• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 2
  • Tagged with
  • 69
  • 32
  • 29
  • 26
  • 21
  • 18
  • 17
  • 17
  • 17
  • 17
  • 16
  • 16
  • 14
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

O índice de Poincaré-Hopf e generalizações no caso singular / The Poincaré-Hopf index and generalizations in singular case

Thaís Maria Dalbelo 25 February 2011 (has links)
Neste trabalho,estudamos o índice de Poincaré-Hopf, definido para singularidades isoladas de campos de vetores sobre variedades diferenciáveis. Além disso, investigamos algumas definições de índices de campos de vetores definido sem variedades singulares, como o índice de Schwartz e o índice GSV. Estudaremos estes invariantes no caso específico em que (V; 0) é um germe de uma interseção completa com singularidade isolada na origem / In this work, we study thePoincaré-Hopf index, defined for isolated singularities of vector fields on manifolds. Moreover, we investigate some definitions of indices of vector fields defined on singular varieties, as the Schwartz index and the GSV index. We study these invariants in the case where (V; 0) is a germ of a complete intersection with an isolated singularity at the origin
62

Números de Lê e classes de Milnor de hipersuperfícies analíticas complexas / Lê numbers and Milor classes of complex analytic hypersurfaces

Zanchetta, Michelle Ferreira 19 February 2010 (has links)
Este trabalho está dividido em duas partes distintas. Na primeira parte caracterizamos os números de Lê de polinômios que são rodutos de polinômios de Pham-Brieskorn de mesmo tipo, que denominamos de arranjos de Pham-Brieskorn, obtendo fórmulas para estes números somente utilizando o número de variáveis, os pesos e o grau de homogeneidade destes polinômios. Na segunda parte nos dedicamos a estabelecer relações entre os números de Lê, que é um conceito local, e as classes de Milnor, que são objetos globais que fornecem informações quanto a geometria e topologia de hipersuperfícies analíticas complexas. No contexto geral, usando a hipótese de especialização, relacionamos a classe de Milnor de dimensão máxima de uma hipersuperfície Z numa variedade compacta M com uma soma, sobre os estratos de uma estratificação de Whitney de Z (com estratos conexos) que estão contidos no conjunto singular, em termos do último número de Lê associado a cada estrato. Além disso, obtivemos uma caracterização da classe de Milnor de dimensão mínima via os números de Lê sem usar a hipótese de especialização. Esta classe coincide com o chamado número de Milnor de Parusinski que, assim como os números de Lê, também é uma generalização do número de Milnor / This work is divided into two distinct parts. In the first part we characterize the Lê numbers of polynomials that are products of Pham- Brieskorn polynomials of the same type that we call Pham-Brieskorn arrangements, obtaining formulas to these numbers only using the number of variables, weights and degree of homogeneity of these polynomials. In the second part we are dedicated to establishing relationships between Lê numbers, which is a local concept, and the Milnor classes, which are global objects that provide information about the geometry and topology of complex analytic hypersurfaces. In a general context, using the hypothesis of specialization we relate the top dimensional Milnor class of a hypersurface Z in a compact manifold M with a sum given in terms of the last Lê number associated to each stratum of a Whitney estratification of Z (with connected strata) that are contained in singular set. Moreover, we obtain a characterization of the Milnor class of minimum dimension via the Lê numbers without using the hypothesis of specialization. This class coincides with the Milnor number of Parusinski that, as the Lê numbers, it is also a generalization of the Milnor number
63

Um teorema tipo Berstein em R x Hn. / A Berstein theorem in R x Hn.

VIEIRA FILHO, Luis Gonzaga. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T14:32:06Z No. of bitstreams: 1 LUIZ GONZAGA VIEIRA FILHO - DISSERTAÇÃO PPGMAT 2012..pdf: 418239 bytes, checksum: 637639b6b00361fa99f7879c81c1a30c (MD5) / Made available in DSpace on 2018-08-06T14:32:06Z (GMT). No. of bitstreams: 1 LUIZ GONZAGA VIEIRA FILHO - DISSERTAÇÃO PPGMAT 2012..pdf: 418239 bytes, checksum: 637639b6b00361fa99f7879c81c1a30c (MD5) Previous issue date: 2012-12 / Neste trabalho, usando uma adequada aplicação do chamado princípio do máximo generalizado de Omori-Yau, obtemos um teorema tipo Bernstein para hipersuperfícies completas com curvatura média constante imersas no espaço produto R × Hn. Além disso, tratamos o caso em que tais hipersuperfícies são gráficos verticais. / In this work, as suitable application of the so-called Omori-Yau generalized maximum principle, we obtain a Bernstein type theorem concerning to complete hypersurfaces with constant mean curvature immersed in the product space R × Hn . Furthermore, we treat the case that such hypersurfaces are vertical graphs
64

Sobre a Geometria de Gráficos Killing Conformes Inteiros em ambientes Riemannianos Folheados. / About the Geometry of Graphs Killing Complete Conform in Riemannian Veneered Environments.

