Spelling suggestions: "subject:"bochner"" "subject:"lochner""
11 |
Integración en espacios de BanachRodríguez Ruiz, José 01 March 2006 (has links)
Esta tesis doctoral se enmarca dentro de la teoría de integración de funciones con valores en espacios de Banach. Analizamos con detalle la integral de Birkhoff de funciones vectoriales, así como sus correspondientes versiones dentro de los contextos de la integración respecto de medidas vectoriales y la integración de multi-funciones. Comparamos estos métodos de integración con otros bien conocidos (integrales de Bochner, Pettis, McShane, Debreu, etc.). Caracterizamos, en términos de integración vectorial, algunas propiedades de los espacios de Banach donde las (multi-) funciones toman valores. / The general framework of this memoir is the theory of integration of functions with values in Banach spaces. We analyze in detail the Birkhoff integral of vector-valued functions, as well as its corresponding versions within the settings of integration with respect to vector measures and integration of multi-valued functions. We compare these methods of integration with others which are well known (Bochner, Pettis, McShane, Debreu, etc.). We characterize, in terms of vector integration, some properties of the Banach spaces where the (multi-) functions take their values.
|
12 |
Flots géométriques d'ordre quatre et pincement intégral de la courbureBour, Vincent 11 July 2012 (has links) (PDF)
On étudie des flots géométriques d'ordre quatre sur des variétés riemanniennes compactes, qui apparaissent naturellement comme flots de gradient de fonctionnelles quadratiques en la courbure. Lorsque la constante de Yamabe reste minorée par une constante strictement positive le long du flot, on montre que la variété ne s'effondre pas, et qu'une suite de métriques dilatées au voisinage d'un temps singulier converge vers une variété complète qui modélise la singularité. En particulier, en dimension quatre, cette hypothèse est vérifiée pour une certaine classe de flots de gradients, du moment que l'énergie initiale est inférieure à une constante explicite. Les singularités de ces flots sont alors modélisées par des variétés complètes et non compactes, dont le tenseur de Bach et la courbure scalaire s'annulent. En combinant une formule de Weitzenböck avec l'inégalité de Sobolev induite par la positivité de la constante de Yamabe, on montre une série de résultats de rigidité pour des métriques dont la courbure est intégralement pincée. En particulier, on prouve un théorème de rigidité pour les variétés de dimension quatre à tenseur de Bach et à courbure scalaire nuls, qui implique que les singularités de notre classe de flots de gradient ne peuvent exister que si l'énergie initiale est supérieure à une certaine constante. Dans le cas contraire, ces flots existent pour tous temps positifs et convergent vers une métrique à courbure sectionnelle constante et positive. On retrouve ainsi un "théorème de la sphère" pour les variétés compactes de dimension quatre dont la courbure est intégralement pincée. En appliquant cette même méthode aux formes harmoniques d'une variété à courbure intégralement pincée, on démontre une version intégrale du théorème de Bochner-Weitzenböck. On en déduit l'annulation des nombres de Betti sous diverses conditions de pincement intégral, et on caractérise les cas d'égalité.
|
13 |
Joint Eigenfunctions On The Heisenberg Group And Support Theorems On RnSamanta, Amit 05 1900 (has links) (PDF)
This work is concerned with two different problems in harmonic analysis, one on the Heisenberg group and other on Rn, as described in the following two paragraphs respectively.
Let Hn be the (2n + 1)-dimensional Heisenberg group, and let K be a compact subgroup of U(n), such that (K, Hn) is a Gelfand pair. Also assume that the K-action on Cn is polar. We prove a Hecke-Bochner identity associated to the Gelfand pair (K, Hn). For the special case K = U(n), this was proved by Geller, giving a formula for the Weyl transform of a function f of the type f = Pg, where g is a radial function, and P a bigraded solid U(n)-harmonic polynomial. Using our general Hecke-Bochner identity we also characterize (under some conditions) joint eigenfunctions of all differential operators on Hn that are invariant under the action of K and the left action of Hn .
