• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 29
  • 10
  • 9
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 109
  • 50
  • 43
  • 38
  • 26
  • 25
  • 23
  • 20
  • 19
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Control of Dynamically Assisted Phase-shifting Transformers

Johansson, Nicklas January 2008 (has links)
In this thesis, controllers for power oscillation damping, transient stability improvement and power flow control by means of a Controlled Series Compensator (CSC) and and a Dynamic Power Flow Controller (DPFC) are proposed. These devices belong to the group of power system components referred to as Flexible AC Transmission System (FACTS) devices. The developed controllers use only quantities measured locally at the FACTS device as inputs, thereby avoiding the risk of interrupted communications associated with the use of remote signals for control. For power systems with one dominating, poorly damped inter-area power oscillation mode, it is shown that a simple generic system model can be used as a basis for damping- and power flow control design. The model for control of CSC includes two synchronous machine models representing the two grid areas participating in the oscillation and three reactance variables, representing the interconnecting transmission lines and the FACTS device. The model for control of DPFC is of the same type but it also includes the phase shift of the internal phase-shifting transformer of the DPFC. The key parameters of the generic grid models are adaptively set during the controller operation by estimation from the step responses in the FACTS line power to the changes in the line series reactance inserted by the FACTS device. The power oscillation damping controller is based on a time-discrete, non-linear approach which aims to damp the power oscillations and set the desired power flow on the FACTS line by means of two step changes in the line reactance separated in time by half an oscillation cycle. A verification of the proposed controllers was done by means of digital simulations using power system models of different complexities. The CSC and DPFC controllers were shown to significantly improve the small-signal- and transient stability in one four-machine system of a type commonly used to study inter-area oscillations. The CSC controller was also tested for 18 different contingencies in a 23-machine system, resulting in an improvement in both the system transient stability and the damping of the critical oscillation mode. / QC 20101112
102

Extension de l'approche par la courbe maitresse de la prédiction des durées de vie de réseaux d'indice complexes inscrits par UV dans les fibres / Extension of the master-curve approach for lifetimes predictions of complex componants based on fiber bragg gratings written by uv exposure

