171 |
Tumor suppressive effects of the Beta-2 adrenergic receptor and the small GTPase RhoBCarie, Adam E. January 2008 (has links)
Dissertation (Ph.D.)--University of South Florida, 2008. / Title from PDF of title page. Document formatted into pages; contains 201 pages. Includes vita. Includes bibliographical references.
|
172 |
ATP induced intracellular calcium response and purinergic signalling in cultured suburothelial myofibroblasts of the human bladder: ATP induced intracellular calcium response and purinergic signalling in cultured suburothelial myofibroblasts of thehuman bladderCheng, Sheng 22 May 2012 (has links)
Suburothelial myofibroblasts (sMF) are located underneath the urothelium in close proximity to afferent nerves and show spontaneous calcium activity in vivo and in vitro. They express purinergic receptors and calcium transients can be evoked by ATP. Therefore they are supposed to be involved in afferent signaling of the bladder fullness. Myofibroblast cultures, established from cystectomies, were challenged by exogenous ATP in presence or absence of purinergic antagonist. Fura-2 calcium imaging was used to monitor ATP (10-16 to 10-4 mol/l) induced alterations of calcium activity. Purinergic receptors (P2X1, P2X2, P2X3) were analysed by confocal immunofluorescence. We found spontaneous calcium activity in 55.18% ± 1.65 (mean ± SEM) of the sMF (N=48 experiments). ATP significantly increased calcium activity even at 10-16 mol/l. The calcium transients were partially attenuated by subtype selective antagonist (TNP-ATP, 1μM; A-317491, 1μM), and were mimicked by the P2X1, P2X3 selective agonist α,β-methylene ATP. The expression of purinergic receptor subtypes in sMF was confirmed by immunofluorescence. Our experiments demonstrate for the first time that ATP can modulate spontaneous activity and induce intracellular Ca2+ response in cultured sMF at very low concentrations, most likely involving ionotropic P2X receptors. These findings support the notion that sMF are able to register bladder fullness very sensitively, which predestines them for the modulation of the afferent bladder signaling in normal and pathological conditions.:1. Introduction............................................................................ 1
1.1. Anatomy and histology of the human urinary bladder..................... 1
1.1.1. Anatomy of the human urinary bladder..................................... 1
1.1.2. Structure of the human urinary bladder wall............................... 2
1.2. Normal bladder function and bladder dysfunction.......................... 3
1.2.1 Normal bladder function......................................................... 3
1.2.2 Sensory aspect.................................................................... 4
1.2.3 Overactivity or hypersensitivity of bladder.................................. 5
1.3 The role of functional cell types and interaction in urinary bladder... 6
1.3.1 The role of urothelium.......................................................... 7 1.3.2Theroleofsuburotheliamyofibroblast...................................... 7 1.3.3Theroleofdetrusorsmoothmusclecells.................................. 9
1.3.4 Possible interactions in urinary bladder cell types........................ 10
1.4 ATP function and Purinergic signalling in bladder........................... 11
1.5 Spontaneous activity of bladder................................................... 13
2. Objective.................................................................................. 15
3. Material and methods............................................................... 16
3.1. Ethics Statement........................................................................ 16
3.2. Cell preparation.......................................................................... 16
3.3. Solutions and chemicals............................................................. 19
3.4. Intracellular calcium measurements............................................. 20
2.4.1. Preparing cells for Calcium Imaging.......................................... 20
2.4.2. Preparing workspace of calcium imaging................................... 20
2.4.3. Calcium imaging recording...................................................... 22
3.5 Data analysis with automated Fluorescence analysis..................... 22
3.6 Confocal Immunofluorescence.................................................... 25
3.7 Statistics................................................................................. 26
4. Results.................................................................................. 27
4.1 Spontaneous calcium activity of sMF........................................... 27
4.2 ATP effects on calcium response in sMF...................................... 27
4.3 Analysis of purinergic receptors involved.................................... 30
3.3.1 Agonist stimulation.............................................................. 30
3.3.2 Signal inhibition by specific antagonists................................... 31
4.4 Confocal immunofluorescence of purinergic receptors.................. 32
5. Discussion............................................................................. 34
5.1 Myofibroblast identification....................................................... 34
5.2 Spontaneous activity in the bladder............................................ 36
5.3 ATP modulated calcium activity in sMF....................................... 37
5.4 purinergic signalling in sMF........................................................ 39
6. Summary................................................................................ 42
7. References.............................................................................. 45 Declaration............................................................................. 50 Acknowledgements................................................................. 51
|
173 |
Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injuryMardaryev, Andrei N., Meier, N., Poterlowicz, Krzysztof, Sharov, A.A., Sharova, T.Y., Ahmed, Mohammed I., Rapisarda, Valentina, Lewis, Christopher J., Fessing, Michael Y., Ruenger, T.M., Bhawan, J., Werner, S., Paus, R., Botchkarev, Vladimir A. January 2011 (has links)
No / The Lhx2 transcription factor plays essential roles in morphogenesis and patterning of ectodermal derivatives as well as in controlling stem cell activity. Here, we show that during murine skin morphogenesis, Lhx2 is expressed in the hair follicle (HF) buds, whereas in postnatal telogen HFs Lhx2(+) cells reside in the stem cell-enriched epithelial compartments (bulge, secondary hair germ) and co-express selected stem cell markers (Sox9, Tcf4 and Lgr5). Remarkably, Lhx2(+) cells represent the vast majority of cells in the bulge and secondary hair germ that proliferate in response to skin injury. This is functionally important, as wound re-epithelization is significantly retarded in heterozygous Lhx2 knockout (+/-) mice, whereas anagen onset in the HFs located closely to the wound is accelerated compared with wild-type mice. Cell proliferation in the bulge and the number of Sox9(+) and Tcf4(+) cells in the HFs closely adjacent to the wound in Lhx2(+/-) mice are decreased in comparison with wild-type controls, whereas expression of Lgr5 and cell proliferation in the secondary hair germ are increased. Furthermore, acceleration of wound-induced anagen development in Lhx2(+/-) mice is inhibited by administration of Lgr5 siRNA. Finally, Chip-on-chip/ChIP-qPCR and reporter assay analyses identified Sox9, Tcf4 and Lgr5 as direct Lhx2 targets in keratinocytes. These data strongly suggest that Lhx2 positively regulates Sox9 and Tcf4 in the bulge cells, and promotes wound re-epithelization, whereas it simultaneously negatively regulates Lgr5 in the secondary hair germ and inhibits HF cycling. Thus, Lhx2 operates as an important regulator of epithelial stem cell activity in the skin response to injury.
|
174 |
Resveratrol modulates interleukin-1beta-induced phosphatidylinositol 3-kinase and nuclear factor kappaB signaling pathways in human tenocytesBusch, F., Mobasheri, A., Shayan, P., Lueders, C., Stahlmann, R., Shakibaei, M. January 2012 (has links)
No / Resveratrol, an activator of histone deacetylase Sirt-1, has been proposed to have beneficial health effects due to its antioxidant and anti-inflammatory properties. However, the mechanisms underlying the anti-inflammatory effects of resveratrol and the intracellular signaling pathways involved are poorly understood. An in vitro model of human tenocytes was used to examine the mechanism of resveratrol action on IL-1beta-mediated inflammatory signaling. Resveratrol suppressed IL-1beta-induced activation of NF-kappaB and PI3K in a dose- and time-dependent manner. Treatment with resveratrol enhanced the production of matrix components collagen types I and III, tenomodulin, and tenogenic transcription factor scleraxis, whereas it inhibited gene products involved in inflammation and apoptosis. IL-1beta-induced NF-kappaB and PI3K activation was inhibited by resveratrol or the inhibitors of PI3K (wortmannin), c-Src (PP1), and Akt (SH-5) through inhibition of IkappaB kinase, IkappaBalpha phosphorylation, and inhibition of nuclear translocation of NF-kappaB, suggesting that PI3K signaling pathway may be one of the signaling pathways inhibited by resveratrol to abrogate NF-kappaB activation. Inhibition of PI3K by wortmannin attenuated IL-1beta-induced Akt and p65 acetylation, suggesting that p65 is a downstream component of PI3K/Akt in these responses. The modulatory effects of resveratrol on IL-1beta-induced activation of NF-kappaB and PI3K were found to be mediated at least in part by the association between Sirt-1 and scleraxis and deacetylation of NF-kappaB and PI3K. Overall, these results demonstrate that activated Sirt-1 plays an essential role in the anti-inflammatory effects of resveratrol and this may be mediated at least in part through inhibition/deacetylation of PI3K and NF-kappaB.
|
175 |
Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signalingKickstein, E., Krauss, S., Thornhill, P., Rutschow, D., Zeller, R., Sharkey, J., Williamson, Ritchie, Fuchs, M., Kohler, A., Glossmann, H., Schneider, R., Sutherland, C., Schweiger, S. January 2010 (has links)
No / Hyperphosphorylated tau plays an important role in the formation of neurofibrillary tangles in brains of patients with Alzheimer's disease (AD) and related tauopathies and is a crucial factor in the pathogenesis of these disorders. Though diverse kinases have been implicated in tau phosphorylation, protein phosphatase 2A (PP2A) seems to be the major tau phosphatase. Using murine primary neurons from wild-type and human tau transgenic mice, we show that the antidiabetic drug metformin induces PP2A activity and reduces tau phosphorylation at PP2A-dependent epitopes in vitro and in vivo. This tau dephosphorylating potency can be blocked entirely by the PP2A inhibitors okadaic acid and fostriecin, confirming that PP2A is an important mediator of the observed effects. Surprisingly, metformin effects on PP2A activity and tau phosphorylation seem to be independent of AMPK activation, because in our experiments (i) metformin induces PP2A activity before and at lower levels than AMPK activity and (ii) the AMPK activator AICAR does not influence the phosphorylation of tau at the sites analyzed. Affinity chromatography and immunoprecipitation experiments together with PP2A activity assays indicate that metformin interferes with the association of the catalytic subunit of PP2A (PP2Ac) to the so-called MID1-alpha4 protein complex, which regulates the degradation of PP2Ac and thereby influences PP2A activity. In summary, our data suggest a potential beneficial role of biguanides such as metformin in the prophylaxis and/or therapy of AD.
