Spelling suggestions: "subject:"número""
231 |
Noções básicas de infinito e números cardinaisLeão, Alessandro Mignac Carneiro 27 February 2014 (has links)
Submitted by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-26T14:55:10Z
No. of bitstreams: 1
arquivototal.pdf: 1060992 bytes, checksum: 69f9bccb074f43cce04d083271639cd5 (MD5) / Approved for entry into archive by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-27T11:21:46Z (GMT) No. of bitstreams: 1
arquivototal.pdf: 1060992 bytes, checksum: 69f9bccb074f43cce04d083271639cd5 (MD5) / Made available in DSpace on 2015-11-27T11:21:46Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1060992 bytes, checksum: 69f9bccb074f43cce04d083271639cd5 (MD5)
Previous issue date: 2014-02-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we show basic results about the so-called trans nite numbers and their
cardinal arithmetic. For these purpose, we also show some results involving the set
theory, as well as equinumerosity, nite sets, in nite sets, countable sets and uncountable
sets. / Neste trabalho, mostramos um pouco a teoria sobre os chamados números trans finitos e sua aritmética cardinal. Para tanto, trabalhamos também alguns resultados
envolvendo conjuntos, bem como equipotência, conjuntos fi nitos, infi nitos, conjuntos
enumeráveis e não-enumeráveis.
|
232 |
A simulação de variáveis aleatórias e os métodos Monte Carlo e Quase-Monte Carlo na quadratura multidimensionalDornelles Filho, Adalberto Ayjara January 2000 (has links)
Monte Carlo é o nome dado de forma geral às técnicas de resolução de problemas numéricos através do uso intensivo de números aleatórios. No trato computacional, esses números não são, de fato, aleatórios, mas pseudo-aleatórios, pois são gerados por algoritmos determinísticos que, no entanto, “parecem” aleatórios, isto é, são aprovados em testes de aleatoriedade. Variáveis aleatórias com quaisquer distribuições de probabilidade são então simuladas a partir de números pseudo-aleatórios uniformemente distribuídos no intervalo (0;1) através de certas transformações. Entre as diversas aplicações do método Monte Carlo destaca-se a quadratura numérica multidimensional, que consiste essencialmente em estimar o valor médio da função integranda através do valor médio da função em pontos escolhidos de modo aleatório no interior da região de integração. Técnicas especiais de amostragem permitem a redução da variância e, em conseqüência, do erro nos valores estimados. O erro de convergência do método é, no pior caso, de ordem O(n-1/2). No entanto o uso de pontos amostrais quase-aleatórios pode levar a convergência mais rápida de ordem O(n-1). O presente trabalho descreve uma grande quantidade de algoritmos para obtenção de variáveis pseudo-aleatórias e quasealeatórias ; para a transformação de diversas distribuições de probabilidade e para quadratura multidimensional. / Monte Carlo is the name usually given to numerical problems resolution techniques by intensive use of random numbers. In computer procedures, this numbers are not, in fact, random but pseudo-random because they are generated by deterministic algorithms, but “look like” random, that is, they pass on randomness tests. Such random variables with any probability distribution are simulated on pseudo-random numbers with uniform distribution in (0;1) by certain transformations. Among a diversity of Monte Carlo methods applications, a special one is the multidimensional numeric quadrature which consists essentially of estimating tha integrand function mean value by the mean that function at random points in the integration region. Sampling techniques allow a variance reduction and hence an estimated error reduction. The error convergence order is, in the worst case, O(n-1/2). However quasi-random sampling points could bring a faster convergence order of O(n-1). The present work describes a wide quantity of algorithms for producing pseudo-random and quasi-random variables; for transforming a diversity of probability distributions, and for multidimensional quadrature.