Costes, Sylvain 04 June 2013 (has links)
L’objectif principal de cette thèse était d’examiner dans quelle mesure il est possible d’étendre l’approche de la courbe maîtresse à des composants complexes afin de déterminer des conditions de déverminage et de réaliser une prédiction de durée de vie en fonction de ces conditions de déverminage. Nous avons considéré la stabilité d’un réseau dit élémentaire (réseau carré, à pas constant et droit) puis le problème de la stabilité (selon des critères spécifiques) des composants complexes: les CDC et les monofiltres GFF. Cette thèse a permis de décrire de façon rigoureuse, puis d'utiliser le cadre de travail VAREPA pour résoudre des problèmes issus de l'industrie de télécoms. A cet effet, des séries d’études de vieillissement accéléré sur des réseaux simples et complexes ont été menées. Un protocole de mesure permettant de déterminer les incertitudes de mesure a été mis au point afin de déterminer de façon fiable des intervalles de confiance sur les prédictions de durée de vie.Nous avons étudié les cinétiques de croissance des réseaux inscrits dans une fibre dédiée à l’inscription des CDC (Coreactive). Cette étude nous a permis de montrer que la réaction prédominante à l’origine des changements d’indice de réfraction est activée par une absorption à 1 photon. D’autre part, nous avons étendu le cadre de travail utilisé pour prédire l’effacement des réseaux (VAREPA) afin de rendre compte de leurs cinétiques d’inscription. Puis nous avons cherché à déterminer les conditions de passivation et à prédire la durée de vie des réseaux déverminés en présence d’hydrogène résiduelle (procédé industriel actuel). Pour cela, nous avons établi la courbe maîtresse de réseaux photoinscrits non déverminés puis nous avons validé les conditions de déverminage et les prédictions de durée de vie en construisant une nouvelle courbe maîtresse sur des réseaux déverminés.Nous avons étudié la stabilité thermique des réseaux inscrits dans une fibre hydrogénée dédiée aux futurs monofiltres GFF dans des conditions d’inscription similaires à celles de ces composants. Nous avons utilisé les courbes maîtresses établies à partir des réseaux élémentaires (mais apodisés) simplement dégazés « à froid » (ici 2jours à 50°C puis 2 jours à 110°C). Puis, nous avons fait vieillir le profil d’indice (cœur et gaine) d’un monofiltre GFF. Puis, nous avons recalculé la réponse spectrale de ce filtre vieilli (e.g. 30jours à 200°C) et nous l’avons comparé à des mesures expérimentales. Cette approche reste générale et permet de changer les conditions de déverminage au besoin. Cette étude nous a permis de mettre en évidence que la stabilité des variations d’indice photo-induites dans le cœur dépend peu de l’amplitude initiale de la modulation pour des valeurs comprises entre quelques 10-5 et 10-3. Du fait de la présence d’une gaine optique fortement photosensible (car fortement dopée en Ge), nous avons établi les courbes maîtresses des variations d’indice photo-inscrites dans le cœur et la gaine optique pour des valeurs allant jusque 10-3 dans le cœur et 3.10-3 dans la gaine. Nous avons ainsi obtenu des courbes maîtresses présentant le même k0 (fréquence d'essai, i.e facteur pré exponentiel) mais dont la forme est légèrement différente. La stabilité des variations d’indice est meilleure dans le cœur (moins dopé en Ge) que dans la gaine photosensible. Dans un second temps, nous avons cherché à déterminer les conditions de passivation et à prédire la durée de vie des réseaux déverminés à partir des réseaux de Bragg qualifiés d’élémentaires. Pour la première fois à notre connaissance, nous avons validé de façon fiable les conditions de passivation et les prédictions de durée de vie en construisant une nouvelle courbe maîtresse sur des monofiltres GFF préalablement déverminés. Conformément à la théorie, cette courbe maîtresse présente le même k0 et une forme similaire à celle établie au moyen de réseaux non déverminés, ce qui valide la fiabilité de nos prédictions. / The main objective of this thesis was to investigate how it is possible to extend the master curveapproach to complex components, in order to calculate annealing conditions and giving a life timeprediction according those annealing conditions. We studied the stability of a simple Bragg grating (noapodisation, constant pitch, no tilt). Then, we have been able to study the problem of the stability(according to specific criteria) of complex components: CDC and GFF monofilters. This thesis allowed toshow precisely what is the VAREPA framework and how to apply it to optical telecommunicationsproblems. To give an answer to the question of the possibility of extending the master curve approach tocomplex components, series of accelerate aging studies have been carried out. For this purpose, ameasurement protocol including the determination of the measurement uncertainty was developed. Thisprotocol allow, to determine confidence intervals on the life time prediction.We studied the kinetics of photo induced index growth in the optical fiber dedicated forfabrication of CDC (Coreactive). This study allowed us to demonstrate that the predominant reaction atthe origin of changes in refractive index is activated by a one photon absorption. On the other hand wehave extended the VEREPA framework used to predict the Bragg gratings erasure to take into account thegrowing kinetics. In a second step we tried to calculate annealing conditions in the presence of residualmolecular hydrogen and associated Bragg grating life time prediction. For that purpose we established themaster curve of photo-induced Bragg gratings without annealing, then we validated the annealingconditions and lifetime predictions by building a new master curve from aging of annealed Bragg gratings(in presence of residual hydrogen).We studied the thermal stability of hydrogenated fiber Bragg gratings dedicated to futuremonofiltres GFF in similar conditions to those components. We used master curves from basic Bragggratings (ie no apodisation, constant pitch, no tilt) simply out-gazed at "cold" temperature (here 2 days at50 ° C and 2 days at 110 ° C). Then the aging of the index profile of a GFF monofilter have beensimulated (index profile of the core and of the cladding, each of them having a different master curve).For that purpose the profile have been separated into 35 "basic" filters. Then the spectral response of thisaged monofilter (e.g. 30 days at 200°C) have been calculated and compared with experimentalmeasurements. The advantage of this approach is that it is general and allow to change the annealingconditions if needed. Firstly, this study allowed to highlight that the stability of photo-induced indexchanges in the core depend little on the initial amplitude modulation for values between several 10-5 and10-3. Secondly, due to the presence of a highly sensitive optical cladding (and therefore highly Ge doped),Master curves, of photo-induced index change in the core and the cladding have been established forvalues ranging up to 10-3 in the core and 3.10-3 in the cladding. Master Curves with the same k0 havebeen obtained but the elbow and the slopes are different. Stability of index variations in the core is better(less Ge doped) than in the photosensitive cladding. In a second step, from the basic Bragg gratings, theannealing conditions and the lifetime have been determined. For the first time to our knowledge, thereliably of the annealing conditions and the life time predictions have been validated by building a newmaster curve on annealed GFF monofilters. According to the theory, this master curve show the same k0as the one determined using non-annealed gratings. More beyond the elbow, the two curves are same,which validates the reliability of our predictions.
103

