundamental do Cálculo Finito, o processo de somação e os números e polinômios de Bernoulli. Mostramos então a eficácia da teoria no cálculo de fórmulas fechadas para o valor de diversas somas finitas. Também estudamos o problema clássico de obter os polinômios que expressam o valor de somas de potências de números naturais.
|
223 |
Uma engenharia didática para o ensino das operações com números racionais por meio de calculadora para o quinto ano do ensino fundamentalOliveira, Antonio Sergio dos Santos de 18 March 2015 (has links)
Made available in DSpace on 2016-04-27T16:57:36Z (GMT). No. of bitstreams: 1
Antonio Sergio dos Santos Oliveira.pdf: 3420485 bytes, checksum: a83bd8f0798c199d29cbfdc9affea731 (MD5)
Previous issue date: 2015-03-18 / This paper had the objective of making a group of students from the fifth grade to build meaning to the fundamental operatorial rules with fractional numbers by using scientific calculators with fractional representation. With this in mind, we developed a sequence of teaching with four students of a public school located in the suburb of Belém-PA. We based our theories on the Theory of Didactic Situations (TDS) (Teoria das Situações Didáticas-TSD) and the Theory of Record of Semiotic Representation and the Didactic Engineering as methodology. The TDS helped us to elaborate, experiment and analyze the results of the sequence, while the Theory of Record of Semiotic Representation helped us to articulate among the figure and numeric records. In the analysis of the activities, we verified that the students after using the scientific calculator, they managed to verbalize and write rules to the addition and subtraction of fractional numbers with the same denominator to a multiplication of any fractional numbers and to the division of fractional numbers that presented not only the numerators but also the multiple denominators. However, the students managed not only by using the calculator to perceive the rules for the addition and division of any fractional numbers. We understand that the calculator allowed the students to search for relations and dot not treat the fractional numbers only as two natural numbers. We also should probably have related to other didactic resources so that they could have perceived the relations between numerators and denominators for the addition and subtraction operations / O presente trabalho teve por objetivo levar um grupo de estudantes do quinto ano do ensino fundamental a construir significado para as regras operatórias fundamentais com números fracionários a partir da utilização de calculadoras científicas com representação fracionária. Com esse intuito, desenvolvemos uma sequência de ensino com quatro alunos de uma escola pública situada na periferia de Belém/PA e como aporte teórico utilizamos a Teoria das Situações Didáticas (TSD) e a Teoria de Registros de Representação Semiótica, e a Engenharia Didática como metodologia. A TSD nos auxiliou na elaboração, experimentação e análise dos resultados da sequência, enquanto a Teoria de Registros de Representação Semiótica na articulação entre registros numéricos e figurais. Na análise das atividades verificamos que os alunos conseguiram, após a utilização da calculadora, verbalizar e escrever regras para a adição e subtração de números fracionários com mesmo denominador, para a multiplicação de quaisquer números fracionários e para a divisão de números fracionários que apresentavam tanto os numeradores, quanto os denominadores múltiplos. No entanto, não conseguiram, apenas utilizando a calculadora perceber as regras para a adição e divisão de números fracionários quaisquer. Entendemos que a calculadora permitiu que os alunos buscassem relações e não tratassem os números fracionários apenas como dois números naturais, mas faltou, provavelmente, relacioná-la a outros recursos didáticos para que percebessem as relações entre numeradores e denominadores para as operações de adição e subtração
|
224 |
Motivações para o ensino dos números complexos / Motivations for teaching complex numbersMontanha, Jocimar [UNESP] 03 February 2017 (has links)
Submitted by JOCIMAR MONTANHA null (jocimarmontanha@hotmail.com) on 2017-02-17T00:51:02Z
No. of bitstreams: 1
Dissertação_Jocimar_Corrigida.pdf: 4981816 bytes, checksum: 3df5599a820e86618dced98b217c53ec (MD5) / Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-02-21T19:45:29Z (GMT) No. of bitstreams: 1
montanha_j_me_prud.pdf: 4981816 bytes, checksum: 3df5599a820e86618dced98b217c53ec (MD5) / Made available in DSpace on 2017-02-21T19:45:29Z (GMT). No. of bitstreams: 1
montanha_j_me_prud.pdf: 4981816 bytes, checksum: 3df5599a820e86618dced98b217c53ec (MD5)
