• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 10
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 17
  • 12
  • 11
  • 11
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Teaching for the objectification of the Pythagorean Theorem

Spyrou, Panagiotis, Moutsios-Rentzos, Andreas, Triantafyllou, Dimos 09 May 2012 (has links)
This study concerns a teaching design with the purpose to facilitate the students’ objectification of the Pythagorean Theorem. Twelve 14-year old students (N=12) participated in the study before the theorem was introduced to them at school. The design incorporated ideas from the ‘embodied mind’ framework, history and realistic mathematics, linking ‘embodied verticality’ with ‘perpendicularity’. The qualitative analyses suggested that the participants were led to the conquest of the ‘first level of objectification’ (through numbers) of the Pythagorean Theorem, showing also evidence of appropriate ‘fore-conceptions’ of the ‘second level of objectification’ (through proof) of the theorem. The triangle the sides of which are associated with the Basic Triple (3,4,5) served as a primary instrument for the students’ objectification, mainly, by facilitating their ‘generic abstraction’ of the Pythagorean Triples.
32

Pythagoras at the smithy : science and rhetoric from antiquity to the early modern period

Tang, Andy chi-chung 07 November 2014 (has links)
It has been said that Pythagoras discovered the perfect musical intervals by chance when he heard sounds of hammers striking an anvil at a nearby smithy. The sounds corresponded to the same intervals Pythagoras had been studying. He experimented with various instruments and apparatus to confirm what he heard. Math, and in particular, numbers are connected to music, he concluded. The discovery of musical intervals and the icon of the musical blacksmith have been familiar tropes in history, referenced in literary, musical, and visual arts. Countless authors since Antiquity have written about the story of the discovery, most often found in theoretical texts about music. However, modern scholarship has judged the narrative as a myth and a fabrication. Its refutation of the story is peculiar because modern scholarship has failed to disprove the nature of Pythagoras’s discovery with valid physical explanations. This report examines the structural elements of the story and traces its evolution since Antiquity to the early modern period to explain how an author interprets the narrative and why modern scholarship has deemed it a legend. The case studies of Nicomachus of Gerasa, Claudius Ptolemy, Boethius, and Marin Mersenne reveal not only how the story about Pythagoras’s discovery functions for each author, but also how the alterations in each version uncover an author’s views on music. / text
33

Ciência, magia e filosofia no processo de ensino-aprendizagem da matemática: uma introdução histórica sobre o Teorema de Pitágoras