ARAÚJO, Jogli Gidel da Silva. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T17:08:05Z No. of bitstreams: 1 JOGLI GIDEL DA SILVA ARAÚJO - DISSERTAÇÃO PPGMAT 2014..pdf: 597763 bytes, checksum: 4efda81f9c43bb545607e3229077124a (MD5) / Made available in DSpace on 2018-08-09T17:08:05Z (GMT). No. of bitstreams: 1 JOGLI GIDEL DA SILVA ARAÚJO - DISSERTAÇÃO PPGMAT 2014..pdf: 597763 bytes, checksum: 4efda81f9c43bb545607e3229077124a (MD5) Previous issue date: 2014-03 / Capes / Neste trabalho, estudamos a geometria de gráficos Killing conformes inteiros, isto é, gráficos construídos a partir do fluxo gerado por um campo de vetores V Killing conforme completo, os quais estão definidos sobre uma folha integral da folheação V⊥ ortogonal a V. Além disso, estudamos a restrição da norma do gradiente da função z a qual determina tal gráficoΣ(z), nesse sentido, apresentamos condições suficientes para assegurar que Σ(z) é uma hipersuperfície totalmente umbílica e, em particular, uma folha integral de V⊥. / We study the geometry of entire conformal Killing graphs, that is, graphs constructed through the flow generated by a complete conformal Killing vector field V and which are defined over an integral leaf of the foliation V⊥ orthogonal to V. In this setting, under a suitable restriction on the norm of the gradient of the function z which determines such a graphΣ(z), we establish sufficient conditions to ensure that Σ(z) is totally umbilical and, in particular, an integral leaf of V⊥.
65

Hipersuperfícies mínimas completas estáveis com curvatura total finita / Stable complete minimal hypersurfaces with finite total curvature

Rocha, Robério Batista da 30 March 2010 (has links)
The main goal of this dissertation is to present some results on minimal hypersurfaces in the Euclidean space related to the stability operator. Initially, we will present the demonstrations of the formulas of first and second variations of area and also the demonstration of the Simons inequality. These results (which are basic results of the theory) will be used later. Next we will present the proof of the do Carmo-Peng s theorem showing that a complete stable minimal hypersurface immersed in the Euclidean space with finite L2 norm of the second fundamental form is a hyperplane. We will include in this dissertation a similar result with the L3 norm of the second fundamental form. This last result was proved by Li-Wei in the case where the hypersurface has dimension 3, but we note that proof applies to 3≤n≤7. We will conclude by presenting some results on non-stable minimal hypersurfaces in R^3 due to Fischer-Colbrie and Lopez-Ros. In particular, we will show that the catenoid and Enneper s surface are the only minimal complete orientable surfaces with index equal to one. / O objetivo principal desta dissertação é apresentar alguns resultados importantes sobre hipersuperfícies mínimas no espaço Euclidiano relacionados com o operador de estabilidade. Inicialmente, apresentaremos as demonstrações das fórmulas da primeira e da segunda variações da área bem como a demonstração da desigualdade de Simons. Estes resultados, que são básicos da teoria, serão usados posteriormente. Em seguida, apresentaremos a demonstração do teorema de do Carmo-Peng, o qual assegura que uma hipersuperfície mínima completa estável imersa no espaço Euclidiano com a norma L2 da segunda forma fundamental finita é um hiperplano. Incluiremos na dissertação um resultado análogo com a norma L3 da segunda forma fundamental. Este último resultado foi provado por Li-Wei no caso em que a hipersuperfície tem dimensão 3, mas notamos que a demonstração se aplica para 3≤n≤7. Concluiremos apresentando alguns resultados sobre hipersuperfícies mínimas não estáveis no R^3 obtido por Fischer-Colbrie e López-Ros. Em particular, mostraremos que o catenóide e a superfície de Enneper são as únicas superfícies mínimas completas e orientadas com índice igual a um.
66

O teorema de Alexandrov / The theorem of Alexandrov.

