• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 27
  • 19
  • Tagged with
  • 89
  • 79
  • 57
  • 52
  • 50
  • 50
  • 34
  • 11
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Towards accurate and efficient live cell imaging data analysis

Han, Hongqing 29 January 2021 (has links)
Dynamische zelluläre Prozesse wie Zellzyklus, Signaltransduktion oder Transkription zu analysieren wird Live-cell-imaging mittels Zeitraffermikroskopie verwendet. Um nun aber Zellabstammungsbäume aus einem Zeitraffervideo zu extrahieren, müssen die Zellen segmentiert und verfolgt werden können. Besonders hier, wo lebende Zellen über einen langen Zeitraum betrachtet werden, sind Fehler in der Analyse fatal: Selbst eine extrem niedrige Fehlerrate kann sich amplifizieren, wenn viele Zeitpunkte aufgenommen werden, und damit den gesamten Datensatz unbrauchbar machen. In dieser Arbeit verwenden wir einen einfachen aber praktischen Ansatz, der die Vorzüge der manuellen und automatischen Ansätze kombiniert. Das von uns entwickelte Live-cell-Imaging Datenanalysetool ‘eDetect’ ergänzt die automatische Zellsegmentierung und -verfolgung durch Nachbearbeitung. Das Besondere an dieser Arbeit ist, dass sie mehrere interaktive Datenvisualisierungsmodule verwendet, um den Benutzer zu führen und zu unterstützen. Dies erlaubt den gesamten manuellen Eingriffsprozess zu rational und effizient zu gestalten. Insbesondere werden zwei Streudiagramme und eine Heatmap verwendet, um die Merkmale einzelner Zellen interaktiv zu visualisieren. Die Streudiagramme positionieren ähnliche Objekte in unmittelbarer Nähe. So kann eine große Gruppe ähnlicher Fehler mit wenigen Mausklicks erkannt und korrigiert werden, und damit die manuellen Eingriffe auf ein Minimum reduziert werden. Die Heatmap ist darauf ausgerichtet, alle übersehenen Fehler aufzudecken und den Benutzern dabei zu helfen, bei der Zellabstammungsrekonstruktion schrittweise die perfekte Genauigkeit zu erreichen. Die quantitative Auswertung zeigt, dass eDetect die Genauigkeit der Nachverfolgung innerhalb eines akzeptablen Zeitfensters erheblich verbessern kann. Beurteilt nach biologisch relevanten Metriken, übertrifft die Leistung von eDetect die derer Tools, die den Wettbewerb ‘Cell Tracking Challenge’ gewonnen haben. / Live cell imaging based on time-lapse microscopy has been used to study dynamic cellular behaviors, such as cell cycle, cell signaling and transcription. Extracting cell lineage trees out of a time-lapse video requires cell segmentation and cell tracking. For long term live cell imaging, data analysis errors are particularly fatal. Even an extremely low error rate could potentially be amplified by the large number of sampled time points and render the entire video useless. In this work, we adopt a straightforward but practical design that combines the merits of manual and automatic approaches. We present a live cell imaging data analysis tool `eDetect', which uses post-editing to complement automatic segmentation and tracking. What makes this work special is that eDetect employs multiple interactive data visualization modules to guide and assist users, making the error detection and correction procedure rational and efficient. Specifically, two scatter plots and a heat map are used to interactively visualize single cells' visual features. The scatter plots position similar results in close vicinity, making it easy to spot and correct a large group of similar errors with a few mouse clicks, minimizing repetitive human interventions. The heat map is aimed at exposing all overlooked errors and helping users progressively approach perfect accuracy in cell lineage reconstruction. Quantitative evaluation proves that eDetect is able to largely improve accuracy within an acceptable time frame, and its performance surpasses the winners of most tasks in the `Cell Tracking Challenge', as measured by biologically relevant metrics.
72

Scheduling by High Performance Computing - An example for AGV considering dynamic transport carrier transfers

Boden, Patrick 14 March 2024 (has links)
Floor-based Automated Guided Vehicles (AGV) are important for automating transportation tasks in semiconductor manufacturing facilities. They are either used as homogenous systems in low throughput areas (see Ndiaye et al., 2016) or complementarily with ceiling-mounted Overhead Hoist Transport (OHT) systems (see Keil et al., 2018). AGV systems provide the option to exchange transport carriers between its vehicles during transport execution. This increases the flexibility to allocate tasks to the vehicles and could lead to better system performance.
73