|
233 |
A simulação de variáveis aleatórias e os métodos Monte Carlo e Quase-Monte Carlo na quadratura multidimensionalDornelles Filho, Adalberto Ayjara January 2000 (has links)
Monte Carlo é o nome dado de forma geral às técnicas de resolução de problemas numéricos através do uso intensivo de números aleatórios. No trato computacional, esses números não são, de fato, aleatórios, mas pseudo-aleatórios, pois são gerados por algoritmos determinísticos que, no entanto, “parecem” aleatórios, isto é, são aprovados em testes de aleatoriedade. Variáveis aleatórias com quaisquer distribuições de probabilidade são então simuladas a partir de números pseudo-aleatórios uniformemente distribuídos no intervalo (0;1) através de certas transformações. Entre as diversas aplicações do método Monte Carlo destaca-se a quadratura numérica multidimensional, que consiste essencialmente em estimar o valor médio da função integranda através do valor médio da função em pontos escolhidos de modo aleatório no interior da região de integração. Técnicas especiais de amostragem permitem a redução da variância e, em conseqüência, do erro nos valores estimados. O erro de convergência do método é, no pior caso, de ordem O(n-1/2). No entanto o uso de pontos amostrais quase-aleatórios pode levar a convergência mais rápida de ordem O(n-1). O presente trabalho descreve uma grande quantidade de algoritmos para obtenção de variáveis pseudo-aleatórias e quasealeatórias ; para a transformação de diversas distribuições de probabilidade e para quadratura multidimensional. / Monte Carlo is the name usually given to numerical problems resolution techniques by intensive use of random numbers. In computer procedures, this numbers are not, in fact, random but pseudo-random because they are generated by deterministic algorithms, but “look like” random, that is, they pass on randomness tests. Such random variables with any probability distribution are simulated on pseudo-random numbers with uniform distribution in (0;1) by certain transformations. Among a diversity of Monte Carlo methods applications, a special one is the multidimensional numeric quadrature which consists essentially of estimating tha integrand function mean value by the mean that function at random points in the integration region. Sampling techniques allow a variance reduction and hence an estimated error reduction. The error convergence order is, in the worst case, O(n-1/2). However quasi-random sampling points could bring a faster convergence order of O(n-1). The present work describes a wide quantity of algorithms for producing pseudo-random and quasi-random variables; for transforming a diversity of probability distributions, and for multidimensional quadrature.
|
234 |
Demonstrações bijetivas em partições / Bijectives demonstrations in partitionsMucelin, Cláudio 17 August 2018 (has links)
Orientador: Andréia Cristina Ribeiro / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-17T16:44:00Z (GMT). No. of bitstreams: 1
Mucelin_Claudio_M.pdf: 744549 bytes, checksum: 062211ac0a3abf9bcf171fe9881dcafa (MD5)
Previous issue date: 2011 / Resumo: Este trabalho apresenta alguns resultados sobre partições de números inteiros e a importância deles na história da Matemática e da Teoria dos Números. Encontrar demonstrações bijetivas em partições não é nada fácil. Mas, depois de encontradas, tornam-se uma maneira agradável e fácil de entender e provar algumas Identidades de Partições. Este trabalho pretende ser didático e de fácil entendimento para futuras pesquisas de estudantes que se interessem pelo assunto. Ele traz definições básicas e importantes sobre partições, os Gráficos de Ferrers, demonstrações de resultados interessantes como a Bijeção de Bressoud e o Teorema Pentagonal de Euler. Destaca também a importância das funções geradoras e alguns resultados devidos a Sylvester, Dyson, Fine, Schur e Rogers-Ramanujan / Abstract: This work presents some results about partitions of integers numbers and their importance in the history of Mathematics and in the Theory of the Numbers. To find bijective demonstrations in partitions it is not easy. But, after finding them, to understand and to prove some Identities of Partitions becomes agreeable and easy. This work intends to be didatic and of easy understanding for future researches made by students interested in this subject. It contains basic and important definitions about partitions, the Ferrers' Graphics, demonstrations of interesting results as the Bressond's Bijection and the Euler's Pentagonal Theorem. It also details the importance of the generating functions and some results due to Sylvester, Dyson, Fine, Schur and Rogers-Ramanujan / Mestrado / Teoria dos Numeros / Mestre em Matemática