Previous issue date: 2017-02-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho tem por objetivo principal apresentar uma sugestão de como introduzir e contextualizar os conceitos de números complexos, utilizando como motivações áudios, vídeos e software, além de outras atividades complementares sugeridas. Os áudios tratam dos números complexos através de uma história livremente inspirada no livro O Médico e o Monstro, do escritor escocês Robert Louis Stevenson. Os vídeos mostram uma maneira divertida e curiosa de olhar para os números complexos contando um pouco sobre sua história. O software tem a finalidade de estudar as transformações geométricas no plano (translação, rotação, dilatação e contração), utilizando os conceitos e operações de números complexos, propriedades e características geométricas. Este material faz parte da coleção M3 - Matemática Multimídia da Universidade Estadual de Campinas, e serviu como base para organizarmos o nosso trabalho. Outro software utilizado é o GeoGebra que servirá de suporte para a realização das soluções das demais atividades sugeridas. / This work has as main objective to present a suggestion of how to introduce and contextualize the concepts of complex numbers, using as motivation audios, videos and software, and other complementary activities suggested. Audios deal with complex numbers through a story loosely inspired by the book The Doctor and Monster, the Scottish writer Robert Louis Stevenson. The videos show a fun and funny way to look at the complex numbers telling a little about their history. The software aims to study the geometric transformations in the plane (translation, rotation, expansion and contraction), using the concepts and operations of complex numbers, geometric properties and characteristics. This material is part of the M3 - Multimedia Mathematics collection of the State University of Campinas, and served as a basis for organizing our work. Another software used is GeoGebra that will be used to support the solutions of the other suggested activities.
|
225 |
A quadratura do círculo e a gênese do número (pi)Vendemiatti, Aloísio Daniel 24 April 2009 (has links)
Made available in DSpace on 2016-04-27T16:58:52Z (GMT). No. of bitstreams: 1
Aloisio Daniel Vendeniatti.pdf: 1272014 bytes, checksum: 1262d89ac2880970c73eca396d22ca43 (MD5)
Previous issue date: 2009-04-24 / Secretaria da Educação do Estado de São Paulo / The goal of this essay is to show aspects of genesis of number π, inherent to the question of squaring the circle, which consists in constructing a square which has the same area as a given circle. This problem does not refer to a practical application of mathematics, but to the theoretic question that involves the distinction between a valid approach and thinking accuracy. The first attempt to squaring the circle dates back in the fifth century before Christ. After that, it was established that this construction should be carried through using a finite number of times, also the non-graduated ruler and the drawing compass itself. In the constructions with ruler and drawing compass we are referring to the first three postulates of Euclides Elements: 1) It´s possible to join two points by a straight line, 2) to expand a straight line until the necessary point, and 3) to draw a circumference around any point and with any radius. These postulates are the base of these constructions, sometimes called euclidean´s constructions. A real number α is constructible, if feasible building a segment of legth α with ruler and drawing compass, since a segment is taken as a unity. We show the idea of translating the geometrical problem of constructions made with ruler and drawing compass to the algebraic language and this allowed us to solve the problem of squaring the circle. We exposed that all constructible numbers are algebraic, over the rational numbers, establishing the impossibility of squaring the circle, with Lindemann´s demonstration, in 1882, of the number π transcendence. This problem has been fascinating people for more than twenty centuries. We tried to supply all mathematical tools needed for this demonstration. Demonstrations play a fundamental role in the development of this essay, which purpose is not only to contribute to the math teacher formation, but also to detail the resolution of the problem of squaring the circle / O objetivo deste trabalho é apresentar aspectos da gênese do número π, inerentes à questão da quadratura do círculo, a qual consiste em construir um quadrado de área igual à área de um círculo de raio r dado. Esse problema não diz respeito a uma aplicação prática da matemática, mas sim a uma questão teórica que envolve uma distinção entre uma boa aproximação e a exatidão