141 |
Função H de Fox e aplicações no cálculo fracionário / Fox H function and applications in the fractional calculusCosta, Felix Silva, 1982- 18 August 2018 (has links)
Orientador: Edmundo Capelas de Oliveira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-18T19:21:10Z (GMT). No. of bitstreams: 1
Costa_FelixSilva_D.pdf: 1599119 bytes, checksum: dddbc1cbaa34b9a87f2c20ebcaddd8fa (MD5)
Previous issue date: 2011 / Resumo: Neste trabalho é apresentado um estudo sistemático da função H de Fox e aplicações no cálculo fracionário. Inicialmente é feito um estudo da função hipergeométrica e suas possíveis generalizações, logo em seguida é definida a integral de Mellin-Barnes e a função G de Meijer, em conjunto com suas propriedades e seus casos particulares. Depois é definida a função H de Fox, objetivo principal do trabalho, e seu atual campo de aplicação, que é o cálculo fracionário. Finalmente, apresentam-se as aplicações envolvendo a função H de Fox e o cálculo fracionário. Das três aplicações, os dois primeiros resultados correspondem a duas generalizações: uma da equação do telégrafo e a outra da equação de Schrödinger. Enfim, é discutida uma generalização da equação de onda-difusão no caso em que as condições iniciais são periódicas / Abstract: This work presents a systematic study of the Fox H function and its possible applications in fractional calculus. It begins with a study about the hypergeometric function and its possible generalizations; after that, the Mellin-Barnes integral and the Meijer G function are defined and their properties and particular cases are presented. The Fox H function is then defined and its current field of application, fractional calculus, is discussed. In the sequence some applications involving the Fox H function and fractional calculus are presented, which constitute its main results; the two first results involve the telegraph equation and the Schrödinger equation in their generalized sense. Finally, one discusses a generalization of the wave-diffusion equation in the case in which the initial conditions are periodic / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
|
142 |
Préparation et stabilisation de systèmes quantiques / Quantum state engineering and stabilizationLeghtas, Zaki 27 September 2012 (has links)
Cette thèse s'intéresse au problème de préparation et de stabilisation de systèmes quantiques. Nous considérons des modèles correspondant à des expériences actuelles en électrodynamique quantique en cavité, circuits Josephson, et de contrôle quantique cohérent par laser femtoseconde. Nous posons les problèmes dans le contexte de la théorie du contrôle et nous proposons des lois de commande qui préparent ou stabilisent des états cibles. En particulier, nous nous intéressons à des états cibles qui n'ont pas d'analogue classique: des états superpositions et intriqués. De plus, nous proposons une commande pour la stabilisation d'un sous-espace de l'espace des états, contribuant ainsi au domaine de la correction d'erreur quantique. Ces résultats ont été obtenu en étroite collaboration avec des expérimentateurs. Des mesures expérimentales préliminaires sont en bon accord avec certaines prédictions théoriques de cette thèse. / This thesis tackles the problem of preparing and stabilizing highly non classical states of quantum systems. We consider specific models based on current experiments in cavity quantum electrodynamics, Josephson circuits and ultra-fast coherent quantum control. The problem is posed in the framework of control theory where we search for a control law which prepares or stabilizes a desired target state.Of particular interest to us are target states with no classical analog: superposition and entangled states. More generally, we propose a scheme for the stabilization of a manifold of quantum states, thus introducing some new ideas for autonomous quantum error correction in a cavity. Close collaborations with experimentalists helped us in the design of control protocols which are readily employable in the laboratory. Experimental demonstrations are currently being implemented and preliminary measurements are in good agreement with the theory introduced in this thesis.