Cano, Marco Aurelio Munhoz 16 May 2007 (has links)
Made available in DSpace on 2016-04-27T17:13:00Z (GMT). No. of bitstreams: 1 Marco Aurelio Munhoz Cano.pdf: 6746661 bytes, checksum: 9a79e3a7f035e62ed2328874b896bcd2 (MD5) Previous issue date: 2007-05-16 / Made available in DSpace on 2016-08-25T17:25:37Z (GMT). No. of bitstreams: 2 Marco Aurelio Munhoz Cano.pdf.jpg: 3970 bytes, checksum: 6e21b5431b4f389d5af3c5384a9cbb79 (MD5) Marco Aurelio Munhoz Cano.pdf: 6746661 bytes, checksum: 9a79e3a7f035e62ed2328874b896bcd2 (MD5) Previous issue date: 2007-05-16 / The present dissertation focuses some relations between the influence of Pythagoras in Old Greece and the historical approach of the Pythagorean Theorem worked by Mathematics teachers during the elementary and high schools, following the National Curricular Parameters (PCNs) exigencies and giving emphasis to the connected aspects to science, magic and philosophy in the teaching/learning process of Mathematics. We know that the Mathematics did not evolve of a linear form and logically organized and was developed following different ways in several cultures, where the Mathematics pattern today accepted and used in the present work have originated with the Greek civilization, in approximately the period of 700 B.C. to 300 A.C. Although the historical Pythagoras existence has raised doubts for many, it s important to recognize that his works, activities and concepts throughout the years, even surrounded by myths and legends, had exerted deep influences in the Greek culture. At the first moment of the work, it was necessary a historical and legendary inventory on the Pythagoras life and work. At the second moment, we analyze four didactic books in the historical context and collate these analyses with the curricular proposals, specially the National Curricular Parameters (PCNs). We had as a target public the students of 5. and 7. series of elementary school (particular net S.C.S.), 3. series of high school (municipal net S.C.S.) and students from the National Service of Industrial Learning (SENAI Almirante Tamandaré S.B.C.). With that experiment, it was possible to evidence some advantages in relation to the adopted approach concerning to the importance of the historical aspects in the teaching / learning process of Mathematics. Nobody will contest that the Mathematics teacher must have knowledge of his subject. But the transmission of this knowledge through education depends on his understanding of how this knowledge was originated, of which the main motivations for its development and which were the reasons of its presence in the school curricula. To detach these facts is one of the main objectives of the Mathematics History. (Ubiratan D. Ambrósio) / A presente dissertação focaliza algumas relações entre a influência de Pitágoras na Antiga Grécia e a abordagem histórica do Teorema de Pitágoras trabalhado pelos professores de Matemática durante o ensino fundamental e médio, seguindo os requisitos dos Parâmetros Curriculares Nacionais (PCNs) e dando ênfase aos aspectos relacionados à ciência, magia e filosofia no processo ensino/aprendizagem da Matemática. Sabemos que a Matemática não evoluiu de forma linear e logicamente organizada e desenvolveu-se seguindo caminhos diferentes nas diversas culturas, onde o modelo de Matemática hoje aceito e utilizado no presente trabalho originou-se com a civilização grega, no período aproximadamente de 700 a.C. a 300 d.C. Embora a existência histórica de Pitágoras seja por muitos colocada em xeque, é importante reconhecer que suas doutrinas, trabalhos, atividades e conceitos ao longo dos anos, mesmo envoltos por mitos e lendas, exerceram profundas influências na cultura grega. No primeiro momento do trabalho, fez-se necessário um levantamento histórico e lendário sobre a vida e obra de Pitágoras. No segundo momento, analisamos quatro livros didáticos no contexto histórico e confrontamos estas análises com as propostas curriculares, especialmente os Parâmetros Curriculares Nacionais (PCNs). Tivemos como público-alvo os alunos da 5ª e 7ª série do ensino fundamental (rede particular S.C.S.), 3ª série do ensino médio (rede municipal S.C.S) e alunos do Serviço Nacional de Aprendizagem Industrial (SENAI Almirante Tamandaré S.B.C.). Com esse experimento, foi possível constatar algumas vantagens em relação ao enfoque adotado sobre a importância dos aspectos históricos no processo ensino/aprendizagem da Matemática. Ninguém contestará que o professor de Matemática deve ter conhecimento de sua disciplina. Mas a transmissão desse conhecimento através do ensino depende de sua compreensão de como esse conhecimento se originou, de quais as principais motivações para o seu desenvolvimento e quais as razões de sua presença nos currículos escolares. Destacar esses fatos é um dos principais objetivos da História da Matemática. (Ubiratan D Ambrósio)
34

Eram realmente pitag?rico(a)s os homens e mulheres catalogado(a)s por J?mblico em sua obra Vida de Pit?goras?

