71 |
Crystal structure of ruthenocenecarbonitrileStrehler, Frank, Korb, Marcus, Lang, Heinrich 07 May 2015 (has links) (PDF)
The molecular structure of ruthenocenecarbonitrile, [Ru([eta]5-C5H4C[triple bond]N)([eta]5-C5H5)], exhibits point group symmetry m, with the mirror plane bisecting the molecule through the C[triple bond]N substituent. The RuII atom is slightly shifted from the [eta]5-C5H4 centroid towards the C[triple bond]N substituent. In the crystal, molecules are arranged in columns parallel to [100]. One-dimensional intermolecular [pi]-[pi] interactions [3.363 (3) Å] between the C[triple bond]N carbon atom and one carbon of the cyclopentadienyl ring of the overlaying molecule are present.
|
72 |
The Impact of Attention on Judgments of Frequency and DurationWinkler, Isabell, Glauer, Madlen, Betsch, Tilmann, Sedlmeier, Peter 03 June 2015 (has links) (PDF)
Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants\' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested.
|
73 |
Single pairing spike-timing dependent plasticity in BiFeO3 memristors with a time window of 25ms to 125µsDu, Nan, Kiani, Mahdi, Mayr, Christian G., You, Tiangui, Bürger, Danilo, Skorupa, Ilona, Schmidt, Oliver G., Schmidt, Heidemarie 18 June 2015 (has links) (PDF)
Memristive devices are popular among neuromorphic engineers for their ability to emulate forms of spike-driven synaptic plasticity by applying specific voltage and current waveforms at their two terminals. In this paper, we investigate spike-timing dependent plasticity (STDP) with a single pairing of one presynaptic voltage spike and one postsynaptic voltage spike in a BiFeO3 memristive device. In most memristive materials the learning window is primarily a function of the material characteristics and not of the applied waveform. In contrast, we show that the analog resistive switching of the developed artificial synapses allows to adjust the learning time constant of the STDP function from 25ms to 125μs via the duration of applied voltage spikes. Also, as the induced weight change may degrade, we investigate the remanence of the resistance change for several hours after analog resistive switching, thus emulating the processes expected in biological synapses. As the power consumption is a major constraint in neuromorphic circuits, we show methods to reduce the consumed energy per setting pulse to only 4.5 pJ in the developed artificial synapses.
|
74 |
Development of Effective Textile-Reinforced Concrete Noise BarrierFunke, Henrik L., Gelbrich, Sandra, Kroll, Lothar 22 July 2015 (has links) (PDF)
Thin-walled, high-strength concrete elements exhibiting low system weight and great slenderness can be created with a large degree of lightweight structure using the textile-reinforced, load-bearing concrete (TRC) slab and a shell with a very high level of sound absorption. This was developed with the objective of lowering system weight, and then implemented operationally in construction.
Arising from the specifications placed on the load-bearing concrete slab, the following took place: an adapted fine-grain concrete matrix was assembled, a carbon warp-knit fabric was modified and integrated into the fine concrete matrix, a formwork system at prototype scale was designed enabling noise barriers to be produced with an application-oriented approach and examined in practically investigations within the context of the project. This meant that a substantial lowering of the load-bearing concrete slab’s system weight was possible, which led to a decrease in transport and assembly costs.