|
143 |
Accumulation spectrale pour les Hamiltoniens quantiques magnétiques / Spectral accumulation for magnetic quantum HamiltoniansSambou, Diomba 21 November 2013 (has links)
Dans cette thèse on s'interesse à l'étude de phénomènes d'accumultation spectrale de certains opérateurs issus de la physique quantique à savoir les opérateurs de Schrödinger, de Pauli, et de Dirac. Typiquement, ces opérateurs apparaissent dans la modélisation de certains problèmes de physique sous forme d'équations d'évolution. Selon les contraintes du problème physique, ils peuvent être associés ou non à un champ magnétique pouvant être constant ou non constant. Le cadre où le champ magnétique est dit admissible est celui que nous allons considérer (en dimension 3). Ce dernier cadre inclut en particulier le cas de champs magnétiques constants. Deux grands thèmes sont essentiellement abordés dans cette thèse : l'étude des résonances près de seuils des Hamiltoniens quantiques cités ci-dessus lorsqu'ils sont perturbés par des potentiels électriques auto-adjoints, et l'étude de leur spectre discret lorsqu'ils sont perturbés par des potentiels électriques non auto-adjoints. Le second thème sera exploré au moyent d'inégalités Lieb-Thirring généralisés. / In this thesis we are interested to the study of spectral accumulation phenomena of some opeators coming from quantum physics, namely Schrödinger, Paul and Dirac operators. Typically, these operators appear in the modeling of some physical problems in the form of evolution equations. According to the constraints of the physical problem, they can be associated or not to a constant or non constant magnetic field. The contextt where the magnetic field is admissible is that we shall consider (in dimention 3). This framework includes in particular the case of constant magnetic fields. Essentieally, two main themes are discussed in this thesis : the study of resonances near thescholds of the quantum Hamiltonians mentioned above perturbed by self-adjoint potentials, and the study of their discrete spectrum when thy are perturbed by non self-adjoint potentials. The second theme will be investigated with the help of generalized Lieb-Thirring inequalities.
|
144 |
Non linear, non-local evolution equations : theory and application / Equations d'évolution non-linéaires non-locales : théorie et applicationsNabti, Abderrazak 16 December 2015 (has links)
Cette thèse concerne l’étude qualitative (existence locale, existence globale, explosion en temps fini) de quelques équations de Schrödinger non-linéaires non-locales. Dans le cas où les solutions explosent en temps fini, l’estimation du temps maximal d’existence des solutions sera présentée. Le chapitre 1 concerne l’étude d’une équation de Schrödinger non-linéaire sur RN. On s’intéresse à l’existence locale d’une solution pour toute condition initiale donnée dans L2(RN). De plus, on montre que la norme-L2 de la solution explose en temps fini T < 1. Les démonstrations reposent essentiellement sur le théorème de point fixe de Banach et les estimations de Strichartz, et aussi sur le choix convenable de la fonction test dans la formulation faible du problème. Dans le chapitre 2, on considère une équation de Schrödinger non-linéaire non-locale en temps, et on démontre que les solutions de notre problème explosent en temps fini ; ensuite on obtient des conditions nécessaires d’existence globale. Finalement, on obtient une borne inférieure du temps maximal d’existence de la solution. Le chapitre 3 porte sur la non-existence de solutions d’une équation de Schrödinger non-linéaire posée dans RN. Dans un premier temps, sous certaines conditions sur la donnée initiale, on montre qu’il n’existe pas de solution faible globale ; puis on donne une estimation du temps maximal d’existence de la solution. Enfin, on établit des conditions d’existence locale, ou globale de l’équation considérée. En plus, on généralise les résultats précédents au cas d’un système 2 _ 2. Le dernier chapitre traite une équation de Schrödinger non-linéaire non-locale en temps sur le groupe de Heisenberg H. En utilisant la méthode de la fonction test, on démontre que l’équation n’admet pas de solution faible globale. De plus, on obtient, sous certaines conditions sur les données initiales, une estimation inférieure du temps maximal d’existence de la solution. / Our objective in this thesis is to study the existence of local solutions, existence global and blow up of solutions at a finite time to some nonlinear nonlocal Schrödinger equations. In the case when a solution blows-up at a finite time T < 1, we obtain an upper estimate of the life span of solutions. In the first chapter, we consider a nonlinear Schrödinger equation on RN. We first prove local existence of solution for any initial condition in L2 space. Then we prove nonexistence of a nontrivial global weak solution. Furthermore, we prove that the L2-norm of the local intime L2-solution blows up at a finite time. The second chapter is dedicated to study an initial value problem for the nonlocal intime nonlinear Schrödinger equation. Using the test function method, we derive a blow-up result. Then based on integral inequalities, we estimate the life span of blowing-up solutions. In the chapter 3, we prove nonexistence result of a space higher-order nonlinear Schrödinger equation. Then, we obtain an upper bound of the life span of solutions. Furthermore, the necessary conditions for the existence of local or global solutions are provided. Next, we extend our results to the 2 _ 2-system. Our method of proof rests on a judicious choice of the test function in the weak formulation of the equation. Finally, we consider a nonlinear nonlocal in time Schrödinger equation on the Heisenberg group. We prove nonexistence of non-trivial global weak solution of our problem. Furthermore, we give an upper bound of the life span of blowing up solutions.