We consider convolution equations of the type f * T = g, where f, g ε Lp(Rn) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T , we show that f is compactly supported, provided g is.
|
14 |
Estimations spectrales asymptotiques en géométrie hermitienneLAENG, Laurent 30 October 2002 (has links) (PDF)
L'objet de cette thèse est l'étude de quelques problèmes de géométrie différentielle, dans les cadres complexe et presque complexe. Nous donnons d'abord des formules de type Bochner-Kodaira-Nakano pour des fibrés hermitiens au-dessus de variétés respectivement hermitiennes, presque kählériennes et presque complexes. Puis dans un deuxième temps, à l'aide d'une des formules précédentes, nous obtenons dans le cas complexe des estimées asymptotiques d'une partie du spectre de certains opérateurs différentiels : considérant une $(1,1)$-forme réelle fermée $\alpha$ (non nécessairement entière) sur une variété complexe compacte de dimension $n$, nous construisons une suite (indexée par $k$) de fibrés en droites hermitiens dont les formes de courbure approchent $k\alpha$. Les estimées asymptotiques portent sur le bas du spectre des laplaciens antiholomorphes associés aux fibrés, et la plus significative fait intervenir l'intégrale de $\alpha^n$ au-dessus des points d'indice 0 ou 1 de la variété. Elle n'est pertinente que si cette dernière intégrale est strictement positive.
|
15 |
Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexes / Spectrum of sublaplacians on strictly pseudoconvex CR manifoldsAribi, Amine 29 November 2012 (has links)
Le but de cette thèse est d’étudier le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexe. Nous prouvons que le spectre du sous-laplacien $\Delta_b$ est discret sur un domaine borné $\Omega \subset M$ d’une variété CR strictement pseudoconvexe qui satisfait l’inégalité de Poincaré, sous les conditions de Dirichlet au bord. Nous étudions le comportement des valeurs propres du sous-laplacien $\Delta_b$ sur une variété C] strictement pseudoconvexe compacte $M$, en tait que fonctionnelle sur l’espace ${\mathcal P)_+$ de formes de contact positivement orientées sur $M$ en dotant $(\matheal P}_+$ d’une topologie métrique naturelle. Nous établissons des inégalités pour les valeurs propres de $\Delta_b$ sur des variétés CR strictement pseudoconvexes (éventuellement à bord non vide). Nos estimations prolongent les résultats d,tenus par P-C. Niu \& H. Zhang \cite{NiZh) pour les valeurs propres du sous-laplacien avec conditions de Dirichlet au bord sur un domaine borné du groupe de Heisenberg, et sont dans l’esprit des inégalités de Payne-PV(o)lya-Weinberger et Yang. Nous obtenons une nouvelle borne inférieure sur la première valeur propre non nulle $\lambda_l theta )$ du sous-laplacien $\Delta_b$ sur une variété CR strictement pseudoconvexe compacte $M$ munie d’une forme de contact S\theta$ dont la connexion de Tanaka-Webster est à courbure de Ricci minorée. / The purpose of this thesis is to study the spectrum of sublaplacians on compact strictly pseudoconvex CR manifolds. We prove the discreteness of the Dirichiet spectrum of the sublaplacian $\Delta_b$ on a smoothly bounded domain $\Omega \subset M$ in a strictly pseudoconvex CR manifold M satisfying Poincaré inequality. We study the behavior of the eigenvalues of a sublaplacian $\Delta_b$ on a compact strictly pseudoconvex CR manifol as functions on the set ${\mathcal P}_+$ of positively oriented contact forms on $M$ by endowing ${\mathcal P)_+$ with a natural metric topology. We establish inequalities for the eigenvalues of $Delta_b$ on compact strictly pseudoconvex CR manifolds (possibly with nonempty boundary) %$C^2$ semi-isometric maps into a Euclidean space or a Heisenberg group. Our estimates extend those obtained by P-C. Niu \& H. Zhang \cite{NiZh} for the Dirichlet eigenvalues 0f the sublaplacian on a bounded domain in the Heisenberg group, in the spirit of Payne-P\’{o)lya -Weinberger and Yang inequalities. We establish a new lower bound on the first nonzero eigenvalue$\lambda_t (\theta )$ of the sublaplacian $\Delta_b$ on a compact strictly pseudoconvex CR manifold $M$ carrying a contact form $\theta$ whose Tanaka-Webster connection has Ricci curvature bounded from below.
