• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Utilization of a Programmable Node in a “Black-Box” Controller Area Network in Conjunction with a Serial Gateway to Prototype Control of a P0+P4 Hybrid Architecture on an Existing Conventional Platform

Sovey, Gage Stephen 10 November 2022 (has links)
No description available.
12

Basic Comparison of Three Aircraft Concepts: Classic Jet Propulsion, Turbo-Electric Propulsion and Turbo-Hydraulic Propulsion

Rodrigo, Clinton January 2019 (has links) (PDF)
Purpose - This thesis presents a comparison of aircraft design concepts to identify the superior propulsion system model among turbo-hydraulic, turbo-electric and classic jet propulsion with respect to Direct Operating Costs (DOC), environmental impact and fuel burn. --- Approach - A simple aircraft model was designed based on the Top-Level Aircraft Requirements of the Airbus A320 passenger aircraft, and novel engine concepts were integrated to establish new models. Numerous types of propulsion system configurations were created by varying the type of gas turbine engine and number of propulsors. --- Findings - After an elaborate comparison of the aforementioned concepts, the all turbo-hydraulic propulsion system is found to be superior to the all turbo-electric propulsion system. A new propulsion system concept was developed by combining the thrust of a turbofan engine and utilizing the power produced by the turbo-hydraulic propulsion system that is delivered via propellers. The new partial turbo-hydraulic propulsion concept in which 20% of the total cruise power is coming from the (hydraulic driven) propellers is even more efficient than an all turbo-hydraulic concept in terms of DOC, environmental impact and fuel burn. --- Research Limitations - The aircraft were modelled with a spreadsheet based on handbook methods and relevant statistics. The investigation was done only for one type of reference aircraft and one route. A detailed analysis with a greater number of reference aircraft and types of routes could lead to other results. --- Practical Implications - With the provided spreadsheet, the DOC and environmental impact can be approximated for any commercial reference aircraft combined with the aforementioned propulsion system concepts. --- Social Implications - Based on the results of this thesis, the public will be able to discuss the demerits of otherwise highly lauded electric propulsion concepts. --- Value - To evaluate the viability of the hydraulic propulsion systems for passenger aircraft using simple mass models and aircraft design concept.
13

Assessing the potential of fuel saving and emissions reduction of the bus rapid transit system in Curitiba, Brazil

Dreier, Dennis January 2015 (has links)
The transport sector contributes significantly to global energy use and emissions due to its traditional dependency on fossil fuels. Climate change, security of energy supply and increasing mobility demand is mobilising governments around the challenges of sustainable transport. Immediate opportunities to reduce emissions exist through the adoption of new bus technologies, e.g. advanced powertrains. This thesis analysed energy use and carbon dioxide (CO2) emissions of conventional, hybrid-electric, and plug-in hybrid-electric city buses including two-axle, articulated, and biarticulated chassis types (A total of 6 bus types) for the operation phase (Tank-to-Wheel) in Curitiba, Brazil. The systems analysis tool – Advanced Vehicle Simulator (ADVISOR) and a carbon balance method were applied. Seven bus routes and six operation times for each (i.e. 42 driving cycles) are considered based on real-world data. The results show that hybrid-electric and plug-in hybrid-electric two-axle city buses consume 30% and 58% less energy per distance (MJ/km) compared to a conventional two-axle city bus (i.e. 17.46 MJ/km). Additionally, the energy use per passenger-distance (MJ/pkm) of a conventional biarticulated city bus amounts to 0.22 MJ/pkm, which is 41% and 24% lower compared to conventional and hybrid-electric two-axle city buses, respectively. This is mainly due to the former’s large passenger carrying capacity. Large passenger carrying capacities can reduce energy use (MJ/pkm) if the occupancy rate of the city bus is sufficient high. Bus routes with fewer stops decrease energy use by 10-26% depending on the city bus, because of reductions in losses from acceleration and braking. The CO2 emissions are linearly proportional to the estimated energy use following from the carbon balance method, e.g. CO2 emissions for a conventional two-axle city bus amount to 1299 g/km. Further results show that energy use of city bus operation depends on the operation time due to different traffic conditions and driving cycle characteristics. An additional analysis shows that energy use estimations can vary strongly between considered driving cycles from real-world data. The study concludes that advanced powertrains with electric drive capabilities, large passenger carrying capacities and bus routes with a fewer number of bus stops are beneficial in terms of reducing energy use and CO2 emissions of city bus operation in Curitiba.

Page generated in 0.0753 seconds