|
145 |
A quantum approach to dynamical quarkonia suppression in high energy heavy ion collisions / Une approche quantique de la suppression dynamique des quarkonia dans les collisions d’ions lourds à haute énergieKatz, Roland 14 December 2015 (has links)
La chromodynamique quantique (QCD) prédit l'existence d'un nouvel état de la matière : le plasma de quarks et de gluons (PQG). Celui-ci aurait existé dans les premiers instants suivant le Big Bang et peut en principe être produit sous les conditions extrêmes de température et de densité atteintes lors de collisions d'ions lourds à haute énergie (au LHC par exemple). Un des marqueurs de sa présence est la suppression des quarkonia (états liés de quark/antiquark lourds), caractérisée par une production inférieure de ces états dans les collisions d'ions lourds relativement aux collisions proton-proton où le PQG ne pourrait être créé. Cette suppression a bien été observée expérimentalement, mais l'évolution de ses tendances aux énergies du RHIC et du LHC est un véritable défi qui requiert une meilleure compréhension théorique. La présente thèse a pour but d’étudier l’évolution en temps réel de paires corrélées de quark/antiquark lourds considérées comme des systèmes quantiques ouverts en interaction permanente avec un PQG en refroidissement. Explicitement, l'interaction continue entre le milieu et les degrés de liberté internes de la paire est obtenue par 1) un écrantage de couleur dit « de Debye » dû à la présence de charges de couleur dans leur voisinage et 2) des mécanismes de fluctuation/dissipation qui reflètent les collisions permanentes. Cela mène à une image dynamique et continue de la dissociation des quarkonia, de leur recombinaison et des transitions entre états liés. L'étude est transversale à différents cadres théoriques : semi-classique, quantique et quantique des champs. Les prédictions du modèle sont comparées aux résultats expérimentaux et aux résultats d'autres modèles théoriques. / The theory of quantum chromodynamics (QCD) predicts the existence of a new state of matter: the Quark-GluonPlasma (QGP). The latter may have existed at the first moments of the Universe following the Big Bang and can be, in theory, re-produced under the extreme conditions of temperature and density reached in high energy heavy ion collisions (at the LHC for instance). One of the QGP observables is the suppression of the quarkonia (heavy quark/antiquark bound states), characterised by a smaller production of these states in heavy ion collisions in comparison to proton-protoncollisions, in which no QGP production would be possible. This suppression has indeed been observed experimentally, but the puzzling evolution of its trend from RHIC to LHC energies requires a better theoretical understanding. The present thesis aims at studying the real-time evolution of correlated heavy quark/antiquark pairs described as open quantum systems which permanently interact with a cooling QGP. More explicitly, the continuous interaction between the medium and the pair internal degrees of freedom is obtained through 1) a temperature dependent color screening (“Debye” like) due to color charges in the irvicinity and 2) some fluctuation/dissipation mechanisms reflecting the continuous collisions. It leads to a dynamical and continuous picture of the dissociation, recombination and possible transitions to other bound states. This investigation is at the crossroads of different theoretical frameworks: semi-classic, quantum and quantum fields. The deduced predictions are compared to experimental data and to the results of other theoretical models.