Cooperative automation in automobiles

Biester, Lars 29 May 2009 (has links)
Das Ziel dieser Dissertation ist die systematische Entwicklung eines weiterführenden Konzeptes zur Fahrer-Fahrzeug Kooperation, dessen Tauglichkeit anhand empirischer Daten evaluiert und im Hinblick auf sein belegbares Potential in Bezug auf bestehende Ansätze bewertet werden soll.Da Annahmen und Prämissen der Mensch-Maschine-Interaktion den Ausgangspunkt bilden, beginnt die dezidierte Auseinandersetzung und begriffliche Differenzierung von Kooperation in eben diesem Kontext und führt folgerichtig zu einer definitorischen Abgrenzung gegenüber existierenden Ansätzen, der Forderung eines spezifischen Rollenverständnisses zur Interaktion sowie der Ableitung konzeptueller Grundbedingungen. Anschließend werden die strukturellen und prozeduralen Merkmale dieser spezifischen Interaktion herausgearbeitet und dazu benutzt, die generellen Attribute von Kooperation zwischen Fahrer und Fahrzeug zu identifizieren. Dafür wurden nachfolgend solche Indikatoren abgeleitet, vermittels derer der unterstellte Gewinn infolge der Kooperation von Fahrer und Fahrzeug kontrolliert und bewertet werden kann.Im Rahmen mehrerer Voruntersuchungen wurden Fahrsituationen identifiziert, die am meisten von einer kooperativen Interaktion zwischen Fahrer und Fahrzeug profitieren würden. Im Ergebnis wurden für die zwei Hauptuntersuchungen das „Überholen auf der Autobahn“ und das „Linksabbiegen auf innerstädtischen Straßen und Landstraßen mit Gegenverkehr“ als Fahrszenarien ausgewählt, die in jeweils einem eigenständigen Experiment mit alternativen Systemvarianten verglichen worden sind. Die Prüfung spezifischer Hypothesen wurde dabei in die prototypische Umgebung eines Fahrsimulators eingebettet. Abschließend werden in dieser Arbeit die Möglichkeiten zur Etablierung und Einbettung dieses Interaktionskonzeptes in den übergreifenden sozio-technischen Kontext aufgezeigt und zukünftige Perspektiven diskutiert. / The aim of this dissertation is to systematically develop a continuative concept of driver-automobile cooperation, to evaluate its suitability on the basis of empirical data, and to value its provable potential in relation to existing approaches.Assumptions and premises regarding the human-machine interaction constitute the starting point of this work. The decisive altercation and notional differentiation of cooperation are explained in just this context, leading logically to a definitional demarcation of existing approaches, the demand of a specific role understanding of the interaction as well as the derivation of conceptual basic conditions. The structural and procedural characteristics of this specific interaction are then elaborated upon and used to identify the general attributes of cooperation between driver and automobile. In the following, such indicators are derived by which the implied profit as a result of cooperation between driver and automobile can be controlled and valued. Within the framework of several preliminary investigations, those driving situations were identified that would profit most from a cooperative interaction between driver and automobile. As a result, the two driving scenarios "Overtaking on Highways" and "Turning Left on Urban and Country Roads with Oncoming Traffic" were utilized in the experiments. Both single scenarios have been compared in independent experiments with regard to alternative system variants. The prove of specific hypotheses was embedded in the prototypical surroundings of a driving simulator. Finally, the possibility of establishing and embedding this interaction concept into the overall socio-technical context will be presented, and future perspectives will be discussed.
74

Elektronen-Holographische Tomographie zur 3D-Abbildung von elektrostatischen Potentialen in Nanostrukturen / Electron Holographic Tomography for the 3D Mapping of Electrostatic Potentials in Nano-Structures