do pensamento. O registro da primeira tentativa de se quadrar o círculo remonta a Anaxágoras, no século V a.C. Posteriormente, ficou estabelecido que essa construção deveria ser realizada utilizando-se, um número finito de vezes, a régua não graduada e o compasso. Nas construções com régua e compasso, estamos nos referindo aos três primeiros postulados dos Elementos de Euclides: 1) é possível unir dois pontos por uma reta, 2) prolongar uma linha reta até onde seja necessário e 3) traçar uma circunferência em torno de qualquer ponto e com qualquer raio. Esses postulados são a base dessas construções, muitas vezes chamadas de construções euclidianas. Um número real α é construtível, se for possível "construir com régua e compasso um segmento de comprimento igual a α, a partir de um segmento tomado como unidade". Apresentamos a idéia de traduzir o problema geométrico das construções com régua e compasso para a linguagem algébrica, e isso permitiu solucionar o problema da quadratura do círculo. Expomos que todo número construtível é algébrico sobre os racionais, estabelecendo a impossibilidade de quadrar o círculo com a demonstração de Lindemann, em 1882, da transcendência do número π. Vemos que esse problema fascinou estudiosos por mais de 20 séculos. Procuramos fornecer todas as ferramentas matemáticas necessárias para essa demonstração. As demonstrações desempenham um papel fundamental no desenvolvimento deste trabalho, que tem por finalidade não só contribuir para a formação do professor de matemática, mas também detalhar a resolução do problema da quadratura do círculo
|
226 |
Fórmulas explícitas em teoria analítica de números / Explicit formula in analytic theory of numbersCastro, Danilo Elias 10 October 2012 (has links)
Em Teoria Analítica de Números, a expressão \"Fórmula Explícita\" se refere a uma igualdade entre, por um lado, uma soma de alguma função aritmética feita sobre todos os primos e, por outro lado, uma soma envol- vendo os zeros não triviais da função zeta de Riemann. Essa igualdade não é habitual em Teoria Analítica de Números, que trata principalmente de aproximações assintóticas de funções aritméticas e não de fórmulas exatas. A expressão se originou do trabalho seminal de Riemann, de 1859, onde aparece uma expressão exata para a função (x), que conta o número de primos que não excedem x. A prova do Teorema dos Números Primos, de Hadamard, também se baseia numa fórmula explícita de (x) (função de Tschebycheff). Mais recentemente, o trabalho de André Weil reforçou o inte- resse em compreender-se melhor a natureza de tais fórmulas. Neste trabalho, apresentaremos a fórmula explícita de Riemann-von Mangoldt, a de Delsarte e um caso particular da fórmula explícita de Weil. / In the field of Analytic Theory of Numbers, the expression \"Explicit For- mula\" refers to an equality between, on one hand, the sum of some arithmetic function over all primes and, on the other, a sum over the non-trivial zeros of Riemann s zeta function. This equality is not common in the analytic theory of numbers, that deals mainly with asymptotic approximations of arithmetic functions, and not of exact formulas. The expression originated of Riemann s seminal work, of 1859, in which we see an exact expression for the function (x), that counts the number of primes that do not exceed x. The proof of the Prime Number Theorem, by Hadamard, is also based on an explicit formula of (x) (Tschebycheff s function). More recently, the work of André Weil increased the interest in better comprehending the nature of such formulas. In this work, we shall present the Riemann-von Mangoldt formula, Delsarte s explicit formula, and one particular case of Weil s explicit formula.
|
227 |
Números primos, nossos amigos únicos / Prime numbers, our unique friendsMacedo, Carlos Eduardo de Carvalho 14 March 2019 (has links)
Neste trabalho é apresentado um breve levantamento da história dos números primos e de que maneira o assunto acerca desses números aparecem no novo cenário trazido pela BNCC. Provamos o Teorema Fundamental da Aritmética e apresentamos duas ferramentas importantes de cálculo, que são as Congruências e o Pequeno Teorema de Fermat. Apresentamos ainda uma proposta didática e um material diferenciado para ser utilizado em sala de aula. / In the present work is presented a brief data collection about the history of prime numbers and how this subject is shown in the new scenario brought by BNCC (Common Curricular National Base) . It was proved the Fundamental Arithmetic Theorem and it was presented two important ways to calculate that are the Congruence and the Fermet Theorem. It is given a teaching method and a differentiated material to be used in class.