|
146 |
Sur l'équation de Gross-Pitaevskii uni-dimensionnelle et quelques généralisations du flot par courbure binormale / On the one-dimensional Gross-Pitaevskii equation and some generalisations of the binormal curvature flowMohamad, Haidar 23 June 2014 (has links)
Ce travail est une contribution à l'étude des équations de Schrödinger non-linéaires (NLS) en dimension un d'espace. De telles équations interviennent notamment comme modèles dans plusieurs domaines de la physique mathématique, tels l'optique non-linéaire, la superfluidité, la supraconductivité et la condensation de Bose-Einstein.Cette thèse contient trois thèmes connexes inclus dans les chapitres 2, 3 et 4. Dans la première partie (chapitre 2), on s'intéresse à la construction des solutions en multi-solitons de l'équation de Gross-Pitaevskii (NLS défocalisante avec non-linéarité cubique), comme une superposition approximative des ondes progressives (solitons). Cette partie contient également une description détaillée des interactions entre les solitons. Ces résultats sont obtenus en exploitant l'intégrabilité de l'équation de Gross-Pitaevskii et son système de Marchenko associé.La deuxième partie (chapitre 4) clarifie les relations entre la formulation classique et la formulation dite hydrodynamique de l'équation de Gross-Pitaevskii. Cette dernière a un sens lorsque la solution ne s'annule jamais dans le domaine spatial. La dernière partie (chapitre 3) est consacrée à l'étude du problème de Cauchy d'une famille d'équations aux dérivées partielles quasi-linéaires qui généralise l'équation du flot par courbure binormal d'une courbe dans l'espace euclidien de dimension trois. Cette dernière est liée formellement à NLS par la transformation de Hasimoto. Dans notre généralisation, la vitesse d'un point de la courbe est toujours dirigée dans la direction du vecteur binormal, mais son amplitude peut dépendre de l'abscisse curviligne ainsi de la position dans l'espace. Notre approche pour prouver l'existence est le suivant: schéma semi-discret (discret en espace et continu en temps), obtention de bornes sur les problèmes discrets et argument par compacité. Un théorème de comparaison entraîne l'unicité. / This work is a contribution to the study of nonlinear Schrödinger equations (NLS) in the one-dimensional space. Such equations arise in many physical fields, including nonlinear optics and Bose-Einstein condensation. The thesis contains three connected themes included in chapters 2, 3 and 4. The first part (chapter 2) constructs multi-soliton solutions of the Gross-Pitaevskii (or defocussing NLS) equation, as an approximate superposition of traveling waves (solitons). This part contains also a detailed description of the interactions between solitons. These results are obtained by exploiting the integrability of the the Gross-Pitaevskii equation and its associated Marchenko system. The second part (chapter 4) clarifies the relations between the classical formulation and the so-called hydrodynamical formulation that only has a meaning when the solution does not vanish anywhere in the spatial domain The last part (chapter 3) of this thesis concerns existence and uniqueness results for a family of quasi-linear partial differential equations that generalize the equation of the binormal curvature flow for a curve in the three-dimensional space. The latter equation is in connection to the focussing cubic NLS by Hasimoto transformation. In our generalization, the velocity of a point on the curve is still directed along the binormal vector (so that in particular the length of the curve is preserved) but the magnitude of the speed is allowed to depend both on the curvilinear parameter and on the position in space. Existence is proven using spatial discretization together with some a priori bounds on the approximate solutions. Uniqueness follows from a comparison theorem.