Wolf, Daniel 14 February 2011 (has links) (PDF)
Die Aufklärung der grundlegenden Struktur-Eigenschaft-Beziehung von Materialen auf der (Sub-)Nanometerskala benötigt eine leistungsfähige Transmissionselektronenmikroskopie. Dabei spielen insbesondere die durch die Nanostruktur hervorgerufenen intrinsischen elektrischen und magnetischen Feldverteilungen eine entscheidende Rolle. Die Elektronen-Holographische Tomographie (EHT), d.h. die Kombination von off-axis Elektronenholographie (EH) und Elektronentomographie (ET), bietet einen einzigartigen Zugang zu dieser Information, weil sie die quantitative 3D-Abbildung elektrostatischer Potentiale und magnetostatischer Vektorfelder bei einer Auflösung von wenigen (5-10) Nanometern ermöglicht. Für die Rekonstruktion des 3D-Potentials erfolgt zunächst die Aufzeichnung einer Kippserie von Hologrammen im Elektronenmikroskop. Durch die anschließende Rekonstruktion der Objektwelle aus jedem Hologramm liegt eine Amplituden- und eine Phasenkippserie vor. Die Phasenkippserie wird schließlich zur tomographischen 3D-Rekonstruktion des elektrostatischen Potentials verwendet. Im Rahmen dieser Arbeit wurde die EHT von einer manuell aufwendigen zu einer weitestgehend automatisierten Methode entwickelt. Die Automatisierung beinhaltet die Entwicklung des ersten Softwarepaketes zur computergestützten Aufzeichnung einer holographischen Kippserie (THOMAS). Verglichen mit rein manueller Vorgehensweise verkürzt sich mit THOMAS die Dauer für die Aufnahme einer holographischen Kippserie, bestehend aus Objekt- und Leerhologrammen, auf weniger als ein Drittel. Mittlerweile beträgt die Aufnahmezeit im Mittel etwa 2-3 Stunden. Auch die holographische Rekonstruktion und zugehörige Operationen zur Entfernung von Artefakten in den Phasenbildern ist durch entsprechende Prozeduren, welche für eine gesamte Kippserie in einem Schritt anwendbar sind, automatisiert. Zudem ermöglichen erst spezielle selbstentwickelte Ausrichtungsmethoden die exakte Verschiebungskorrektur von Kippserien der hier untersuchten stabförmigen Objekte (Nanodrähte, FIB-präparierte Nadeln). Für die tomographische Rekonstruktion wurde in dieser Arbeit die Simultane Iterative Rekonstruktionstechnik (SIRT) zur W-SIRT weiterentwickelt. In der W-SIRT wird statt einer Einfachen eine Gewichtete Rückprojektion bei jeder Iteration verwendet, was eine bessere Konvergenz der W-SIRT gegenüber der SIRT zur Folge hat. Wie in anderen ET-Techniken auch, ist in der EHT für die Rekonstruktion des dreidimensionalen Tomogramms meist nur aus Projektionen innerhalb eines begrenzten Winkelbereichs möglich. Dies führt in den Tomogrammen zu einem sogenannten Missing Wedge, welcher neben dem Verlust von Au ösung auch Artefakte verursacht. Daher wird eine Methode vorgestellt, wie sich das Problem des Missing Wedge bei geeigneten Objekten durch Ausnutzung von Symmetrien entschärfen lässt. Das mittels EHT rekonstruierte 3D-Potential gibt Aufschluss über äußere (Morphologie) und innere Objektstruktur, sowie über das Mittlere Innere Potential (MIP) des Nanoobjektes. Dies wird am Beispiel von epitaktisch gewachsenen Nanodrähten (nanowires, NWs) aus GaAs und AlGaAs demonstriert. Anhand entsprechender Isopotentialflächen im 3D-Potential lässt sich die 3D-Morphologie studieren: Die Facetten an der Oberfläche der NWs erlauben Rückschlüsse über die dreidimensionale kristalline Struktur. Des Weiteren zeigt das rekonstruierte 3D-Potential eines AlGaAs/GaAs-Nanodrahtes deutlich dessen Kern/Schale-Struktur, da sich GaAs-Kern und AlGaAs-Schale bezüglich des MIP um 0.61 V unterscheiden. Im Falle dotierter Halbleiterstrukturen mit pn-Übergang (z.B. Transistoren) bietet die mittels EHT rekonstruierte Potentialverteilung auch Zugang zur Diffusionsspannung am pn-Übergang. Diese Größe kann ohne Projektions- und Oberflächeneffekte (dead layer) im Innern der Probe gemessen und in 3D analysiert werden. Für drei nadelförmig mittels FIB präparierte Proben (Nadeln) werden die Diffusionsspannungen bestimmt: Die Messungen ergeben für zwei Silizium-Nadeln jeweils 1.0 V und 0.5 V, sowie für eine Germanium-Nadel 0.4 V. Im Falle der GaAs- und AlGaAs-Nanodrähte reduziert der Missing Wedge die Genauigkeit der mittels EHT gewonnenen 3D-Potentiale merklich, insbesondere bezüglich der MIP-Bestimmung. Dagegen stimmen die Potentiale der Germanium und Silizium-Nadeln exzellent mit theoretischen Werten überein, wenn der Missing Wedge durch Ausnutzung der Objektsymmetrie behoben wird. / Revealing the essential structure-property relation of materials on a (sub-)nanometer scale requires a powerful Transmission Electron Microscopy (TEM). In this context, the intrinsic electrostatic and magnetic fields, which are related to the materials nano structure, play a crucial role. Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography (EH) with electron tomography (ET), provides an unique access to this information, because it allows the quantitative 3D mapping of electrostatic potentials and magnetostatic vector fields with a resolution of a few (5-10) nanometers. The reconstruction of the 3D potential starts with the acquisition of a hologram tilt series in the electron microscope. The subsequent reconstruction of the electron object wave from each hologram yields a tilt series in both amplitude and phase images. Finally, the phase tilt series is used for the tomographic reconstruction of the 3D potential. In this work, EHT has been developed from a manual and time-consuming approach to a widely automated method. The automation includes the development of the first software package for computer-controlled acquisition of holographic tilt series (THOMAS), a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by more than a factor of three, compared to the previous, completely manual approaches. Meanwhile, the acquisition takes 2-3 hours on average. In addition, the holographic reconstruction and corresponding methods for removal of artefacts in the phase images have been automated, now including one-step procedures for complete tilt series. Furthermore, specific self-developed alignment routines facilitate the precise correction of displacements within the tilt series of the rod-shaped samples, which are investigated here (e.g. nanowires, FIB needles). For tomographic reconstruction, a W-SIRT algorithm based on a standard simultaneous iterative reconstruction technique (SIRT) has been developed. Within the W-SIRT, a weighted back-projection instead of a simple back-projection is used. This yields a better convergence of the W-SIRT compared to the SIRT. In most cases in EHT (likewise in other ET techniques), the reconstruction of the three-dimensional tomogram is only feasible from projections covering a limited tilt range. This leads to a so-called missing wedge in the tomogram, which causes not only a lower resolution but also artefacts. Therefore, a method is presented, how to solve the missing wedge problem for suitable objects by exploiting symmetries. The 3D potential offers the outer (morphology) and inner structure, as well as the mean inner potential (MIP) of the nano object. This is shown by means of EHT on epitaxially grown nanowires (NWs) of GaAs and AlGaAs. The 3D morphology is studied using the corresponding iso-surfaces of the 3D potential: The facets on the nanowires surface allow conclusions about the crystalline structure. Moreover, the reconstructed 3D potential of a AlGaAs/GaAs NW clearly shows its core/shell structure due to the MIP difference between GaAs and AlGaAs of 0.61 V. In case of doped semiconductor structures with pn-junctions (e.g. transistors) the potential distribution, reconstructed by EHT, also provides access to the built-in voltage across the pn-junction. The built-in voltage can be analyzed in 3D and measured without projection and surface effects (e.g. dead layers) within the sample. The measurements in three needle-shaped specimens, prepared by FIB, yield for two silicon needles 1.0 V and 0.5 V, and for a germanium needle 0.4 V. In case of the GaAs and AlGaAs nanowires the missing wedge reduces the accuracy of the reconstructed 3D potentials significantly, in particular in terms of MIP determination. However, the potentials of the silicon and germanium needles are in excellent agreement with theoretical values, when the object symmetry is exploited to fill-up the missing wedge.
75