Digitally assisted control techniques for high performance switching DC-DC converters

Khan, Qadeer Ahmad 25 June 2014 (has links)
Digitally controlled switching DC-DC converters have recently emerged as an attractive alternative to conventional switching converters based on analog control techniques. This research focuses on eliminating the issues associated with the state of the art switching converters by proposing three novel control techniques: (1) a digitally controlled Buck-Boost converter uses a fully synthesized constant ON/OFF time-based fractional-N controller to regulate the output over a 3.3V-to-5.5V input voltage range and provides seamless transition from buck to buck-boost modes (2) a hysteretic buck converter that employs a highly digital hybrid voltage/current mode control to regulate output voltage and switching frequency independently (3) a 10MHz continuous time PID controller using time based signal processing which alleviates the speed limitations associated with conventional analog and digital. All the three techniques employ digitally assisted control techniques and require no external compensation thus making the controllers fully integrated and highly cost effective. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from June 25, 2012 - June 25, 2014
104

[en] ECONOMIC VALUE OF REACTIVE POWER DEVICES / [pt] MAPEAMENTO DO VALOR ECONÔMICO DOS EQUIPAMENTOS DE COMPENSAÇÃO DE POTÊNCIA REATIVA

IVO SERGIO BARAN 13 December 2002 (has links)
[pt] No novo modelo para o setor elétrico brasileiro a operação do sistema é de responsabilidade do Operador Independente do Sistema enquanto que a propriedade do equipamento e os gastos com a sua manutenção são de responsabilidade do agente prestador do serviço ancilar.Desta forma, o lucro do agente prestador do serviço ancilar de potência reativa será função do custo deste serviço uma vez que a sua remuneração é previamente definida pelo agente regulador. Dentro desta ótica os riscos operacionais dos equipamentos de compensação de potência reativa, se não forem convenientemente mitigados,poderão aumentar os gastos com a manutenção e o pagamento de multa pela indisponibilidade do equipamento.Riscos operacionais são situações de sistema que estão fora da responsabilidade do agente mas que poderão reduzir o seu faturamento.Esta dissertação descreve os riscos operacionais e faz algumas sugestões para proteger o agente da redução do seu faturamento. / [en] In the new brazilian deregulated electrical network, system operation is under Independent System Operator responsibility while the ancillary service agent is the owner of the reactive power equipment and, as a consequence, is responsible for its maintenance costs. In the new model, the profit of the agent is a function of the maintenance costs because his payment is previously defined by the authorities. The operational risks of the reactive power equipments, if not conveniently mitigated, may increase the maintenance frequency and may also result in the payment of a fee due to the equipment unavailability.Operational risks are events in the electrical transmission system that are not under the responsibility of the agent but may reduce his profits. This report describes these operational risks and makes some suggestions to protect the agent against the reduction in his profits.
105

Small Signal Stability Analysis of a Power System with a Grid Connected Wind Powered Permanent Magnet Synchronous Generator (PMSG)