|
235 |
Um estudo sobre construções dos Números Reais / A study on construction of the Real NumbersQueiroz, Fabiana Moura de 06 March 2015 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2015-05-19T18:16:57Z
No. of bitstreams: 2
Dissertação - Fabiana Moura de Queiroz - 2015.pdf: 3272912 bytes, checksum: bb75fba8c8a71a93692d37b8aa3ba9c2 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-05-19T18:18:56Z (GMT) No. of bitstreams: 2
Dissertação - Fabiana Moura de Queiroz - 2015.pdf: 3272912 bytes, checksum: bb75fba8c8a71a93692d37b8aa3ba9c2 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-05-19T18:18:56Z (GMT). No. of bitstreams: 2
Dissertação - Fabiana Moura de Queiroz - 2015.pdf: 3272912 bytes, checksum: bb75fba8c8a71a93692d37b8aa3ba9c2 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-03-06 / The main objective of this paper is to present the subtle passage of rational numbers to the
real numbers, using a construction via Dedekind cuts and other by Cauchy sequences .We
present a construction of rational numbers by equivalence classes, so that the reader has a
foundation that serves as a support for a good understanding of proposed constructions of
real numbers . We use the axiomatic method for buildings that are made on real numbers,
in order to show the existence of an orderly and complete field and characterize it. It
is also discussed, and a more synthesized form, the real numbers and its application to
elementary and high school students. / O objetivo central deste trabalho é apresentar a sutil passagem dos números racionais aos
números reais, utilizando uma construção via Cortes de Dedekind e outra por sequências
de Cauchy. Apresenta-se uma construção dos números racionais por classes de equivalência,
para que o leitor tenha um alicerce que sirva de apoio para um bom entendimento das
construções propostas dos números reais. Utiliza-se o método axiomático para as construções
que são feitas sobre números reais, com o intuito de mostrar a existência de um corpo
ordenado e completo e caracterizá-lo. Discute-se ainda, e de uma forma mais sintetizada,
os números reais e a sua aplicação com alunos de ensino fundamental e médio.
|
236 |
O corpo dos números complexos e uma proposta de abordagem no ensino médio / The complexes numbers field and a proposition approach in high schoolSouza Filho, Carlos Silveira de 13 June 2019 (has links)
Nesta dissertação abordamos o conjunto dos números complexos, apresentando sua forma algébrica e geométrica, demonstrando que se trata de um conjunto com estrutura algébrica de corpo. Apresentamos também as características de rotação e homotetia da operação de multiplicação, a contextualização histórica e finalizamos com uma proposta de abordagem para o ensino médio. Vemos também a impossibilidade de realizar rotação em três dimensões culminando com a criação dos quatérnios. / In this masters thesis we discuss the complex numbers set, showing its algebraic and geometric forms, demonstrating which it is a set with algebraic structure of field. We also presente the rotation characteristics and homothety of multiplication operation, the historical contextualization and we finalized with an approach proposal for the high school. We also see the impossibility of performing the rotation in three dimensions resulting the generation of quaternions.
|
237 |
Transformação de frações em números: uma experiência no Ensino Fundamental / The transformation of fractions into numbers: an experience in Basic EducationAnanias, Izabela Cesario Correa 27 February 2019 (has links)
Este estudo se insere na problemática do ensino e aprendizagem de frações no Ensino Fundamental e, mais particularmente, no que se refere à apreensão das frações como números pelos alunos. Essa concepção da fração como número é descrita na literatura da área de Educação Matemática como problemática para os alunos, pois, em geral, concebem a representação a/b (com a e b naturais e b não nulo) apenas como um duplo processo de contagem no modelo parte-todo. Decidiu-se, portanto, investigar o impacto de algumas abordagens que ampliassem a referida concepção de fração como parte de inteiro. Para tanto, tomou-se como base algumas pesquisas que destacam diferentes ideias e situações para conceituar frações, bem como a Teoria dos Registros de Representação Semiótica de Raymond Duval, devido à importância de se abordar