Design Space Exploration for Building Automation Systems

Özlük, Ali Cemal 18 December 2013 (has links) (PDF)
In the building automation domain, there are gaps among various tasks related to design engineering. As a result created system designs must be adapted to the given requirements on system functionality, which is related to increased costs and engineering effort than planned. For this reason standards are prepared to enable a coordination among these tasks by providing guidelines and unified artifacts for the design. Moreover, a huge variety of prefabricated devices offered from different manufacturers on the market for building automation that realize building automation functions by preprogrammed software components. Current methods for design creation do not consider this variety and design solution is limited to product lines of a few manufacturers and expertise of system integrators. Correspondingly, this results in design solutions of a limited quality. Thus, a great optimization potential of the quality of design solutions and coordination of tasks related to design engineering arises. For given design requirements, the existence of a high number of devices that realize required functions leads to a combinatorial explosion of design alternatives at different price and quality levels. Finding optimal design alternatives is a hard problem to which a new solution method is proposed based on heuristical approaches. By integrating problem specific knowledge into algorithms based on heuristics, a promisingly high optimization performance is achieved. Further, optimization algorithms are conceived to consider a set of flexibly defined quality criteria specified by users and achieve system design solutions of high quality. In order to realize this idea, optimization algorithms are proposed in this thesis based on goal-oriented operations that achieve a balanced convergence and exploration behavior for a search in the design space applied in different strategies. Further, a component model is proposed that enables a seamless integration of design engineering tasks according to the related standards and application of optimization algorithms.
76

Konzepte der internetbasierten Gerätesteuerung

Hoffmann, Gunnar 16 December 2011 (has links) (PDF)
Auf dem Gebiet der Gerätesteuerung existieren zahlreiche Insellösungen, die den Anspruch nach generischer Eignung nicht erfüllen. In besonderer Weise defizitär ist der Mangel an ganzheitlichen, offenen Frameworks, bei denen die Autokonfiguration, die Gerätezuordenbarkeit vor Ort, die Geräteüberwachbarkeit, die Inter-Gerätekommunikation und die Automatisierbarkeit von Abläufen Berücksichtigung finden. Vor diesem Hintergrund öffnet die Arbeit mit einer Bestandsaufnahme von Technologien, die Einzelanforderungen der generischen Gerätesteuerung erfüllen. Sie bilden im weiteren Verlauf das potentielle Architekturfundament. Der Betrachtungsrahmen wird hierbei soweit ausgedehnt, dass relevante Verfahrensschritte vom Geräteanschluss bis zur automatisierten Generierung von User Interfaces abgedeckt sind. Unter Rückgriff auf ausgewählte Technologien wird ein zweigliedriger Ansatz vorgestellt, der ein sehr breites Spektrum potentieller Steuergeräte unterstützt und gleichzeitig technologieoffen im Hinblick auf die Autogenerierung von User Interfaces ist. Höchstmögliche Funktionalität wird durch die Beschreibungssprache Device XML (DevXML) erreicht, deren Entwicklung einen Schwerpunkt der Arbeit darstellte. In Anlehnung an die etablierte Petrinetztheorie werden Abhängigkeiten zwischen Zuständen und Funktionen formal beschrieben. Das Sprachvokabular von DevXML ermöglicht hierauf aufbauend Regeldefinitionen mit dem Ziel der Ablaufautomatisierung. Das entworfene Framework wurde anhand von insgesamt elf praktischen Beispielen wie z.B. einem Schalter, einem Heizungsmodul, einem Multimeter bis hin zu virtuellen Geräten erfolgreich verifiziert.
77

FC³ - 1st Fuel Cell Conference Chemnitz 2019 - Saubere Antriebe. Effizient Produziert.: Wissenschaftliche Beiträge und Präsentationen der ersten Brennstoffzellenkonferenz am 26. und 27. November 2019 in Chemnitz

von Unwerth, Thomas, Drossel, Welf-Guntram 25 November 2019 (has links)
Die erste Chemnitzer Brennstoffzellenkonferenz wurde vom Innovationscluster HZwo und dem Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU durchgeführt. Ausgewählte Fachbeiträge und Präsentationen werden in Form eines Tagungsbandes veröffentlicht. / The first fuel cell conference was initiated by the innovation cluster HZwo and the Fraunhofer Institute for Machine Tools and Forming Technology. Selected lectures and presentations are published in the conference proceedings.
78

Konzepte der internetbasierten Gerätesteuerung

Hoffmann, Gunnar 05 December 2011 (has links)
Auf dem Gebiet der Gerätesteuerung existieren zahlreiche Insellösungen, die den Anspruch nach generischer Eignung nicht erfüllen. In besonderer Weise defizitär ist der Mangel an ganzheitlichen, offenen Frameworks, bei denen die Autokonfiguration, die Gerätezuordenbarkeit vor Ort, die Geräteüberwachbarkeit, die Inter-Gerätekommunikation und die Automatisierbarkeit von Abläufen Berücksichtigung finden. Vor diesem Hintergrund öffnet die Arbeit mit einer Bestandsaufnahme von Technologien, die Einzelanforderungen der generischen Gerätesteuerung erfüllen. Sie bilden im weiteren Verlauf das potentielle Architekturfundament. Der Betrachtungsrahmen wird hierbei soweit ausgedehnt, dass relevante Verfahrensschritte vom Geräteanschluss bis zur automatisierten Generierung von User Interfaces abgedeckt sind. Unter Rückgriff auf ausgewählte Technologien wird ein zweigliedriger Ansatz vorgestellt, der ein sehr breites Spektrum potentieller Steuergeräte unterstützt und gleichzeitig technologieoffen im Hinblick auf die Autogenerierung von User Interfaces ist. Höchstmögliche Funktionalität wird durch die Beschreibungssprache Device XML (DevXML) erreicht, deren Entwicklung einen Schwerpunkt der Arbeit darstellte. In Anlehnung an die etablierte Petrinetztheorie werden Abhängigkeiten zwischen Zuständen und Funktionen formal beschrieben. Das Sprachvokabular von DevXML ermöglicht hierauf aufbauend Regeldefinitionen mit dem Ziel der Ablaufautomatisierung. Das entworfene Framework wurde anhand von insgesamt elf praktischen Beispielen wie z.B. einem Schalter, einem Heizungsmodul, einem Multimeter bis hin zu virtuellen Geräten erfolgreich verifiziert.
79