|
228 |
A simulação de variáveis aleatórias e os métodos Monte Carlo e Quase-Monte Carlo na quadratura multidimensionalDornelles Filho, Adalberto Ayjara January 2000 (has links)
Monte Carlo é o nome dado de forma geral às técnicas de resolução de problemas numéricos através do uso intensivo de números aleatórios. No trato computacional, esses números não são, de fato, aleatórios, mas pseudo-aleatórios, pois são gerados por algoritmos determinísticos que, no entanto, “parecem” aleatórios, isto é, são aprovados em testes de aleatoriedade. Variáveis aleatórias com quaisquer distribuições de probabilidade são então simuladas a partir de números pseudo-aleatórios uniformemente distribuídos no intervalo (0;1) através de certas transformações. Entre as diversas aplicações do método Monte Carlo destaca-se a quadratura numérica multidimensional, que consiste essencialmente em estimar o valor médio da função integranda através do valor médio da função em pontos escolhidos de modo aleatório no interior da região de integração. Técnicas especiais de amostragem permitem a redução da variância e, em conseqüência, do erro nos valores estimados. O erro de convergência do método é, no pior caso, de ordem O(n-1/2). No entanto o uso de pontos amostrais quase-aleatórios pode levar a convergência mais rápida de ordem O(n-1). O presente trabalho descreve uma grande quantidade de algoritmos para obtenção de variáveis pseudo-aleatórias e quasealeatórias ; para a transformação de diversas distribuições de probabilidade e para quadratura multidimensional. / Monte Carlo is the name usually given to numerical problems resolution techniques by intensive use of random numbers. In computer procedures, this numbers are not, in fact, random but pseudo-random because they are generated by deterministic algorithms, but “look like” random, that is, they pass on randomness tests. Such random variables with any probability distribution are simulated on pseudo-random numbers with uniform distribution in (0;1) by certain transformations. Among a diversity of Monte Carlo methods applications, a special one is the multidimensional numeric quadrature which consists essentially of estimating tha integrand function mean value by the mean that function at random points in the integration region. Sampling techniques allow a variance reduction and hence an estimated error reduction. The error convergence order is, in the worst case, O(n-1/2). However quasi-random sampling points could bring a faster convergence order of O(n-1). The present work describes a wide quantity of algorithms for producing pseudo-random and quasi-random variables; for transforming a diversity of probability distributions, and for multidimensional quadrature.
|
229 |
Uma contribuição ao ensino de números irracionais e de incomensurabilidade para o ensino médio.SANTOS, Ana Cláudia Guedes dos. 09 November 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-11-09T18:09:57Z
No. of bitstreams: 1
ANA CLÁUDIA GUEDES DOS SANTOS – DISSERTAÇÃO (PPGMat) 2013.pdf: 24981615 bytes, checksum: d442e8df3b32727e30684e3cbd516a9b (MD5) / Made available in DSpace on 2018-11-09T18:09:57Z (GMT). No. of bitstreams: 1
ANA CLÁUDIA GUEDES DOS SANTOS – DISSERTAÇÃO (PPGMat) 2013.pdf: 24981615 bytes, checksum: d442e8df3b32727e30684e3cbd516a9b (MD5)
Previous issue date: 2013-08 / Capes / Este trabalho tem como proposta pedagógica apresentar aos alunos o conceito de segmentos comensuráveis e de segmentos incomensuráveis, mostrando a importância desses conceitos para o estudo dos números racionais e irracionais. Veremos um processo de verificação da comensurabilidade de dois segmentos, doravante P.V.C.D.S, que é um processo geométrico de verificação de comensurabilidade de dois segmentos. A partir do P.V.C.D.S, apresentamos a demonstração clássica de que p2 é irracional, com uma abordagem geométrica, mostrando que o segmento do lado de um quadrado de medida 1 e o segmento de sua diagonal são incomensuráveis. Ainda apresentamos um estudo sobre expressões decimais, no qual será apresentado um teorema que nos permite verificar se uma fração irredutível possui representação decimal finita ou infinita e periódica. Também apresentamos outro teorema que nos permite transformar expressões decimais finitas e infinitas e periódicas na sua forma de fração. Por fim, apresentaremos algumas sugestões de atividades, que englobam todo conteúdo do presente TCC. Essas atividades foram aplicadas a uma turma de 1 ano do Ensino Médio de uma escola pública, e as respostas dos alunos estão anexadas ao trabalho. / This work have pedagogical proposed to introduce the concept of commensurable segments and incommensurable segments, showing the importance of these concepts for the study of rational and irrational numbers. We will stabelish a verification process to detect the mensurability of two segments, which is a geometric process. We present the classic demonstration that root of 2 is irrational with a geometric approach, showing that the segment of the side of a square measuring its diagonal are immeasurable. We still will present a study on decimal expressions, and prove a theorem that allows to check that an irreducible fraction has decimal representation finite or infinite and periodic. We also present another theorem that allows us to turn decimal expressions finite or infinite and periodic on its fraction form. Finally we present some suggestions for activities that include all content of the TCC. These activities have been applied to a class of 1st year of high school at a public school, and the students’ answers are attached to the work.