|
75 |
The sounds of safety: stress and danger in music perceptionSchäfer, Thomas, Huron, David, Shanahan, Daniel, Sedlmeier, Peter 27 August 2015 (has links) (PDF)
As with any sensory input, music might be expected to incorporate the processing of information about the safety of the environment. Little research has been done on how such processing has evolved and how different kinds of sounds may affect the experience of certain environments. In this article, we investigate if music, as a form of auditory information, can trigger the experience of safety. We hypothesized that (1) there should be an optimal, subjectively preferred degree of information density of musical sounds, at which safety-related information can be processed optimally; (2) any deviation from the optimum, that is, both higher and lower levels of information density, should elicit experiences of higher stress and danger; and (3) in general, sonic scenarios with music should reduce experiences of stress and danger more than other scenarios. In Experiment 1, the information density of short music-like rhythmic stimuli was manipulated via their tempo. In an initial session, listeners adjusted the tempo of the stimuli to what they deemed an appropriate tempo. In an ensuing session, the same listeners judged their experienced stress and danger in response to the same stimuli, as well as stimuli exhibiting tempo variants. Results are consistent with the existence of an optimum information density for a given rhythm; the preferred tempo decreased for increasingly complex rhythms. The hypothesis that any deviation from the optimum would lead to experiences of higher stress and danger was only partly fit by the data. In Experiment 2, listeners should indicate their experience of stress and danger in response to different sonic scenarios: music, natural sounds, and silence. As expected, the music scenarios were associated with lowest stress and danger whereas both natural sounds and silence resulted in higher stress and danger. Overall, the results largely fit the hypothesis that music seemingly carries safety-related information about the environment.
|
76 |
A Conceptual Model of the Revised CAI-NPD-Systems MaturityHüsig, Stefan 11 November 2015 (has links) (PDF)
This article aims to turn the attention of researchers and practitioners in the innovation and engineering management field towards a more fine grained view on the influence of Information Technologies (IT) and New Product Development (NPD) capabilities on innovation outcomes in different stages of maturity. Computer Aided Innovation (CAI), as a specific but often overlooked category of IT-tools for innovation activities, is introduced as having the potential to positively influence the innovation supporting capabilities. Based on current and emerging developments in the fields of CAI and NPD, a revised version of the conceptual model of the CAI-NPD-systems maturity framework is proposed.
|
77 |
Aspects of Dynamic Balance Responses: Inter- and Intra-Day ReliabilitySchmidt, Daniel, De Castro Germano, Andresa Mara, Milani, Thomas Lothar 13 November 2015 (has links) (PDF)
The Posturomed device is used as a scientific tool to quantify human dynamic balance ability due to unexpected perturbations, and as a training device. Consequently, the question arises whether such measurements are compromised by learning effects. Therefore, this study aimed to analyze inter- and intra-day reliability of dynamic balance responses using the Posturomed. Thirty healthy young subjects participated (24.3±3.2 years). The Posturomed was equipped with a triggering mechanism to enable unexpected, horizontal platform perturbations. A force platform was used to quantify Center of Pressure (COP) excursions for two time intervals: interval 1 (0–70 ms post perturbation) and interval 2 (71–260 ms post perturbation). Dynamic balance tests were performed in single leg stances in medio-lateral and anterior-posterior perturbation directions. Inter- and intra-day reliability were assessed descriptively using Bland-Altman plots and inferentially using tests for systematic error and intra-class-correlations. With regard to the mean COP excursions for every subject and all intervals, some cases revealed significant differences between measurement sessions, however, none were considered relevant. Furthermore, intra class correlation coefficients reflected high magnitudes, which leads to the assumption of good relative reliability. However, analyzing inter- and intra-day reliability using Bland-Altman plots revealed one exception: intra-day comparisons for the anterior-posterior direction in interval 2, which points towards possible learning effects. In summary, results reflected good overall reliability with the exception of certain intra-day comparisons in the anterior-posterior perturbation direction, which could indicate learning effects in those particular conditions.
|
78 |
The Goals and Effects of Music Listening and Their Relationship to the Strength of Music PreferenceSchäfer, Thomas 18 April 2016 (has links) (PDF)
Individual differences in the strength of music preference are among the most intricate psychological phenomena. While one person gets by very well without music, another person needs to listen to music every day and spends a lot of temporal and financial resources on listening to music, attending concerts, or buying concert tickets. Where do these differences come from? The hypothesis presented in this article is that the strength of music preference is mainly informed by the functions that music fulfills in people’s lives (e.g., to regulate emotions, moods, or physiological arousal; to promote self-awareness; to foster social relatedness). Data were collected with a diary study, in which 121 respondents documented the goals they tried to attain and the effects that actually occurred for up to 5 music-listening episodes per day for 10 successive days. As expected, listeners reporting more intense experience of the functional use of music in the past (1) had a stronger intention to listen to music to attain specific goals in specific situations and (2) showed a larger overall strength of music preference. It is concluded that the functional effectiveness of music listening should be incorporated in existing models and frameworks of music preference to produce better predictions of interindividual differences in the strength of music preference. The predictability of musical style/genre preferences is also discussed with regard to the present results.