Elektronen-Holographische Tomographie zur 3D-Abbildung von elektrostatischen Potentialen in Nanostrukturen: Electron Holographic Tomography for the 3D Mapping of Electrostatic Potentials in Nano-Structures

Wolf, Daniel 04 February 2011 (has links)
Die Aufklärung der grundlegenden Struktur-Eigenschaft-Beziehung von Materialen auf der (Sub-)Nanometerskala benötigt eine leistungsfähige Transmissionselektronenmikroskopie. Dabei spielen insbesondere die durch die Nanostruktur hervorgerufenen intrinsischen elektrischen und magnetischen Feldverteilungen eine entscheidende Rolle. Die Elektronen-Holographische Tomographie (EHT), d.h. die Kombination von off-axis Elektronenholographie (EH) und Elektronentomographie (ET), bietet einen einzigartigen Zugang zu dieser Information, weil sie die quantitative 3D-Abbildung elektrostatischer Potentiale und magnetostatischer Vektorfelder bei einer Auflösung von wenigen (5-10) Nanometern ermöglicht. Für die Rekonstruktion des 3D-Potentials erfolgt zunächst die Aufzeichnung einer Kippserie von Hologrammen im Elektronenmikroskop. Durch die anschließende Rekonstruktion der Objektwelle aus jedem Hologramm liegt eine Amplituden- und eine Phasenkippserie vor. Die Phasenkippserie wird schließlich zur tomographischen 3D-Rekonstruktion des elektrostatischen Potentials verwendet. Im Rahmen dieser Arbeit wurde die EHT von einer manuell aufwendigen zu einer weitestgehend automatisierten Methode entwickelt. Die Automatisierung beinhaltet die Entwicklung des ersten Softwarepaketes zur computergestützten Aufzeichnung einer holographischen Kippserie (THOMAS). Verglichen mit rein manueller Vorgehensweise verkürzt sich mit THOMAS die Dauer für die Aufnahme einer holographischen Kippserie, bestehend aus Objekt- und Leerhologrammen, auf weniger als ein Drittel. Mittlerweile beträgt die Aufnahmezeit im Mittel etwa 2-3 Stunden. Auch die holographische Rekonstruktion und zugehörige Operationen zur Entfernung von Artefakten in den Phasenbildern ist durch entsprechende Prozeduren, welche für eine gesamte Kippserie in einem Schritt anwendbar sind, automatisiert. Zudem ermöglichen erst spezielle selbstentwickelte Ausrichtungsmethoden die exakte Verschiebungskorrektur von Kippserien der hier untersuchten stabförmigen Objekte (Nanodrähte, FIB-präparierte Nadeln). Für die tomographische Rekonstruktion wurde in dieser Arbeit die Simultane Iterative Rekonstruktionstechnik (SIRT) zur W-SIRT weiterentwickelt. In der W-SIRT wird statt einer Einfachen eine Gewichtete Rückprojektion bei jeder Iteration verwendet, was eine bessere Konvergenz der W-SIRT gegenüber der SIRT zur Folge hat. Wie in anderen ET-Techniken auch, ist in der EHT für die Rekonstruktion des dreidimensionalen Tomogramms meist nur aus Projektionen innerhalb eines begrenzten Winkelbereichs möglich. Dies führt in den Tomogrammen zu einem sogenannten Missing Wedge, welcher neben dem Verlust von Au ösung auch Artefakte verursacht. Daher wird eine Methode vorgestellt, wie sich das Problem des Missing Wedge bei geeigneten Objekten durch Ausnutzung von Symmetrien entschärfen lässt. Das mittels EHT rekonstruierte 3D-Potential gibt Aufschluss über äußere (Morphologie) und innere Objektstruktur, sowie über das Mittlere Innere Potential (MIP) des Nanoobjektes. Dies wird am Beispiel von epitaktisch gewachsenen Nanodrähten (nanowires, NWs) aus GaAs und AlGaAs demonstriert. Anhand entsprechender Isopotentialflächen im 3D-Potential lässt sich die 3D-Morphologie studieren: Die Facetten an der Oberfläche der NWs erlauben Rückschlüsse über die dreidimensionale kristalline Struktur. Des Weiteren zeigt das rekonstruierte 3D-Potential eines AlGaAs/GaAs-Nanodrahtes deutlich dessen Kern/Schale-Struktur, da sich GaAs-Kern und AlGaAs-Schale bezüglich des MIP um 0.61 V unterscheiden. Im Falle dotierter Halbleiterstrukturen mit pn-Übergang (z.B. Transistoren) bietet die mittels EHT rekonstruierte Potentialverteilung auch Zugang zur Diffusionsspannung am pn-Übergang. Diese Größe kann ohne Projektions- und Oberflächeneffekte (dead layer) im Innern der Probe gemessen und in 3D analysiert werden. Für drei nadelförmig mittels FIB präparierte Proben (Nadeln) werden die Diffusionsspannungen bestimmt: Die Messungen ergeben für zwei Silizium-Nadeln jeweils 1.0 V und 0.5 V, sowie für eine Germanium-Nadel 0.4 V. Im Falle der GaAs- und AlGaAs-Nanodrähte reduziert der Missing Wedge die Genauigkeit der mittels EHT gewonnenen 3D-Potentiale merklich, insbesondere bezüglich der MIP-Bestimmung. Dagegen stimmen die Potentiale der Germanium und Silizium-Nadeln exzellent mit theoretischen Werten überein, wenn der Missing Wedge durch Ausnutzung der Objektsymmetrie behoben wird.:Inhaltsverzeichnis 1. Einleitung 2. Grundlagen der TEM 2.1. Elastische Elektron-Objekt-Wechselwirkung 2.1.1. 