|
16 |
Art/Science and a Blended InquiryGarubba, Keith 10 October 2014 (has links)
No description available.
|
17 |
Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit EntartungWolf, Jörg 31 May 2002 (has links)
In der vorliegenden Arbeit untersuchen wir schwache Lösungen, die zu einem geeigneten Sobolevraum gehören, q-elliptischer und parabolischer Systeme partieller Differentialgleichungen auf deren Regularität für den Fall 1 / In the present work we study the regularity of weak solution to q-elliptic and parabolic systems partial differential equations in appropriate Sobolev spaces in case 1
|
18 |
Convergences aventureuses : L'Écho des années soixante-dix californiennes sur l'art européen des années quatre-vingt-dix et autres essais sur l'art contemporainFrédéric, Paul 27 November 2008 (has links) (PDF)
Le contexte artistique californien de la fin des années 60 et du début des années 70 constitue un terrain favorable aux investigations d'une nouvelle génération d'artistes, même s'il ne bénéficie pas de réels soutiens logistiques marchands ou institutionnels. L'art conceptuel promu à la même époque par Seth Siegelaub à New York prépare une alternative à l'art minimal. Ce phénomène a déjà son équivalent en Europe. La dématérialisation de l'oeuvre d'art aura des conséquences décisives en Californie, où elle donnera naissance à un art conceptuel dénué de tout dogmatisme marqué par l'influence de fortes personnalités comme Edward Ruscha et John Baldessari. Des artistes originaires de la côté est comme Douglas Huebler, William Wegman, Robert Cumming, du Midwest comme Ruppersberg trouveront de l'autre côté des États-Unis des conditions de travail plus stimulantes. Des Européens comme Bas Jan Ader ou son complice Ger van Elk suivront le même chemin. Leurs oeuvres ne trouveront pas immédiatement sur place une grande visibilité. Mais après une éclipse d'une quinzaine d'années, voici qu'une nouvelle génération d'artistes européens (citons des artistes comme Claude Closky, en France, ou Jonathan Monk, en Angleterre) se penche sur ces grand frères et les place au premier rang de leurs références. À partir d'exemples sélectionnés d'artistes et d'un corpus de textes constitué depuis le début des années 90, que j'ai écrits pour différents catalogues d'expositions, revues, éditeurs, l'objet de cette thèse est de présenter ce dialogue entre les générations et de mettre en évidence certaines convergences malgré la dissemblance des contextes institutionnels et sociétaux.
|
19 |
Le spectre du sous-laplacien sur les variétés CR strictement pseudoconvexesAribi, Amine 29 November 2012 (has links) (PDF)
Le but de cette thèse est d'étudier le spectre du sous-laplacien sur les variétés CR strictement peusdoconvexes. Nous prouvons que le spectre du sous-laplacien $\Delta_b$ est discret sur un domaine borné $\Omega \subset M$ d'une variété CR strictement pseudoconvexe qui satisfait l'inégalité de Poincaré, sous les conditions de Dirichlet au bord. Nous étudions le comportement des valeurs propres du sous-laplacien $\Delta_b$ sur une variété CR strictement pseudoconvexe compacte $M$, en tant que fonctionnelle sur l'espace ${\mathcal P}_+$ de formes de contact positivement orientées sur $M$ en dotant ${\mathcal P}_+$ d'une topologie métrique naturelle. Nous établissons des inégalités pour les valeurs propres de $\Delta_b$ sur des variétés CR strictement pseudoconvexes ( éventuellement à bord non vide). Nos estimations prolongent les résultats obtenus par P-C. Niu \& H. Zhang \cite{NiZh} pour les valeurs propres du sous-laplacien avec conditions de Dirichlet au bord sur un domaine borné du groupe de Heisenberg, et sont dans l'esprit des inégalités de Payne-P\'lya-Weinberger et Yang. Nous obtenons une nouvelle borne inférieure sur la première valeur propre non nulle $\lambda_1 (\theta )$ du sous-laplacien $\Delta_b$ sur une variété CR strictement pseudoconvexe compacte $M$ munie d'une forme de contact $\theta$ dont la connexion de Tanaka-Webster est à courbure de Ricci minorée.
|
Page generated in 0.044 seconds