|
79 |
Survey of Expert Opinion on Intelligence: Causes of International Differences in Cognitive Ability TestsRindermann, Heiner, Becker, David, Coyle, Thomas R. 26 August 2016 (has links) (PDF)
Following Snyderman and Rothman (1987, 1988), we surveyed expert opinions on the current state of intelligence research. This report examines expert opinions on causes of international differences in student assessment and psychometric IQ test results. Experts were surveyed about the importance of culture, genes, education (quantity and quality), wealth, health, geography, climate, politics, modernization, sampling error, test knowledge, discrimination, test bias, and migration. The importance of these factors was evaluated for diverse countries, regions, and groups including Finland, East Asia, sub-Saharan Africa, Southern Europe, the Arabian-Muslim world, Latin America, Israel, Jews in the West, Roma (gypsies), and Muslim immigrants. Education was rated by N = 71 experts as the most important cause of international ability differences. Genes were rated as the second most relevant factor but also had the highest variability in ratings. Culture, health, wealth, modernization, and politics were the next most important factors, whereas other factors such as geography, climate, test bias, and sampling error were less important. The paper concludes with a discussion of limitations of the survey (e.g., response rates and validity of expert opinions).
|
80 |
Effects of hypothermically reduced plantar skin inputs on anticipatory and compensatory balance responsesGermano, Andresa M. de Castro, Schmidt, Daniel, Milani, Thomas L. 30 August 2016 (has links) (PDF)
Background
Anticipatory and compensatory balance responses are used by the central nervous system (CNS) to preserve balance, hence they significantly contribute to the understanding of physiological mechanisms of postural control. It is well established that various sensory systems contribute to the regulation of balance. However, it is still unclear which role each individual sensory system (e.g. plantar mechanoreceptors) plays in balance regulation. This becomes also evident in various patient populations, for instance in diabetics with reduced plantar sensitivity. To investigate these sensory mechanisms, approaches like hypothermia to deliberately reduce plantar afferent input have been applied. But there are some limitations regarding hypothermic procedures in previous studies: Not only plantar aspects of the feet might be affected and maintaining the hypothermic effect during data collection. Therefore, the aim of the present study was to induce a permanent and controlled plantar hypothermia and to examine its effects on anticipatory and compensatory balance responses. We hypothesized deteriorations in anticipatory and compensatory balance responses as increased center of pressure excursions (COP) and electromyographic activity (EMG) in response to the hypothermic plantar procedure. 52 healthy and young subjects (23.6 ± 3.0 years) performed balance tests (unexpected perturbations). Subjects’ foot soles were exposed to three temperatures while standing upright: 25, 12 and 0 °C. COP and EMG were analyzed during two intervals of anticipatory and one interval of compensatory balance responses (intervals 0, 1 and 2, respectively).
Results
Similar plantar temperatures confirmed the successful implementation of the thermal platform. No significant COP and EMG differences were found for the anticipatory responses (intervals 0 and 1) under the hyperthermia procedure. Parameters in interval 2 showed generally decreased values in response to cooling.
Conclusion
No changes in anticipatory responses were found possibly due to sensory compensation processes of other intact afferents. Decreased compensatory responses may be interpreted as the additional balance threat, creating a more cautious behavior causing the CNS to generate a kind of over-compensatory behavior. Contrary to the expectations, there were different anticipatory and compensatory responses after reduced plantar inputs, thereby, revealing alterations in the organization of CNS inputs and outputs according to different task difficulties.
|
Page generated in 0.1216 seconds