3D-Potentialverteilung im Festkörper und Mittleres Inneres Potential (MIP) 2.1.2. Elektrische Phasenschiebung 2.1.3. Magnetische Phasenschiebung 2.1.4. Amplitudenkontrast 2.2. Abbildungstheorie 2.2.1. Abbildung durch ideale Linse 2.2.2. Abbildung durch fehlerbehaftete Linse 2.2.3. Partiell kohärente Abbildung durch fehlerbehaftete Linse 2.2.4. Abbildung schwacher Objekte 2.3. Zusammenfassung 3. Off-axis Elektronenholographie 3.1. Holographisches Prinzip 3.2. Aufzeichnung des Elektronenhologramms 3.3. Rekonstruktion der Bildwelle 3.4. Ein uss der Aberrationen 3.5. Stochastische Phasenschwankung 3.6. Stochastische Potentialschwankung und optimale Dicke für 2D-Abbildungen von Potentialen 3.7. Phase Unwrapping 3.7.1. Eindimensionales Phase Unwrapping 3.7.2. Goldsteins Branch-Cut Algorithmus 3.7.3. Flynns (Weighted) Minimum Discontinuity Approach (W)MDA 3.7.4. Anwendungsbeispiel 3.8. Zusammenfassung 4. Elektronentomographie 4.1. Ein-Achsen-Tomographie 4.2. Projektion 4.2.1. Die Radontransformation 4.2.2. Das Projektions-Schnitt-Theorem 4.2.3. TEM Abbildungsmodi und Projektionsbedingung für Tomographie 4.3. Rekonstruktion des Tomogramms 4.3.1. Gewichtete Rückprojektion 4.3.2. Simultane Iterative Rekonstruktions-Technik (SIRT) 4.3.3. Tomographische Auflösung 4.3.4. Missing Wedge 4.4. Automatisierte Elektronentomographie 4.5. Ausrichtung der Kippserie 4.5.1. Ausrichtung mittels Kreuzkorrelation 4.5.2. Ausrichtung anhand von Bezugspunkten 4.5.3. Ausrichtung ohne Bezugspunkte 4.6. 3D-Visualisierung 4.7. Rauschfilterung 4.8. Zusammenfassung 5. Holographische Tomographie 5.1. Vorarbeiten 5.2. Computergestützte Aufzeichnung einer holographischen Kippserie 5.2.1. Charakteristik des TEM Goniometers 5.2.2. Kalibrierung 5.2.3. Bestimmung des Euzentrischen Punktes und z-Korrektur in die Euzentrische Höhe 5.2.4. Optimale Position des Leerhologramms 5.2.5. Computergestützte Aufzeichnung 5.2.6. THOMAS 5.2.7. Zusammenfassung 5.3. Holographische Rekonstruktion 5.3.1. Beseitigung von Artefakten in Elektronenhologrammen 5.3.2. Rekonstruktion mit Sinc-Filter 5.3.3. Stabilität des Phasen-Offsets 5.3.4. Interaktives Unwrapping einer Phasenkippserie 5.4. Ausrichtung der Phasen-Kippserie 5.4.1. Manuelle Ausrichtung mithilfe von Bezugslinien 5.4.2. Manuelle Ausrichtung mithilfe der Schnittebenen 5.4.3. Bestimmung der Kippachse 5.4.4. Identifizierung dynamischer Phasenschiebungen 5.5. Tomographische Rekonstruktion mittels W-SIRT 5.5.1. W-SIRT - Implementierung 5.5.2. Gewichtungsfilter 5.5.3. Konvergenz 5.5.4. z-Auflösung bei Missing Wedge 5.5.5. Artefakte bei Missing Wedge 5.5.6. Konvergenz bei Missing Wedge 5.5.7. Lineare Korrektur bei Missing Wedge 5.5.8. Ausnutzung der Objektsymmetrie bei Missing Wedge 5.5.9. Einfluss von Rauschen 5.5.10. Einfluss dynamischer Effekte 5.5.11. Zusammenfassung 6. 3D-Abbildung elektrostatischer Potentiale 127 6.1. Experimentelle Details 6.2. Latexkugel 6.3. Dotierte Halbleiter 6.3.1. Nadel-Präparation mittels FIB 6.3.2. Dotierte Silizium-Nadeln 6.3.3. n-Dotierte Germanium-Nadel 6.3.4. Untersuchung der Diffusionsspannung 6.4. Halbleiter-Nanodrähte 6.4.1. GaAs-Nanodraht 6.4.2. GaAs/AlGaAs-Nanodraht 6.4.3. Bestimmung der Mittleren Inneren Potentiale 7. Zusammenfassung und Ausblick A. Anhang A.1. Näherung der Klein-Gordon Gleichung A.2. Herleitung der Phase-Grating Approximation A.3. Elongationsfaktor / Revealing the essential structure-property relation of materials on a (sub-)nanometer scale requires a powerful Transmission Electron Microscopy (TEM). In this context, the intrinsic electrostatic and magnetic fields, which are related to the materials nano structure, play a crucial role. Electron-holographic tomography (EHT), that is, the combination of off-axis electron holography (EH) with electron tomography (ET), provides an unique access to this information, because it allows the quantitative 3D mapping of electrostatic potentials and magnetostatic vector fields with a resolution of a few (5-10) nanometers. The reconstruction of the 3D potential starts with the acquisition of a hologram tilt series in the electron microscope. The subsequent reconstruction of the electron object wave from each hologram yields a tilt series in both amplitude and phase images. Finally, the phase tilt series is used for the tomographic reconstruction of the 3D potential. In this work, EHT has been developed from a manual and time-consuming approach to a widely automated method. The automation includes the development of the first software package for computer-controlled acquisition of holographic tilt series (THOMAS), a prerequisite for efficient data collection. Using THOMAS, the acquisition time for a holographic tilt series, consisting of object and reference holograms, is reduced by more than a factor of three, compared to the previous, completely manual approaches. Meanwhile, the acquisition takes 2-3 hours on average. In addition, the holographic reconstruction and corresponding methods for removal of artefacts in the phase images have been automated, now including one-step procedures for complete tilt series. Furthermore, specific self-developed alignment routines facilitate the precise correction of displacements within the tilt series of the rod-shaped samples, which are investigated here (e.g. nanowires, FIB needles). For tomographic reconstruction, a W-SIRT algorithm based on a standard simultaneous iterative reconstruction technique (SIRT) has been developed. Within the W-SIRT, a weighted back-projection instead of a simple back-projection is used. This yields a better convergence of the W-SIRT compared to the SIRT. In most cases in EHT (likewise in other ET