|
147 |
Développement de cavités synchrones et d'une mémoire quantique : des outils pour l'ingénierie quantique hybride. / Implementation of optical synchronous cavities and a quantum memory : tools for hybrid quantum state engineeringBouillard, Martin 15 December 2017 (has links)
Ce travail porte sur le développement d'outils pour l'ingénierie quantique d'états non-classiques de la lumière. Trois axes différents sont étudiés qui, combinés ensembles, permettent d'obtenir un protocole efficace et polyvalent pour la génération d'états quantiques Ces états sont générés en tirant profit des avantages distincts des deux descriptions possibles de la lumière grâce à l'utilisation conjointe des variables discrètes et continues.Le premier axe repose sur la réalisation de superpositions arbitraires d’états de Fock à zéro et deux photons à partir de deux états à un photon indiscernables. Cette expérience permet, entre autre, de créer des superpositions d'états cohérents appelés états chats de Schrödinger optiques. Afin d'augmenter l'amplitude des états produits, une itération du procédé est possible.Pour pouvoir rendre possible cette itération, nous augmentons dans un premier temps le taux de production de notre ressource de base: le photon unique. Pour cela, nous installons deux cavités optiques synchrones qui permettent d'accroître la puissance crête des impulsions du laser, exaltant ainsi les effets non-linéaires à l'origine de la production des photons.Le dernier axe, consiste à réduire les problèmes liés à la création probabiliste des photons. Pour cela, une mémoire quantique a été implémentée, permettant de stocker puis d'extraire un photon sur demande. Le stockage d’états contenant un et deux photons a été réalisé. Ce dispositif permettra à terme, en synchronisant l'état stocké avec l'arrivée d'un autre photon, de créer des états chats à l'intérieur même de la cavité. / This work is focused on the development of tools for quantum state engineering of non-classical state of light. Three different directions are studied, which when combined, lead to efficient and versatile protocols towards the generation of quantum states. Those states are produced by taking advantage of both descriptions of the light: the discrete and continuous variables of the light.The first direction consists in the réalisation of arbitrary superpositions of zero and two-photon Fock states with two indistinguishable single-photon states. This protocol permits, among others, to create superpositions of coherent states called Schrödinger cat states. An iteration of the protocol could allow the growth of the amplitude of the state.To realize such iteration, we increase the production rate of our basic resource, namely, the single photon.To do so, we implement two synchronous cavities allowing the increase of the peak power of the laser pulses, which ultimately enhanced the non-linear effect at the origin of the photon creation.The last direction aims to solve the problems related to the probabilistic nature of the photon creation. In order to store and extract the single photons on demand, a quantum memory is implemented. The storage of single and two-photon states has been experimentally realized. This setup could allow in the near future, by synchronizing the state stored in the cavity with the income of another photon, to create a cat state inside the cavity itself.
|
148 |
Construction of dynamics with strongly interacting for non-linear dispersive PDE (Partial differential equation). / Construction de dynamiques à fortes interactions d'EDP (Équations aux dérivées partielles) non linéaires dispersivesNguyen, Tien Vinh 26 June 2019 (has links)
Cette thèse est consacrée à l’étude des propriétés dynamiques des solutions de type soliton d'équations aux dérivées partielles (EDP) dispersives non linéaires. `A travers des exemples-type de telles équations, l'équation de Schrödinger non-linéaire (NLS), l'équation de Korteweg-de Vries généralisée (gKdV) et le système de Schrödinger, on traite du comportement des solutions convergeant en temps grand vers des sommes de solitons (multi-solitons). Dans un premier temps, nous montrons que dans une configuration symétrique, avec des interactions fortes, le comportement de séparation des solitons logarithmique en temps est universel à la fois dans le cas sous-critique et sur-critique pour (NLS). Ensuite, en adaptant les techniques précédentes à l'équation (gKdV), nous prouvons un résultat similaire de l'existence de multi-solitons avec distance relative logarithmique; pour (gKdV), les solitons sont répulsifs dans le cas sous-critique et attractifs dans le cas sur-critique. Finalement, nous identifions un nouveau régime de distance logarithmique où les solitons sont non-symétriques pour le système de Schrödinger non-intégrable; une telle solution n'existe pas dans le cas intégrable pour le système et pour (NLS). / This thesis deals with long time dynamics of soliton solutions for nonlinear dispersive partial differential equation (PDE). Through typical examples of such equations, the nonlinear Schrödinger equation (NLS), the generalized Korteweg-de Vries equation (gKdV) and the coupled system of Schrödinger, we study the behavior of solutions, when time goes to infinity, towards sums of solitons (multi-solitons). First, we show that in the symmetric setting, with strong interactions, the behavior of logarithmic separation in time between solitons is universal in both subcritical and supercritical case. Next, adapting previous techniques to (gKdV) equation, we prove a similar result of existence of multi-solitons with logarithmic relative distance; for (gKdV), the solitons are repulsive in the subcritical case and attractive in the supercritical case. Finally, we identify a new logarithmic regime where the solitons are non-symmetric for the non-integrable coupled system of Schrödinger; such solution does not exist in the integrable case for the system and for (NLS).