|
230 |
O estudo dos números complexos no ensino médio: uma abordagem com a utilização do GeogebraAmorim, Tânia Mara 19 December 2014 (has links)
Made available in DSpace on 2016-06-02T20:02:58Z (GMT). No. of bitstreams: 1
6514.pdf: 4306078 bytes, checksum: 049474ab016a0a90e3ef1b9a2412ff69 (MD5)
Previous issue date: 2014-12-19 / This work aimed to facilitate the study of the content of complex numbers for students in the 3rd year of High School, within a focus covering a geometric context, with the use of Geogebra software, combined with notebook student (SÃO PAULO, 2014). The main motivation of this study was to search for an innovative practice, aiming to improve the quality of the teaching-learning process, in relation to the content, since the numerous difficulties demonstrated by students. The theoretical research was based mainly on the theory of representation semiotics registers of Raymond Duval and analysis of curriculum documents for Middle School. Already the methodology was built based on the steps of the Didactics Engineering idealized by Michele Artigue. The production of information involved mathematical activities performed by 31 students of Higher Education of a Civil Engineering course and between 10 to 12 students (there was variation) of a 3rd year of High School; providing the basis for answering the following research issues: I What knowledge about complex numbers, students of Higher Education bring the baggage of high School? II - That prospect of construction of knowledge the notebook of the Student gives the learning of complex numbers? III - The Geogebra can add the construction of knowledge when articulated to the notebook of the Student, made available by the Department of the São Paulo State of Education? The instruments used to collect the amount of information produced by participants, in empirical step of our research were: questionnaire, written records of tasks (protocols) and images of mathematical activities carried out with the help of Geogebra. The results obtained in the analysis of the questionnaires showed that the knowledge of the students in higher education, as well as the students in the middle school, are negligible in relation to the need of those who follow their studies in the field of exact area. With respect to the results obtained from the implementation of tasks for high school students, using the software proved to be efficient for a geometrized viewing the content in relation to construction of its concepts, which allowed students a much better understanding across the studied content. / Este trabalho teve como objetivo viabilizar o estudo do conteúdo de números complexos para alunos do 3° ano do Ensino Médio, dentro de um enfoque abrangendo uma contextualização geométrica com a utilização do software Geogebra, combinado com o caderno do aluno (SÃO PAULO, 2014). Observa-se no entanto que este trabalho não se trata de uma sequência didática. A motivação principal deste estudo foi a busca por uma prática inovadora, visando melhorar a qualidade do processo ensinoaprendizagem, em relação a esse conteúdo, frente as inúmeras dificuldades demonstradas pelos estudantes. O percurso teórico da pesquisa fundamentou-se principalmente na teoria dos registros de representação semiótica de Raymond Duval e análise de documentos curriculares para o Ensino Médio. Já o percurso metodológico foi construído com base nas etapas da Engenharia Didática idealizada por Michèle Artigue. A produção de informações envolveu atividades matemáticas realizadas por 31 estudantes de Ensino Superior de um curso de Engenharia Civil e entre 10 a 12 alunos (houve variação) de uma 3ª série do Ensino Médio; servindo de base para responder as seguintes questões de investigação: I - Que saberes sobre números complexos, alunos do Ensino Superior trazem como bagagem do Ensino Médio? II - Que perspectiva de construção de saberes o Caderno do aluno e do professor proporciona ao aprendizado de números complexos? III - O Geogebra pode agregar a construção de saberes quando articulado ao Caderno do aluno, disponibilizado pela Secretaria da Educação do Estado de São Paulo? Os instrumentos utilizados para reunir o montante de informações produzidas pelos sujeitos participantes, na etapa empírica da nossa investigação foram: questionário, registros escritos das tarefas (protocolos) e imagens das atividades matemáticas realizadas com o auxílio do Geogebra. Os resultados obtidos na análise dos questionários apontaram que os conhecimentos dos alunos do ensino superior, bem como dos alunos do ensino médio, são ínfimos em relação a necessidade daqueles que seguirão seus estudos, no campo das exatas. No que diz respeito aos resultados obtidos a partir da aplicação das tarefas para os alunos do Ensino Médio, a utilização do software revelou-se eficiente para uma visualização geometrizada do conteúdo em relação a construção de seus conceitos, o que permitiu aos estudantes uma compreensão muito maior frente ao conteúdo estudado.
|
Page generated in 0.0522 seconds