Balibani, Siva Kumar January 2015 (has links) (PDF)
Small signal oscillation has been always a major concern in the operation of power systems. In a generator, the electromechanical coupling between the rotor and the rest of the system causes it to behave in a manner similar to a spring mass damper system. Following any disturbance, such as sudden change in loads, actuations in the output of turbine and faults etc. it exhibits an oscillatory behaviour around the equilibrium state. The use of fast acting high gain AVRs and evolution of large interconnected power systems with transfer of bulk power across weak transmission links have further aggravated the problem of these low frequency oscillations. Small oscillations in the range of about 0.1Hz to 3.5Hz can persist for long periods, limiting the power transfer capability of the transmission lines. These oscillations can be reduced by incorporating auxiliary controllers on generator excitation system. Power System Stabilizers (PSSs) were developed to produce additional damping by modulating the generator excitation voltage. Designing effective PSS for all operating conditions especially in large interconnected power systems still remains a difficult and challenging task. More and more power electronic based controllers have been and will be used in power systems. Many of these controllers such as Static Var Compensators (SVCs), Static Synchronous Compensators (STATCOMs) and Unified Power Flow Controllers (UPFCs) etc., are incorporated in power transmission networks to improve its operational capability. In addition, some of the energy storage systems such as Battery Energy Storage systems (BESS), Super conducting Magnetic Energy Storage System (SMES) as well large non-conventional energy sources are also increasingly being integrated with the power grid. With large integration of these devices, there is a significant impact on system stability, more importantly on small signal oscillatory instability of the power system. This thesis primarily focuses on impact of such devices on small signal oscillatory stability of the power systems. More specifically in this thesis small signal stability analysis of a Single Machine Infinite Bus (SMIB) system with a grid connected wind powered Permanent Magnet Synchronous Generator (PMSG) has been presented. A SMIB system has been purposely chosen so that general conclusions can be obtained on the behaviour of the embedded STATCOM/Energy Source (ES) system on system stability. With a better understanding of the impact of such a system it would be probably possible to analyze more complicated multimachine power system and their impact on system stability. Small signal model of the complete system which comprises the generator, transmission network, inter connecting STATCOM, the wind power generator and all associated controllers has been developed. The performances of the system following a small disturbance at various operating conditions have been analyzed. To obtain quantitative estimates of the damping and synchronizing torques generated in the system, expressions for damping and synchronizing torque clients have been developed. With these analyses, the relative impact of the STATCOM and STATCOM with ES on system performance have been assessed. It is shown that with active and reactive power modulation capabilities effective and efficient control of small signal oscillations in power systems can be achieved.
106

Controle de tensão e harmônicos por compensador estático de reativos com ajuste de parâmetros via redes neurais artificiais

Loureiro, Pedro da Cruz 16 April 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-06-09T12:11:11Z No. of bitstreams: 1 pedrodacruzloureiro.pdf: 1767688 bytes, checksum: 1fa1e4fbfaa6feaf5a5c88ea70df09d6 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-13T13:31:22Z (GMT) No. of bitstreams: 1 pedrodacruzloureiro.pdf: 1767688 bytes, checksum: 1fa1e4fbfaa6feaf5a5c88ea70df09d6 (MD5) / Made available in DSpace on 2016-07-13T13:31:22Z (GMT). No. of bitstreams: 1 pedrodacruzloureiro.pdf: 1767688 bytes, checksum: 1fa1e4fbfaa6feaf5a5c88ea70df09d6 (MD5) Previous issue date: 2012-04-16 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho é proposta a aplicação de redes neurais artificiais para ajuste de parâmetros de um compensador estático de reativos, para controle de tensão e harmônicos. Devido à intensa produção de correntes harmônicas e possíveis afundamentos de tensão em instalações industriais como o forno a arco, é necessário um sistema de controle eficiente e robusto. Além disso, os sistemas elétricos de potência se encontram em um cenário com a presença cada vez maior de geração distribuída, cargas não-lineares e forte tendência à operação no contexto das smartgrids e microgrids. Sendo assim, o suporte de reativos deve ser adequado a esses sistemas, podendo atuar de forma rápida, precisa e confiável. Uma possível solução é a utilização de um compensador estático de reativos (CER) com função adicional de filtragem no ponto onde se deseja controlar a tensão e a distorção harmônica. Entretanto, para o correto funcionamento, é necessário um sistema preciso para o ajuste dos parâmetros do CER, ou seja, determinar os ângulos de disparo dos tiristores e o número de bancos de capacitores a serem ligados. Neste trabalho é proposta uma estratégia de controle via redes neurais artificiais, treinadas para o reconhecimento de padrões de operação em regime permanente e definição da configuração do CER, conferindo inteligência ao equipamento. Os desenvolvimentos propostos foram implementados no ambiente MatLab®. A validação do método é feita através de simulações em sistemas-teste, presentes na literatura técnica, utilizando o fluxo de potência pelo método de injeção de correntes trifásico harmônico. Os resultados obtidos mostram as vantagens da utilização da estratégia proposta. / In this work, an artificial neural network-based static var compensator tuning is proposed for voltage and harmonic distortion control. Due to intense harmonic current injection and possible voltage sags produced by industrial facilities such as arc furnaces, an efficient robust control system is needed. Besides, electrical power systems face a new scenario with high penetration of distributed generation and non-linear loads and increased smart grid and microgrid trends. Therefore, the available reactive power sources must be able to provide system control in order to operate the system in a fast, accurate and reliable way. The application of a static var compensator (SVC) with additional filtering function at the controlled node is a possible solution. However, a precise SVC parameters tuning is needed, in order to make the system to work properly. In this work, a control strategy based on artificial neural networks is proposed. The neural networks are trained to recognize steadystate operating patterns and give the SVC adjustment. The proposed technique was implemented in the MatLab® environment. The methodology is validated by simulations in test-systems available in technical literature, using the three-phase harmonic current injection method power flow. Results show the advantages of the proposed methodology.
107