|
149 |
A mathematical study of the Darwin-Howie-Whelan equations for Transmission Electron MicroscopyMaltsi, Anieza 16 February 2023 (has links)
Diese Arbeit liefert einen Beitrag zur mathematischen Untersuchung der Darwin-Howie-Whelan (DHW) Gleichungen. Sie werden üblicherweise zur Beschreibung und Simulation der Diffraktion schneller Elektronen in der Transmissionselektronenmikroskopie (TEM) verwendet. Sie bilden ein System aus Gleichungen für unendlich viele Enveloppenfunktionen, das aus der Schrödinger-Gleichung abgeleitet werden kann. Allerdings wird für Simulation von TEM Bildern nur ein endlicher Satz von Enveloppenfunktionen verwendet, was zu einem System von gewöhnlichen Differentialgleichungen in Richtung der Dicke der Probe führt. Bis jetzt gibt es
keine systematische Analyse zur Genauigkeit dieser Näherungen in Abhängigkeit von der Auswahl der verwendeten endlichen Sätze von Enveloppenfunktionen. Diese Frage wird hier untersucht, indem die mathematische Struktur des Systems analysiert wird und Fehlerabschätzungen zur Bewertung der Genauigkeit spezieller Näherungen hergeleitet werden, wie der Zweistrahl-Approximation oder der sogennanten systematischen Reihe. Anschließend wird ein mathematisches Modell und eine Toolchain für die numerische Simulation von TEM-Bildern von Halbleiter-Quantenpunkten entwickelt. Es wird eine Simulationsstudie an Indium-Gallium-Arsenid-Quantenpunkten mit unterschiedlicher Geometrie durchgeführt und die resultierenden TEM Bilder werden mit experimentellen Bildern verglichen. Schließlich werden die in TEM Bildern beobachteten Symmetrien im Hinblick auf die DHW Gleichungen untersucht.
Dazu werden mathematische Resultate formuliert und bewiesen, die zeigen dass die Intensitäten der Lösungen der DHW Gleichungen unter bestimmten Transformationen invariant sind. Durch die Kombination dieser Invarianten mit spezifischen Eigenschaften des Deformationsfeldes können dann die in TEM Bildern beobachteten Symmetrien erklärt werden. Die Ergebnisse werden anhand ausgewählter Beispiele aus dem Bereich der Halbleiter-Nanostrukturen wie Quantensichten und Quantenpunkte demonstriert. / In this thesis a mathematical study on the Darwin--Howie--Whelan (DHW) equations is provided. The equations are commonly used to describe and simulate the scattering of fast electrons in transmission electron microscopy (TEM). They are a system for infinitely many envelope functions, derived from the Schrödinger equation. However, for the simulation of images only a finite set of envelope functions is used, leading to a finite system of ordinary differential equations in the thickness direction of the specimen. Until now, there
has been no systematic discussion about the accuracy of approximations depending on the
choice of the finite sets used. This question is approached here by studying the mathematical structure of the system and providing error estimates to evaluate the accuracy
of special approximations, like the two-beam and the systematic-row approximation. Then a mathematical model and a toolchain for the numerical simulation of TEM images of semiconductor quantum dots (QDs) is developed. A simulation study is performed on indium gallium arsenide QDs with different shapes and the resulting TEM images are compared to experimental ones. Finally, symmetries observed in TEM images are investigated with respect to the DHW equations. Then, mathematical proofs are given showing that the intensities of the solutions of the DHW equations are invariant under specific transformations. A combination of these invariances with specific properties of the strain profile can then explain symmetries
observed in TEM images. The results are demonstrated by using selected examples in the field
of semiconductor nanostructures, such as quantum wells and quantum dots.