Silva Neto, Gregorio Manoel da 04 August 2009 (has links)
The goal of this dissertation is to present a R. Reilly's demonstration of the theorem of Alexandrov . The theorem states that The only compact hypersurfaces, conected, of constant mean curvature, immersed in Euclidean space are spheres. The theorem of Alexandrov was proved by A. D. Alexandrov in the article Uniqueness Theorems for Surfaces in the Large V, published in 1958 by Vestnik Leningrad University, volume 13, number 19, pages 5 to 8. In his demonstration, Alexandrov used the famous Principle of tangency, introduced by him in that article. In the year 1962, M. Obata shown in Certain Conditions for a Riemannian Manifold to be isometric With the Sphere, published by the Journal of Mathematical Society of Japan, volume 14, pages 333 to 340, that a Riemannian Manifold M, compact, connected and without boundary, is isometric to a sphere, since the Ricci curvature of M satisfies certain lower bound. This theorem solves the problem of finding manifolds that reach equality in the estimate of Lichnerowicz for the first eigenvalue. In 1977, R. Reilly, in the article Applications of the Hessian operator in a Riemannian Manifold, published in Indianna University Mathematical Journal, volume 23, pages 459 to 452, showed a generalization of the Obata theorem for compact manifolds with boundary. As an example of the technique developed in this demonstration, he presents a new demonstration of the theorem of Alexandrov. This demonstration, as well as the techniques involved are the object of study of this work. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / O objetivo desta dissertação é apresentar uma demonstração de R. Reilly para o Teorema de Alexandrov. O teorema estabelece que As únicas hipersuperfícies compactas, conexas, de curvatura média constante, mergulhadas no espaço Euclidiano são as esferas. O teorema de Alexandrov foi provado por A. D. Alexandrov no artigo Uniqueness Theorems for Surfaces in the Large V, publicado em 1958 pela Vestnik Leningrad University, volume 13, número 19, páginas 5 a 8. Em sua demonstração, Alexandrov usou o famoso Princípio de Tangência, introduzido por ele no citado artigo. No ano de 1962, M. Obata demonstrou em Certain Conditions for a Riemannian Manifold to be Isometric With a Sphere, publicado pelo Journal of Mathematical Society of Japan, volume 14, páginas 333 a 340, que uma variedade Riemanniana M, compacta, conexa e sem bordo, é isométrica a uma esfera, desde que a curvatura de Ricci de M satisfaça determinada limitação inferior. Este teorema resolve o problema de encontrar as variedades que atingem a igualdade na estimativa de Lichnerowicz para o primeiro autovalor. Em 1977, R. Reilly, no artigo Applications of the Hessian Operator in a Riemannian Manifold, publicado no Indianna University Mathematical Journal, volume 23, páginas 459 a 452, demonstrou uma generalização do Teorema de Obata para variedades compactas com bordo. Como exemplo da técnica desenvolvida nesta demonstração, ele apresenta uma nova demonstração do Teorema de Alexandrov. Esta demonstração, bem como as técnicas envolvidas, são o objeto de estudo deste trabalho.
67

Resultados do tipo Calabi-Bernstein em −R × Hn. / Calabi-Bernstein type results in -R × Hn.

LIMA JÚNIOR, Eraldo Almeida. 25 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-25T19:25:58Z No. of bitstreams: 1 ERALDO ALMEIDA LIMA JÚNIOR - DISSERTAÇÃO PPGMAT 2011..pdf: 415901 bytes, checksum: 427abfdae7c5a546735d4a6b14f72bfe (MD5) / Made available in DSpace on 2018-07-25T19:25:58Z (GMT). No. of bitstreams: 1 ERALDO ALMEIDA LIMA JÚNIOR - DISSERTAÇÃO PPGMAT 2011..pdf: 415901 bytes, checksum: 427abfdae7c5a546735d4a6b14f72bfe (MD5) Previous issue date: 2011-07 / Neste trabalho, apresentamos um estudo das hipersuperfícies tipo-espaço imersas no ambiente −R × Hn, exibindo condições para que tais hipersuperfícies sejam slices {t0}×Hn. Para uma melhor compreensão das demonstrações e dos resultados, inserimos processos de diferenciação, cálculos de gradientes e Laplacianos que, juntamente com o princípio do máximo de Omori-Yau, foram cruciais no desenvolvimento dos resultados que, em sua maioria são do tipo Bernstein. Também incluímos um resultado do tipo Calabi. / In this work we present a study of the spacelike hypersurfaces immersed in the manifold −R × Hn providing sufficient conditions for such hypersurfaces be slices, {t0}×Hn. For a better understanding of the proofs and results, we have added differentiation processes, gradient computations and Laplacians which jointly with the Omori-Yau Maximum Principle were crucial in the developing of the results whose are mostly Bernstein-type. In the elapsing we also included Calabi-type results.
68