Voltage Stability Analysis of Unbalanced Power Systems

Santosh Kumar, A January 2016 (has links) (PDF)
The modern day power system is witnessing a tremendous change. There has been a rapid rise in the distributed generation, along with this the deregulation has resulted in a more complex system. The power demand is on a rise, the generation and trans-mission infrastructure hasn't yet adapted to this growing demand. The economic and operational constraints have forced the system to be operated close to its design limits, making the system vulnerable to disturbances and possible grid failure. This makes the study of voltage stability of the system important more than ever. Generally, voltage stability studies are carried on a single phase equivalent system assuming that the system is perfectly balanced. However, the three phase power system is not always in balanced state. There are a number of untransposed lines, single phase and double phase lines. This thesis deals with three phase voltage stability analysis, in particular the voltage stability index known as L-Index. The equivalent single phase analysis for voltage stability fails to work in case of any unbalance in the system or in presence of asymmetrical contingency. Moreover, as the system operators are giving importance to synchrophasor measurements, PMUs are being installed throughout the system. Hence, the three phase voltages can be obtained, making three phase analysis easier. To study the effect of unbalanced system on voltage stability a three phase L-Index based on traditional L-Index has been proposed. The proposed index takes into consideration the unbalance resulting due to untransposed transmission lines and unbalanced loads in the system. This index can handle any unbalance in the system and is much more realistic. To obtain bus voltages during unbalanced operation of the system a three phase decoupled Newton Raphson load ow was used. Reactive power distribution in a system can be altered using generators voltage set-ting, transformers OLTC settings and SVC settings. All these settings are usually in balanced mode i.e. all the phases have the same setting. Based on this reactive power optimization using LP technique on an equivalent single phase system is proposed. This method takes into account generator voltage settings, OLTC settings of transformers and SVC settings. The optimal settings so obtained are applied to corresponding three phase system. The effectiveness of the optimal settings during unbalanced scenario is studied. This method ensures better voltage pro les and decrease in power loss. Case studies of the proposed methods are carried on 12 bus and 24 bus EHV systems of southern Indian grid and a modified IEEE 30 bus system. Both balanced and unbalanced systems are studied and the results are compared.
108