Silva, Josildo Jose Barbosa da 25 October 2010 (has links)
Made available in DSpace on 2014-12-17T14:36:18Z (GMT). No. of bitstreams: 1 JosildoJBS_TESE.pdf: 1777094 bytes, checksum: a9a39551fbb840b0d01e7dbe25e6122d (MD5) Previous issue date: 2010-10-25 / Pythagoras was one of the most important pre-Socratic thinkers, and the movement he founded, Pythagoreanism, influenced a whole thought later in religion and science. Iamblichus, an important Neoplatonic and Neopythagorean philosopher of the third century AD, produced one of the most important biographies of Pythagoras in his work Life of Pythagoras. In it he portrays the life of Pythagoras and provides information on Pythagoreanism, such as the Pythagorean religious community which resembled the cult of mysteries; the Pythagorean involvement in political affairs and in the government in southern Italy, the use of music by the Pythagoreans (means of purification of healing, use of theoretical study), the Pythagorean ethic (Pythagorean friendship and loyalty, temperance, self-control, inner balance); justice; and the attack on the Pythagoreans. Also in this biography, Iamblichus, almost seven hundred years after the termination of the Pythagorean School, established a catalog list with the names of two hundred and eighteen men and sixteen women, supposedly Pythagoreans of different nationalities. Based on this biography, a question was raised: to what extent and in what ways, can the Pythagoreans quoted by Iamblichus really be classified as Pythagoreans? We will take as guiding elements to search for answers to our central problem the following general objectives: to identify, whenever possible, which of the men and women listed in the Iamblichus catalog may be deemed Pythagorean and specific; (a) to describe the mystery religions; (b) to reflect on the similarities between the cult of mysteries and the Pythagorean School; (c) to develop criteria to define what is being a Pythagorean; (d) to define a Pythagorean; (e) to identify, if possible, through names, places of birth, life, thoughts, work, lifestyle, generation, etc.., each of the men and women listed by Iamblichus; (f) to highlight who, in the catalog, could really be considered Pythagorean, or adjusting to one or more criteria established in c, or also to the provisions of item d. To realize these goals, we conducted a literature review based on ancient sources that discuss the Pythagoreanism, especially Iamblichus (1986), Plato (2000), Aristotle (2009), as well as modern scholars of the Pythagorean movement, Cameron (1938), Burnet (1955), Burkert (1972), Barnes (1997), Gorman (n.d.), Guthrie (1988), Khan (1999), Matt?i (2000), Kirk, Raven and Shofield (2005), Fossa and Gorman (n.d.) (2010). The results of our survey show that, despite little or no availability of information on the names of alleged Pythagoreans listed by Iamblichus, if we apply the criteria and the definition set by us of what comes to be a Pythagorean to some names for which we have evidence, it is possible to assume that Iamblichus produced a list which included some Pythagoreans / Pit?goras ? considerado um dos mais importantes pensadores pr?-socr?ticos. A escola pitag?rica, por ele fundada, influenciou todo um pensar posterior na religi?o e na ci?ncia. J?mblico, fil?sofo neoplat?nico e neopitag?rico do s?culo III d.C., elaborou, quase setecentos anos ap?s o t?rmino do movimento pitag?rico, uma das tr?s biografias de Pit?goras, a Vida de Pit?goras. Nela, ele retrata a vida desse fil?sofo e nos fornece informa??es sobre o pitagorismo: uma comunidade religiosa assemelhada ao culto de mist?rios; o envolvimento de seus participantes em assuntos pol?ticos e no governo no sul da It?lia; a exalta??o dada ? m?sica (meio de purifica??o, de cura, recurso de estudo te?rico), ? ?tica (amizade, lealdade, temperan?a, autocontrole, equil?brio interior), ? justi?a, e o ataque sofrido pelos pitag?ricos. Ao final dessa biografia, J?mblico elabora um cat?logo com os nomes de duzentos e dezoito homens e dezesseis mulheres, suposto(a)s pitag?rico(a)s de diversas nacionalidades. Tomando como base essa biografia, lan?a-se a quest?o: at? que ponto, e em quais aspectos, esses homens e mulheres citado(a)s por J?mblico podem realmente ser classificados como pitag?rico(a)s? Tomaremos como elementos norteadores ? busca de respostas para nosso problema central os seguintes objetivos (i) geral, identificar, quando poss?vel, quais dos homens e mulheres listados no cat?logo de J?mblico podem ser considerados pitag?ricos, e (ii) espec?ficos: (a) caracterizar as religi?es de mist?rios; (b) refletir sobre as semelhan?as entre o culto de mist?rios e a escola pitag?rica; (c) desenvolver crit?rios que v?o definir o que ? ser um pitag?rico; (d) definir um pitag?rico; (e) identificar, se poss?vel, atrav?s dos nomes, locais de nascimento, vidas, pensamentos, obras, estilo de vida, gera??o, etc., cada um dos homens e mulheres listados por J?mblico; (f) destacar, no cat?logo, quem realmente poderia ser considerado um(a) pitag?rico (a), ou se adequando a um ou v?rios crit?rios estabelecidos em c, ou atendendo ao disposto no item d. Para dar conta de tais objetivos, realizamos uma pesquisa bibliogr?fica valendo-se de fontes antigas que discutem o pitagorismo, principalmente J?mblico (1986), Plat?o (2000/s.d.), Arist?teles (s.d.), e modernos estudiosos desse movimento: Cameron (1938), Burnet (1955), Burkert (1972), Guthrie (1988/2003), Barnes (1997), Khan (1999), Gorman (1979), Matt?i (2000), Kirk, Raven & Shofield (2005), e Fossa (2006/2010). Os resultados de nossa pesquisa mostram que, se utilizarmos as raras informa??es acerca de poucos desse(a)s suposto(a)s homens e mulheres catalogado(a)s por J?mblico, e se aplicarmos sobre eles os crit?rios e a defini??o por n?s anteriormente estabelecidos sobre o que vem a ser um pitag?rico, ? poss?vel supor que a lista elaborada por J?mblico pode estar constitu?da por alguns homens e mulheres que possu?am um modo de vida e um interesse por determinados assuntos caracteristicamente pitag?ricos
35