techniques), the reconstruction of the three-dimensional tomogram is only feasible from projections covering a limited tilt range. This leads to a so-called missing wedge in the tomogram, which causes not only a lower resolution but also artefacts. Therefore, a method is presented, how to solve the missing wedge problem for suitable objects by exploiting symmetries. The 3D potential offers the outer (morphology) and inner structure, as well as the mean inner potential (MIP) of the nano object. This is shown by means of EHT on epitaxially grown nanowires (NWs) of GaAs and AlGaAs. The 3D morphology is studied using the corresponding iso-surfaces of the 3D potential: The facets on the nanowires surface allow conclusions about the crystalline structure. Moreover, the reconstructed 3D potential of a AlGaAs/GaAs NW clearly shows its core/shell structure due to the MIP difference between GaAs and AlGaAs of 0.61 V. In case of doped semiconductor structures with pn-junctions (e.g. transistors) the potential distribution, reconstructed by EHT, also provides access to the built-in voltage across the pn-junction. The built-in voltage can be analyzed in 3D and measured without projection and surface effects (e.g. dead layers) within the sample. The measurements in three needle-shaped specimens, prepared by FIB, yield for two silicon needles 1.0 V and 0.5 V, and for a germanium needle 0.4 V. In case of the GaAs and AlGaAs nanowires the missing wedge reduces the accuracy of the reconstructed 3D potentials significantly, in particular in terms of MIP determination. However, the potentials of the silicon and germanium needles are in excellent agreement with theoretical values, when the object symmetry is exploited to fill-up the missing wedge.:Inhaltsverzeichnis 1. Einleitung 2. Grundlagen der TEM 2.1. Elastische Elektron-Objekt-Wechselwirkung 2.1.1. 3D-Potentialverteilung im Festkörper und Mittleres Inneres Potential (MIP) 2.1.2. Elektrische Phasenschiebung 2.1.3. Magnetische Phasenschiebung 2.1.4. Amplitudenkontrast 2.2. Abbildungstheorie 2.2.1. Abbildung durch ideale Linse 2.2.2. Abbildung durch fehlerbehaftete Linse 2.2.3. Partiell kohärente Abbildung durch fehlerbehaftete Linse 2.2.4. Abbildung schwacher Objekte 2.3. Zusammenfassung 3. Off-axis Elektronenholographie 3.1. Holographisches Prinzip 3.2. Aufzeichnung des Elektronenhologramms 3.3. Rekonstruktion der Bildwelle 3.4. Ein uss der Aberrationen 3.5. Stochastische Phasenschwankung 3.6. Stochastische Potentialschwankung und optimale Dicke für 2D-Abbildungen von Potentialen 3.7. Phase Unwrapping 3.7.1. Eindimensionales Phase Unwrapping 3.7.2. Goldsteins Branch-Cut Algorithmus 3.7.3. Flynns (Weighted) Minimum Discontinuity Approach (W)MDA 3.7.4. Anwendungsbeispiel 3.8. Zusammenfassung 4. Elektronentomographie 4.1. Ein-Achsen-Tomographie 4.2. Projektion 4.2.1. Die Radontransformation 4.2.2. Das Projektions-Schnitt-Theorem 4.2.3. TEM Abbildungsmodi und Projektionsbedingung für Tomographie 4.3. Rekonstruktion des Tomogramms 4.3.1. Gewichtete Rückprojektion 4.3.2. Simultane Iterative Rekonstruktions-Technik (SIRT) 4.3.3. Tomographische Auflösung 4.3.4. Missing Wedge 4.4. Automatisierte Elektronentomographie 4.5. Ausrichtung der Kippserie 4.5.1. Ausrichtung mittels Kreuzkorrelation 4.5.2. Ausrichtung anhand von Bezugspunkten 4.5.3. Ausrichtung ohne Bezugspunkte 4.6. 3D-Visualisierung 4.7. Rauschfilterung 4.8. Zusammenfassung 5. Holographische Tomographie 5.1. Vorarbeiten 5.2. Computergestützte Aufzeichnung einer holographischen Kippserie 5.2.1. Charakteristik des TEM Goniometers 5.2.2. Kalibrierung 5.2.3. Bestimmung des Euzentrischen Punktes und z-Korrektur in die Euzentrische Höhe 5.2.4. Optimale Position des Leerhologramms 5.2.5. Computergestützte Aufzeichnung 5.2.6. THOMAS 5.2.7. Zusammenfassung 5.3. Holographische Rekonstruktion 5.3.1. Beseitigung von Artefakten in Elektronenhologrammen 5.3.2. Rekonstruktion mit Sinc-Filter 5.3.3. Stabilität des Phasen-Offsets 5.3.4. Interaktives Unwrapping einer Phasenkippserie 5.4. Ausrichtung der Phasen-Kippserie 5.4.1. Manuelle Ausrichtung mithilfe von Bezugslinien 5.4.2. Manuelle Ausrichtung mithilfe der Schnittebenen 5.4.3. Bestimmung der Kippachse 5.4.4. Identifizierung dynamischer Phasenschiebungen 5.5. Tomographische Rekonstruktion mittels W-SIRT 5.5.1. W-SIRT - Implementierung 5.5.2. Gewichtungsfilter 5.5.3. Konvergenz 5.5.4. z-Auflösung bei Missing Wedge 5.5.5. Artefakte bei Missing Wedge 5.5.6. Konvergenz bei Missing Wedge 5.5.7. Lineare Korrektur bei Missing Wedge 5.5.8. Ausnutzung der Objektsymmetrie bei Missing Wedge 5.5.9. Einfluss von Rauschen 5.5.10. Einfluss dynamischer Effekte 5.5.11. Zusammenfassung 6. 3D-Abbildung elektrostatischer Potentiale 127 6.1. Experimentelle Details 6.2. Latexkugel 6.3. Dotierte Halbleiter 6.3.1. Nadel-Präparation mittels FIB 6.3.2. Dotierte Silizium-Nadeln 6.3.3. n-Dotierte Germanium-Nadel 6.3.4. Untersuchung der Diffusionsspannung 6.4. Halbleiter-Nanodrähte 6.4.1. GaAs-Nanodraht 6.4.2. GaAs/AlGaAs-Nanodraht 6.4.3. Bestimmung der Mittleren Inneren Potentiale 7. Zusammenfassung und Ausblick A. Anhang A.1. Näherung der Klein-Gordon Gleichung A.2. Herleitung der Phase-Grating Approximation A.3. Elongationsfaktor
80