|
176 |
Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritisShakibaei, M., Csaki, C., Nebrich, S., Mobasheri, A. January 2008 (has links)
No / Osteoarthritis is an inflammatory disease of load-bearing synovial joints that is currently treated with drugs that exhibit numerous side effects and are only temporarily effective on pain, the main symptom of the disease. Consequently, there is an acute need for novel, safe and more effective chemotherapeutic agents for the treatment of osteoarthritis and related arthritic diseases. Resveratrol is a phytoalexin stilbene produced naturally by plants including red grapes, peanuts and various berries. Recent research in various cell models has demonstrated that resveratrol is safe and has potent anti-inflammatory properties. However, its potential for treating arthritic conditions has not been explored. In this study we provide experimental evidence that resveratrol inhibits the expression of VEGF, MMP-3, MMP-9 and COX-2 in human articular chondrocytes stimulated with the pro-inflammatory cytokine IL-1beta. Since these gene products are regulated by the transcription factor NF-kappaB, we investigated the effects of resveratrol on IL-1beta-induced NF-kappaB signaling pathway. Resveratrol, like N-Ac-Leu-Leu-norleucinal (ALLN) suppressed IL-1beta-induced proteasome function and the degradation of IkappaBalpha (an inhibitor of NF-kappaB) without affecting IkappaBalpha kinase activation, IkappaBalpha-phosphorylation or IkappaBalpha-ubiquitination which suppressed nuclear translocation of the p65 subunit of NF-kappaB and its phosphorylation. Furthermore, we observed that resveratrol as well as ALLN inhibited IL-1beta-induced apoptosis, caspase-3 activation and PARP cleavage in human articular chondrocytes. In summary, our results suggest that resveratrol suppresses apoptosis and inflammatory signaling through its actions on the NF-kappaB pathway in human chondrocytes. We propose that resveratrol should be explored further for the prophylactic treatment of osteoarthritis in humans and companion animals.
|
177 |
Fibroblast growth factor receptor 1 promotes proliferation and survival via activation of the mitogen-activated protein kinase pathway in bladder cancerTomlinson, D.C., Lamont, F.R., Shnyder, Steven, Knowles, M.A. January 2009 (has links)
No / Fibroblast growth factor receptors (FGFR) play key roles in proliferation, differentiation, and tumorigenesis. Many urothelial carcinomas contain activating point mutations or increased expression of FGFR3. However, little is known about the role of other FGFRs. We examined FGFR expression in telomerase-immortalized normal human urothelial cells, urothelial carcinoma cell lines, and tumor samples and showed that FGFR1 expression is increased in a high proportion of cell lines and tumors independent of stage and grade. To determine the role of FGFR1 in low-stage bladder cancer, we overexpressed FGFR1 in telomerase-immortalized normal human urothelial cells and examined changes in proliferation and cell survival in response to FGF2. FGFR1 stimulation increased proliferation and reduced apoptosis. To elucidate the mechanistic basis for these alterations, we examined the signaling cascades activated by FGFR1. FRS2alpha and PLCgamma were activated in response to FGF2, leading to activation of the mitogen-activated protein kinase pathway. The level of mitogen-activated protein kinase activation correlated with the level of cyclin D1, MCL1, and phospho-BAD, which also correlated with FGFR-induced proliferation and survival. Knockdown of FGFR1 in urothelial carcinoma cell lines revealed differential FGFR1 dependence. JMSU1 cells were dependent on FGFR1 expression for survival but three other cell lines were not. Two cell lines (JMSU1 and UMUC3) were dependent on FGFR1 for growth in soft agar. Only one of the cell lines tested (UMUC3) was frankly tumorigenic; here, FGFR1 knockdown inhibited tumor growth. Our results indicate that FGFR1 has significant effects on urothelial cell phenotype and may represent a useful therapeutic target in some cases of urothelial carcinoma.
|
178 |
Tumour necrosis factor alpha induces rapid reduction in AMPA receptor-mediated calcium entry in motor neurones by increasing cell surface expression of the GluR2 subunit: relevance to neurodegenerationRainey-Smith, S.R., Andersson, D.A., Williams, R.J., Rattray, Marcus January 2010 (has links)
No / The alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNFalpha) have both been implicated in motor neurone vulnerability in amyotrophic lateral sclerosis/motor neurone disease. TNFalpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNFalpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/mL, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using fura-2-acetoxymethyl ester microfluorimetry, we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggest that TNFalpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in amyotrophic lateral sclerosis.
|
179 |
Chemoprevention for Colorectal CancerKrishnan, K, Ruffin, M T., Brenner, D E. 01 March 2000 (has links)
No description available.
|
180 |
Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic ProductsMcCanna, David January 2009 (has links)
The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes.
The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations.
|
Page generated in 0.0571 seconds