Beziehungshaltigkeit und Vernetzungen im Mathematikunterricht der Sekundarstufe I

Nordheimer, Swetlana 05 March 2014 (has links)
Die Notwendigkeit einer Untersuchung über Beziehungshaltigkeit und Vernetzungen im Mathematikunterricht ergibt sich einerseits aus den aktuellen bildungspolitischen Forderungen, andererseits aus den reichhaltigen bildungsphilosophischen Traditionen im deutschsprachigem Raum(KMK 2012, 11). Das Ziel der vorliegenden Arbeit besteht vor allem in der Reflexion von Beziehungshaltigkeit und Vernetzungen im Mathematikunterricht. Diese Reflexion ist durch drei Fragen bestimmt: Was kann man als Lehrer über Beziehungshaltigkeit wissen? Wie kann man als Lehrer handeln, so dass die Schüler Beziehungen zwischen mathematischen Inhalten erkennen bzw. selbständig herstellen? Um handeln zu können, muss man die Wirklichkeit oder die Praxis (bzw. Empirie) kennen, in der man handelt. In diesem Sinne ist die vorliegende Arbeit aufgebaut. Dabei wird ein Versuch unternommen, die klassische Aufteilung zwischen Theorie und Empirie bzw. Praxis des Mathematikunterrichts aufzubrechen, um eine Verzahnung zwischen diesen zu verstärken. Das Herzstück der Arbeit bilden zwei ausgearbeitete und in der schulischen Arbeit erprobte Aufgabennetze (Pythagorasbaum und Rund ums Sechseck), die den Rahmen zur Reflexion bieten. / The need for a study on relations sustainability and networks in mathematics stems, on the one hand, from current education policy requirements, and, on the other, from the rich philosophical traditions of education in the German-speaking countries (KMK 2012, 11). The goal of the present work consists, above all, in reflecting on relations sustainability and networks in mathematics lessons. This reflection is guided by three questions: What can one know, as a teacher, about relations sustainability? How can one act a teacher to ensure that students recognise relationships between mathematical content, or independently produce such relations? In order to act, one must know the reality or practice (e.g. empiricism) in which one acts. The project is focused on the development and testing of worked examples of concrete task networks ("Pythagoras’ tree" and "Around the hexagon").
36

Argumentação e prova no ensino fundamental: análise de uma coleção didática de matemática