Automatisierungspotenzial von Stadtbiotopkartierungen durch Methoden der Fernerkundung

Bochow, Mathias 09 June 2010 (has links)
Die Stadtbiotopkartierung hat sich in Deutschland als die Methode zur Schaffung einer ökologischen Datenbasis für den urbanen Raum etabliert. Sie dient der Untersuchung naturschutzfachlicher Fragen, der Vertretung der Belange des Naturschutzes in zahlreichen räumlichen Planungsverfahren und ganz allgemein einer ökologisch orientierten Stadtplanung. Auf diese Weise kommen die Städte ihrem gesetzlichen Auftrag nach, Natur und Landschaft zu schützen, zu pflegen und zu entwickeln (§ 1 BNatSchG), den es explizit auch innerhalb der besiedelten Fläche zu erfüllen gilt. Ein Großteil der heute bestehenden 228 Stadtbiotoptypenkarten ist in der Etablierungsphase der Methode in den 80er Jahren entstanden und wurde häufig durch Landesmittel gefördert. Der Anteil der Städte, die jemals eine Aktualisierung durchgeführt haben, wird jedoch auf unter fünf Prozent geschätzt. Dies hängt vor allem mit dem hohen Kosten- und Zeitaufwand der Datenerhebung zusammen, die durch visuelle Interpretation von CIR-Luftbildern und durch Feldkartierungen erfolgt. Um die Aktualisierung von Stadtbiotoptypenkarten zu vereinfachen, wird in der vorliegenden Arbeit das Automatisierungspotenzial von Stadtbiotopkartierungen durch Nutzung von Fernerkundungsdaten untersucht. Der Kern der Arbeit besteht in der Entwicklung einer Methode, die einen wichtigen Arbeitsschritt der Stadtbiotopkartierung automatisiert durchführt: Die Erkennung des Biotoptyps von Biotopen. Darüber hinaus zeigt die Arbeit das Automatisierungspotenzial bei der flächenhaften Erhebung von quantitativen Parametern und Indikatoren zur ökologischen Bewertung von Stadtbiotopen auf. Durch die automatische Biotoptypenerkennung kann die Überprüfung und Aktualisierung einer Biotoptypenkarte in weiten Teilen der Stadt automatisiert erfolgen, wodurch der Zeitaufwand reduziert wird. Das entwickelte Verfahren kann in den bestehenden Ablauf der Stadtbiotopkartierung integriert werden, indem zunächst die Kartierung ausgewählter Biotoptypen automatisch erfolgt und die verbleibenden Flächen der Stadt durch visuelle Luftbildinterpretation und Feldbegehung überprüft und zugeordnet werden. Die thematische Einteilung der Biotoptypen orientiert sich im urbanen Raum in erster Linie an der anthropogenen Nutzung, da diese den dominierenden Faktor für die biologische Ausstattung der Biotope darstellt. Die entwickelte Methode eignet sich vor allem zur Erkennung von baulich geprägten Biotopen, da die Nutzung - und dadurch der Biotoptyp einer Fläche - durch eine automatische Analyse der Geoobjekte innerhalb der Biotopfläche ermittelt werden kann. Die Geoobjekte wiederum können durch eine Klassifizierung von multisensoralen Fernerkundungsdaten (hyperspektrale Flugzeugscannerdaten und digitale Oberflächenmodelle) identifiziert werden. Die Analyse der Geoobjekte und der urbanen Oberflächenarten innerhalb der Biotopfläche erfolgt anhand von räumlichen, morphologischen und quantitativen Merkmalen. Auf Basis dieser Merkmale wurden zwei Varianten eines automatischen Biotopklassifizierers entwickelt, die unter Verwendung von Fuzzy Logik und eines neu entwickelten, paarweise arbeitenden Maximum Likelihood Klassifizierers (pMLK) implementiert wurden. Für die bisher implementierten 10 Biotoptypen, die zusammen etwa die Hälfte des Stadtgebiets abdecken, wurde eine Erkennungsgenauigkeit von über 80 % ermittelt. Der pMLK wurde erfolgreich in zwei Städten (Berlin, Dresden) erprobt, wodurch seine Übertragbarkeit nachgewiesen werden konnte.

Page generated in 0.0754 seconds