as frações em seus vários significados, por meio de diferentes representações. Realizou-se um estudo experimental de caráter qualitativo, inspirado na metodologia de Design Experiment, envolvendo 24 alunos do 6º ano do Ensino Fundamental de uma escola em Goiânia. A elaboração das atividades fundamentou-se nos constructos teóricos do levantamento bibliográfico, bem como em um questionário inicial que permitiu identificar as principais dificuldades do grupo de alunos. As hipóteses consideradas no design foram: ênfase em atividades de conversão de representações entre os registros numérico ou figural e o gráfico (reta numérica), em ambos os sentidos; e foco na ideia da fração como representação do resultado de uma divisão de dois números naturais. Foram realizadas quatro atividades, com diversas tarefas em cada uma delas, ao longo de nove encontros no âmbito das aulas regulares de Matemática. As propostas transitaram entre trabalhos em grupo e individuais, envolvendo recursos tradicionais e materiais concretos, sendo que a coleta de dados deu-se essencialmente a partir das observações da pesquisadora e dos registros orais e escritos das produções dos alunos. Na atividade principal, foi introduzido um recurso para realizar a divisão de segmentos em partes congruentes, visando dar condição para os alunos representarem frações não decimais em retas numéricas, sem realizar a conversão para a representação decimal e/ou efetuar aproximações imprecisas. As análises mostraram que houve, em geral, um amadurecimento dos estudantes em relação às ideias apresentadas, aproximando-os da concepção de fração como número uma vez que explicitaram compreensão de aspectos de equivalência e ordem ao posicionar frações em retas numéricas e perceberam que tais frações correspondiam a resultados de divisões entre dois números naturais, isto é, a quocientes vistos como quantidades. / This study concerns the issue of teaching and learning fractions in Basic Education and, more particularly, regards the students apprehension of fractions as numbers. The notion of fractions as numbers is described in Mathematics Education literature as problematic for students, since, generally, they understand the representation a/b (where a and b are natural numbers and b is different than zero) only as a double counting process in the part-whole model. Therefore, we decided to investigate the impact of some approaches that broadened the notion of fraction as part of a whole. In order to achieve that, we used as a basis research that highlights different ideas and situations to conceptualize fractions, as well as Raymond Duvals Theory of Registers of Semiotic Representation, due to the importance of approaching fractions in their diverse meanings, through different representations. We carried out an experimental study of qualitative character, inspired by the Design Experiment methodology, with 24 students in the 6th grade from a school in Goiânia. The activities were written based on the theoretical constructs analyzed in the bibliographic search, as well as based on an initial questionnaire that allowed us to identify the main difficulties that the student group had. The hypotheses considered in the design were: emphasis on activities concerning representation conversion between numerical or figural registers and graphical (number line) in both directions; and focus on the idea of fraction as the representation of a division of two natural numbers. Four activities were carried out, with several tasks in each one, along nine meetings in the context of regular Math classes. The activities varied between group and individual tasks, involving traditional resources and concrete materials, with the data collection taking place essentially through the researchers observations and oral and written records of the students productions. In the main activity, we introduced a resource to facilitate the division of segments into congruent parts, aiming to help the students depict non-decimal fractions in number lines without converting them into the decimal register and/or using inaccurate approximations. The analysis shows that, generally, there was an improvement in the students concerning the ideas presented in the activities, bringing them closer to the concept of fractions as numbers, as they demonstrated understanding aspects of equivalence and order by placing fractions in number lines and realized that these fractions corresponded to the results of divisions of two natural numbers, that is, quotients perceived as quantities.