Cruz, Flávio Pereira da 15 February 2008 (has links)
Made available in DSpace on 2016-04-27T16:58:35Z (GMT). No. of bitstreams: 1 Flavio Pereira da Cruz.pdf: 2297186 bytes, checksum: e42d3730b92eeee2b7c7f4a9b7c71ab5 (MD5) Previous issue date: 2008-02-15 / Secretaria da Educação do Estado de São Paulo / This dissertation aims to analyze how the collection Mathematics and Reality approaches argumentation and proof when it refers to the Fundamental Theorem of Arithmetic and the Theorem of Pythagoras. It s inserted in the Project AProvaME (Argumentation and Proof in School Mathematics) that proposes the investigation of conceptions of argumentation and proof in the teaching of mathematics in schools in the state of São Paulo and to form a group of researchers to elaborate situations of learning involving arguments and proof to be investigated in the classroom. The analysis of the collection, in our research, is based on the work done by BALACHEFF et. al. (2001) which presents possible activities that may involve argumentation and proof classifying them into various types and levels. We have used this classification, when it refers to the Fundamental Theorem of Arithmetic and the Theorem of Pythagoras, to consider the theoretical text and the respective exercises presented in the collection that are related to argumentation and proof. We have noticed that the proposed activities may basically be classified as "tasks of initiation to proof." We conclude, in our analysis, that the collection is not designed to work with argumentation and proof to develop such skills in students when presenting the Fundamental Theorem of Arithmetic and the Theorem of Pythagoras, and also when proposing its activities. We propose, at the end of our work, dynamic activities that may complement those that are present in the collection, aiming to help in the development of new approaches on argumentation and proof in the classroom / Este trabalho tem o objetivo de analisar como a coleção Matemática e Realidade aborda argumentação e prova quando trata do Teorema Fundamental da Aritmética e do Teorema de Pitágoras. Ele está inserido no projeto AProvaME - (Argumentação e Prova na Matemática Escolar) que propõe a investigação de concepções de argumentação e prova no ensino de matemática em escolas do estado de São Paulo e formar grupo de pesquisadores para elaborar situações de aprendizagem envolvendo argumentação e prova para serem investigadas em sala de aula. A análise da coleção, em nossa pesquisa, tem como fundamento o trabalho desenvolvido por BALACHEFF et. al. (2001) que apresenta possíveis atividades que possam envolver argumentação e prova classificando-as em vários tipos e níveis. Utilizamos esta classificação para analisar, quando trata do Teorema Fundamental da Aritmética e do Teorema de Pitágoras, o texto teórico e os respectivos exercícios apresentados na coleção e que estejam relacionados com argumentação e prova. Constatamos que são propostas basicamente atividades que podem ser classificadas como de tarefas de iniciação a prova . Concluímos, em nossa análise, que a coleção não visa o trabalho com argumentação e prova para desenvolver tais competências nos alunos quando apresenta os temas Teorema Fundamental da Aritmética e Teorema de Pitágoras e também quando propõe as respectivas atividades. Propomos ao final de nosso trabalho, atividades dinâmicas que podem complementar as que estão presentes na coleção, com o propósito de contribuir na elaboração de novas abordagens sobre argumentação e prova em sala de aula
37

Material complementar para o professor da rede SESI-SP de ensino : semelhança e software GeoGebra

Leite, Adriane de Oliveira 05 October 2015 (has links)
Submitted by Daniele Amaral (daniee_ni@hotmail.com) on 2016-09-21T19:25:25Z No. of bitstreams: 1 DissAOL.pdf: 6820225 bytes, checksum: 00793d2a933ccdc18ce28c12bf53f7ac (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-28T19:38:02Z (GMT) No. of bitstreams: 1 DissAOL.pdf: 6820225 bytes, checksum: 00793d2a933ccdc18ce28c12bf53f7ac (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-09-28T19:38:13Z (GMT) No. of bitstreams: 1 DissAOL.pdf: 6820225 bytes, checksum: 00793d2a933ccdc18ce28c12bf53f7ac (MD5) / Made available in DSpace on 2016-09-28T19:43:11Z (GMT). No. of bitstreams: 1 DissAOL.pdf: 6820225 bytes, checksum: 00793d2a933ccdc18ce28c12bf53f7ac (MD5) Previous issue date: 2015-10-05 / Não recebi financiamento / This research aims to propose activities for teachers using the Geogebra software, especially for teachers from the SESI-SP School Network in order to assist them in the teaching methodology, with teachers' work plan and, in addition, aiming to more significant and dynamic classes, in order to allow students reach their teaching and learning expectations, formulate valid arguments, make conjectures and justify their reasoning. The activities were applied by teachers of SESI-SP School Network to the students of 9th grade of elementary school, in anticipation of teaching and learning through “Similarity”, addressing Theorem of Thales, Metrics Relations in the Rectangle Triangle and Pythagoras Theorem. The results were analyzed and discussed, reporting the challenges and conclusions raised by the students during the activities while working with the Geogebra software and also based on the feedback provided by the teachers and the opinion of the analysts from SESI-SP School Network. / Esta pesquisa tem como objetivo principal propor atividades para os professores utilizando o software Geogebra, principalmente para os docentes da rede SESI-SP de Ensino, a fim de auxiliá-los na metodologia de ensino, no plano de trabalho, visando uma aula mais significativa e dinâmica, para que seus alunos atinjam as expectativas de ensino e aprendizagem, formulem argumentos válidos, façam conjecturas e justifiquem seus raciocínios. As atividades foram aplicadas por professores da rede SESI-SP de Ensino aos alunos do 9º ano do Ensino Fundamental, turma de 2014, na expectativa de ensino e aprendizagem de “Semelhança”, abordando Teorema de Tales, Relações Métricas no Triângulo Retângulo e Teorema de Pitágoras. Os resultados foram analisados e discutidos, relatando as dificuldades e conclusões apresentadas pelos alunos em desenvolver as atividades trabalhando com o software Geogebra, baseado nas devolutivas dos professores envolvidos e o parecer feito pelos analistas educacionais da Rede SESI-SP de Ensino.
38