Ciclos principais hiperbólicos em hipersuperfícies do R4

Cruz, Dayane Ribeiro 25 February 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Based on the article “Hyperbolic Main Cycles on Hypersurface of R4”, Garcia, see [4], we will study the bending lines in the vicinity of a main loop, closed bending line, a hypersurface immersed in R4. For this, we will define the Poincaré transformation associated with the cycle and calculate its derivative. With this analysis, we show under what conditions we can become hyperbolic, with a small deformation in the immersion, a major cycle given. Finally, we will build an example of a hypersurface containing a hyperbolic primary cycle, based on the article “Surfaces Around Closed Main Curvature Lines, an Inverse Problem." Garcia, Mello and Sotomayor, see [5]. / Tomando como base o artigo “Hyperbolic Principal Cycles on Hyper-surface of R4", de Garcia, ver [4], estudaremos as linhas de curvatura na vizinhança de um ciclo principal, linha de curvatura fechada, de uma hipersuperfície imersa no R4. Para isso, definiremos a transformação de Poincaré associada ao ciclo e calcularemos a sua derivada. Com essa análise, mostraremos sob quais condições podemos tornar hiperbólico, com uma pequena deformação na imersão, um ciclo principal dado. E por fim, construiremos um exemplo de uma hipersuperfície contendo um ciclo principal hiperbólico, baseando-nos no artigo “Surfaces Around Closed Principal Curvature Lines, an Inverse Problem." de Garcia, Mello e Sotomayor, ver [5].
69

Números de Lê e classes de Milnor de hipersuperfícies analíticas complexas / Lê numbers and Milor classes of complex analytic hypersurfaces

Michelle Ferreira Zanchetta 19 February 2010 (has links)
Este trabalho está dividido em duas partes distintas. Na primeira parte caracterizamos os números de Lê de polinômios que são rodutos de polinômios de Pham-Brieskorn de mesmo tipo, que denominamos de arranjos de Pham-Brieskorn, obtendo fórmulas para estes números somente utilizando o número de variáveis, os pesos e o grau de homogeneidade destes polinômios. Na segunda parte nos dedicamos a estabelecer relações entre os números de Lê, que é um conceito local, e as classes de Milnor, que são objetos globais que fornecem informações quanto a geometria e topologia de hipersuperfícies analíticas complexas. No contexto geral, usando a hipótese de especialização, relacionamos a classe de Milnor de dimensão máxima de uma hipersuperfície Z numa variedade compacta M com uma soma, sobre os estratos de uma estratificação de Whitney de Z (com estratos conexos) que estão contidos no conjunto singular, em termos do último número de Lê associado a cada estrato. Além disso, obtivemos uma caracterização da classe de Milnor de dimensão mínima via os números de Lê sem usar a hipótese de especialização. Esta classe coincide com o chamado número de Milnor de Parusinski que, assim como os números de Lê, também é uma generalização do número de Milnor / This work is divided into two distinct parts. In the first part we characterize the Lê numbers of polynomials that are products of Pham- Brieskorn polynomials of the same type that we call Pham-Brieskorn arrangements, obtaining formulas to these numbers only using the number of variables, weights and degree of homogeneity of these polynomials. In the second part we are dedicated to establishing relationships between Lê numbers, which is a local concept, and the Milnor classes, which are global objects that provide information about the geometry and topology of complex analytic hypersurfaces. In a general context, using the hypothesis of specialization we relate the top dimensional Milnor class of a hypersurface Z in a compact manifold M with a sum given in terms of the last Lê number associated to each stratum of a Whitney estratification of Z (with connected strata) that are contained in singular set. Moreover, we obtain a characterization of the Milnor class of minimum dimension via the Lê numbers without using the hypothesis of specialization. This class coincides with the Milnor number of Parusinski that, as the Lê numbers, it is also a generalization of the Milnor number

Page generated in 0.0514 seconds