|
238 |
Um estudo sobre três problemas clássicos da geometria euclidiana / A study of three classic problems of euclidean geometryGusmai, Rafael Martins 04 April 2016 (has links)
Este trabalho aborda os três problemas clássicos de geometria da Grécia antiga trazendo as principais histórias e conceitos necessários para compreensão dos mesmos. Construções geométricas com régua não graduada e compasso, números construtivos, corpos, números complexos e polinômios são alguns dos assuntos que antecedem o tratamento dos problemas. As construções são exibidas usando as relações existentes nas operações aritméticas, dá opções de como se representar geometricamente as quatro operações básicas e a extração de raízes quadradas, mostrando que todo problema modelado nessas condições pode ser solucionado através dos instrumentos euclidianos. Essa exibição vem ao encontro dos números construtivos, trazendo à tona quais os principais pensamentos sobre construções com régua e compasso, deixando claro a definição de construções geométricas para os gregos. São apresentados também propriedades da álgebra abstrata envolvendo conjuntos numéricos que possuem características de corpo, dentre eles os números complexos. Além disso, tratamos dos polinômios, os quais são fundamentais nas demonstração das impossibilidades clássicas. Por fim, esta pesquisa deixará claro a integração de todos os conteúdos citados acima e de que forma toda teoria pode ser organizada na realização das demonstrações da impossibilidade da duplicação do cubo, trissecção do ângulo e quadratura do círculo, frizando a mobilização dos matemáticos ao longo da história para tentar explicar tais problemas, acarretando um alto desenvolvimento da Matemática. / This work addresses the three classic problems ancient Greek geometry bringing the main stories and concepts needed to understand them. Geometric constructions with non-graded ruler and compass, building numbers, bodies, complex numbers and polynomials are some of the issues that precede the statements of problems. The buildings are displayed using the relationships in arithmetic operations, the options of how to represent geometrically the four basic operations and extraction of square roots, shows that every problem can be modeled in such conditions solucionas through Euclidean tools. This view comes against constructive rising numbers which the main thoughts of constructions with ruler and compass, making clear the definition of geometric constructions for the Greeks. It also present properties of abstract algebra involving numerical sets that have body characteristics, including complex numbers, also explains the importance of polynomials in the statement of classical impossibilities building the definition of degree of extension. Finally this research will clarify the integration of all the contents mentioned above and how every theory can be organized in the realization of doubling the cube demonstrations, angle trisection and squaring the circle, plus the mobilization of mathematicians throughout history for trying to explain such problems causing a high development of mathematics
|
239 |
Reuso de números aleatórios na simulação de Monte Carlo para apreçamento de uma carteira de derivativos exóticos / Reuse of random numbers in Monte Carlo simulation for pricing a portfolio of exotic derivativesAquino, Igor Oliveira 30 October 2017 (has links)
Derivativos exóticos são produtos com estrutura complexa e personalizada cujo apreçamento pode requerer o uso de simulações de Monte Carlo. Todavia, essas simulações têm alto custo computacional, o que torna lento o apreçamento de uma carteira com vários derivativos. Para mitigar esse problema, propõe-se o reuso de números aleatórios entre diferentes operações de uma mesma carteira apreçada através do método de Monte Carlo. Realiza-se o apreçamento de cinco carteiras de derivativos exóticos com duas implementações da simulação de Monte Carlo, uma sem e outra com reuso de números aleatórios. Observa-se que, quanto mais operações há na carteira, maior é a vantagem de performance da estratégia com reuso em relação à outra abordagem de implementação. O erro quadrático médio do preço dos derivativos obtidos através das simulações em relação ao preço teórico esperado mantém-se o mesmo em ambas as implementações. Portanto, é possível sugerir que o algoritmo com reuso de número aleatórios apresenta uma maneira de melhorar a performance do método de Monte Carlo sem aumentar o erro da simulação. / Exotic derivatives are products with complex and customized structure whose pricing may require the use of Monte Carlo simulation. However, this kind of simulation has high computational cost, which slows the pricing of a portfolio containing several derivatives. In order to mitigate this problem, it is proposed the reuse of random numbers across different trades in the same portfolio priced using the Monte Carlo method. Five portfolios of exotic derivatives are priced using two implementations of Monte Carlo simulation, with and without reuse of random numbers. It is observed that the more trades are in the portfolio, the better is the performance of the reuse approach compared to the regular implementation. The mean squared error of simulation prices compared to the theoretical value remain the same in both implementations. Therefore, it is possible to suggest that the algorithm which reuses random numbers presents a way to improve Monte Carlo method performance with no increment of simulation error.
|
240 |
Métodos de contagem / Counting methodsTrovão, Marcelo Henrique 07 April 2015 (has links)
Neste trabalho, estudamos alguns números e procedimentos que facilitam na solução de problemas no campo da contagem, sendo esses: O Princípio da Inclusão e Exclusão, Triângulo de Pascal, Binômios de Newton, números binomiais e multinomiais, números de funções, permutações, grafos, números de Stirling, lemas de Kaplansky e sequência de Fibonacci. / We studied some numbers and procedures that facilitate the solution of problems in the field of counting, these being: The Principle of Inclusion and Exclusion, Pascal\'s Triangle, Newton binomial, binomial and multinomial numbers, numbers of functions, permutations, graphs, Stirling numbers, slogans Kaplansky and the Fibonacci sequence.
|
Page generated in 0.0371 seconds