The Worst First Citizen

Passannante, Sarah Nicole 29 July 2021 (has links)
No description available.
39

Konstrukce poznatků žáky v matematice (na příkladu Pythagorovy věty) / Pupils' Construction of Knowledge in Mathematics (the Example of Pythagoras' Theorem)

Ulrychová, Michaela January 2011 (has links)
The thesis deals with the process of construction of mathematical knowledge of an individual and a group of pupils. At the outset, some concepts are discussed which belong to the theoretical background of our research (knowledge construction process and its mechanism, typology of mathematical knowledge, character of a mathematical structure, constructivist approaches to the teaching of mathematics, creative teaching, action research). Some results of selected local and foreign research focusing on constructivist approaches and action research in mathematics education are given. The methodology mainly consists of teaching experiments which can, to a certain extent, be seen as cycles of cooperative action research. The target group consists of pupils of lower secondary grammar school. The data gathered through traditional methods of qualitative research (participation observation, audio and videorecordings, pupils' artefacts, notes of an external observer, etc.) were analysed using the techniques of grounded theory. The research has generated results of three types: (1) The categories of individual and group constructions in mathematics have been described in depth including their dimensions (the measures of the teacher's influence on the construction, of the pupils' cooperation, of pupils' formal acceptance...
40

De l'omphalos de la Terre à la cité céleste d'Apollon: études sur la doctrine de la Tétractys dans le pythagorisme ancien / From Earth's Omphalos to Apollo's celestial city: a study on the doctrine of Tetractys in ancient pythagoreanism to Plato

Viltanioti, Irini Fotini 29 November 2010 (has links)
La doctrine pythagoricienne de la Tétractys est sans doute une des questions les plus délicates de l’histoire de la philosophie. Elle représente non seulement une des théories essentielles de l’arithmologie, mais aussi, ainsi que la doxographie ancienne en témoigne, « le plus grand secret et le fondement de la philosophie pythagoricienne ». Armand Delatte, dans ses classiques Etudes sur la littérature pythagoricienne, a souligné l’importance véhiculée par ce philosophème. Dans la première partie, « méthodologique », de notre étude, nous traitons du lien entre Platon et la pensée pythagoricienne, en prenant comme fil conducteur trois notions essentielles: le silence voué des initiés de l’ordre et la pratique du secret ;l’expression énigmatique et « symbolique » ;la pratique de l’allégorie (hyponoia), indissolublement associée, elle, à celle du mythe. La deuxième partie de notre travail est centrée sur le témoignage le plus ancien au sujet de la Tétractys, à savoir sur la fameuse maxime des Acousmatiques :« Qu’est-ce que l’oracle des Delphes ?La Tétractys, c'est-à-dire l’harmonie où se trouvent les Sirènes ». En outre, en modérant, d’une certaine manière, l’ « ésotérisme historique » de l’Ecole de Tübingen, dont nous nous prenons des distances quant à certains points (comme, par exemple, l’importance de la méthode allégorique), nous tentons, dans la troisième et dernière partie de notre étude, de lire certains passages mythiques de Platon comme des allégories susceptibles d’être comprises et de trouver leur cohérence à la lumière de la tradition indirecte, voire de la théorie platonicienne sur les nombres, théorie intimement liée à la doctrine pythagoricienne de la Tétractys. Dans cet ordre d’idées, à partir de la République et du Timée jusqu’au Phèdre et au Gorgias, la mathématisation platonicienne de la réalité se verrait intégrée aux mythes, dont la somptuosité poétique ne serait qu’une image de l’enchantement philosophique entraînant l’élévation de l’âme vers l’Un – Bien. Bien qu’ayant toujours présents à l’esprit les dangers auxquels notre étude s’expose, nous n’avons pas toujours su les éliminer. Nous ne méconnaissons aucunement ses lacunes et ses faiblesses. Nous considérons en revanche que son avantage réside en ce qu’elle tente de contribuer à éclairer d’une lumière nouvelle certains aspects méconnus. C’est sans doute là que se situe le danger, mais aussi son intérêt. <p> <p> / Doctorat en Philosophie / info:eu-repo/semantics/nonPublished

Page generated in 0.0486 seconds