|
150 |
Méthodes asymptotiques et numériques pour le transport quantique résonnantFaraj, Ali 04 December 2008 (has links) (PDF)
Le travail de cette thèse se place dans un contexte de modélisation et de simulation numérique du transport d'électrons dans un nano-composant. Ce transport est décrit en mécanique quantique à l'aide de systèmes de Schrödinger-Poisson. La majeure partie du travail se concentre sur le cas de la diode à effet tunnel résonnant (RTD) dont les puits quantiques donnent lieu à des résonances de l'Hamiltonien mis en jeu.<br />Dans une première partie, nous proposons des méthodes numériques pour la simulation de RTD. Pour résoudre le problème de Shrödinger-Poisson -- en une variable d'espace et en domaine non borné -- qui correspond, nous proposons une méthode de référence valide pour un maillage fin en fréquence autour des résonances. Le travail est motivé par l'écriture d'un algorithme permettant de retrouver les résultats de la méthode de référence en s'affranchissant de la contrainte de raffinement en fréquence qui rend les temps de calcul excessifs. Nous proposons une méthode consistant en la décomposition des fonctions d'onde en une partie non résonnante et une partie résonnante, la dernière nécessitant un calcul précis du mode résonnant et de la valeur de la résonance. En régime stationnaire, la totalité de l'information résonnante est captée sans avoir à raffiner le maillage en fréquence. La principale nouveauté a été d'adapter cette méthode en régime instationnaire.<br />Dans une deuxième partie, nous comparons notre algorithme de référence à l'algorithme de Bonnaillie-Noël, Nier et Patel basé sur un modèle réduit obtenu en réalisant la limite semi-classique h tend vers 0 et intéressant par son temps de calcul. En régime stationnaire, la comparaison a permis de vérifier l'existence de certaines branches de la courbe courant/tension de la RTD prévues par le modèle réduit. Dans le cas de deux puits, nous avons utilisé notre algorithme instationnaire dans une région de la différence de potentiel où un croisement des énergies résonnantes associées à chaque puits se produit donnant une évidence numérique de l'occurrence de phénomènes de battement de la charge d'un puits à l'autre.<br />En vue d'obtenir des modèles réduits similaires à celui étudié dans la deuxième partie, on réalise, dans une troisième partie, l'étude asymptotique d'un système de Schrödinger-Poisson stationnaire considéré sur un domaine borné inclus dans R^d, d<=3, avec un potentiel extérieur décrivant un puits quantique. L'Hamiltonien du système est composé de contributions -- le puits du potentiel extérieur plus un terme non linéaire répulsif -- qui s'étendent sur des échelles de longueurs différentes dont le rapport est donné en fonction du paramètre semi-classique h destiné à tendre vers 0. Avec une fonction de distribution en énergie qui force les particules à rester dans le puits quantique, la limite h tend vers 0 dans le système non linéaire conduit à différents comportements asymptotiques dont l'analyse nécessite une renormalisation spectrale et dépendant de la dimension d'espace d=1, 2 ou 3.
|
Page generated in 0.0728 seconds