Control, Modulation and Testing of High-Power Pulse Width Modulated Converters

Sivaprasad Sreenivasa, J January 2013 (has links) (PDF)
Experimental research on high-power converters, particularly in an academic environment, faces severe infrastructural constraints. Usually, power source and loads of required ratings are not available. Further, more importantly, the energy consumption is huge. One possibility is to establish an experimental research platform, comprising of a network of high-power converters, through which power is circulated and which draws only the losses from the mains. This work deals with the establishment of a circulating power test set-up, comprising of two line-side PWM converters, inclusive of control and modulation methods for the two converters. Two types of circulating power test setups are developed. In the first setup, the converters are connected in parallel, on ac as well as dc sides, such that real and/or reactive power is circulated between them. In the second test setup, the dc buses of the converters are separated; hence, only reactive power circulation is possible. These setups are used to conduct heat-run tests with low energy expenditure on the PWM converters at various operating conditions up to power levels of 150 kVA. Further, these are used to validate analytically-evaluated thermal characteristics of high-power PWM converters. A safe thermal limit is derived for such converters in terms of apparent power (kVA) handled, power factor and switching frequency. The effects of voltage sag and of unequal current sharing between parallel IGBT modules on the safe thermal limit are studied. While the power drawn by the circulating-power setup from the grid is much lower than the ratings of the individual converters, the harmonic injection into the mains by the setup could be significant since the harmonics drawn by both converters tend to add up. This thesis investigates carrier interleaving to improve the waveform quality of grid current, drawn by the circulating-power test setup. The study of carrier interleaving is quite general and covers various applications of parallel-connected converters such as unity power factor rectification, static reactive power compensation and grid-connected renewable energy systems. In literature, carrier interleaving has been employed mainly for unity power factor rectifiers, sharing a common dc load equally. In such case, the fundamental components of the terminal voltages of the parallel converters are equal. However, when the power sharing between the two converters is unequal, or when power is circulated between the two converters, the terminal voltages of the two converters are not equal. A method to estimate rms grid current ripple, drawn by parallel-connected converters with equal and/or unequal terminal voltages, in a synchronous reference frame is presented. Further, the influence of carrier interleaving on the rms grid current ripple is studied. The optimum interleaving angle, which minimizes the rms grid current ripple under various applications, is investigated. This angle is found to be a function of modulation index of the converters in the equal terminal voltages case. In the unequal terminal voltages case, the optimum interleaving angle is shown to be a function of the average modulation index of the two parallel converters. The effect of carrier interleaving is experimentally studied on the reactive power circulation setup at different values of kVA and different dc bus voltages. The grid current ripple is measured for different values of interleaving angle. It is found experimentally that the optimum interleaving angle reduces the rms grid current ripple by between 37% and 48%, as compared without interleaving, at various operating conditions. Further, the reactive power circulation test set-up is used to evaluate and compare power conversion losses corresponding to different PWM techniques such as conventional space-vector PWM (CSVPWM), bus-clamping PWM (BCPWM) and advanced bus-clamping PWM methods for static reactive power compensator (STATCOM) application at high power levels. It is demonstrated theoretically as well as experimentally that an advanced bus-clamping PWM method, termed minimum switching loss PWM (MSLPWM), leads to significantly lower power conversion loss than CSVPWM and BCPWM techniques at a given average switching frequency.
109

Control of transmission system power flows

Kreikebaum, Frank Karl 13 January 2014 (has links)
Power flow (PF) control can increase the utilization of the transmission system and connect lower cost generation with load. While PF controllers have demonstrated the ability to realize dynamic PF control for more than 25 years, PF control has been sparsely implemented. This research re-examines PF control in light of the recent development of fractionally-rated PF controllers and the incremental power flow (IPF) control concept. IPF control is the transfer of an incremental quantity of power from a specified source bus to specified destination bus along a specified path without influencing power flows on circuits outside of the path. The objectives of the research are to develop power system operation and planning methods compatible with IPF control, test the technical viability of IPF control, develop transmission planning frameworks leveraging PF and IPF control, develop power system operation and planning tools compatible with PF control, and quantify the impacts of PF and IPF control on multi-decade transmission planning. The results suggest that planning and operation of the power system are feasible with PF controllers and may lead to cost savings. The proposed planning frameworks may incent transmission investment and be compatible with the existing transmission planning process. If the results of the planning tool demonstration scale to the national level, the annual savings in electricity expenditures would be $13 billion per year (2010$). The proposed incremental packetized energy concept may facilitate a reduction in the environmental impact of energy consumption and lead to additional cost savings.

Page generated in 0.0849 seconds