• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 18
  • 8
  • 7
  • Tagged with
  • 60
  • 29
  • 19
  • 16
  • 16
  • 16
  • 15
  • 13
  • 10
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Modeling and Optimization of Electrode Configurations for Piezoelectric Material

Schulze, Veronika 30 October 2023 (has links)
Piezoelektrika haben ein breit gefächertes Anwendungsspektrum in Industrie, Alltag und Forschung. Dies erfordert ein genaues Wissen über das Materialverhalten der betrachteten piezoelektrischen Elemente, was mit dem Lösen von simulationsgestützten inversen Parameteridentifikationsproblemen einhergeht. Die vorliegende Arbeit befasst sich mit der optimalen Versuchsplanung (OED) für dieses Problem. Piezoelektrische Materialien weisen die Eigenschaft auf, sich als Reaktion auf angelegte Potentiale oder Kräfte mechanisch oder elektrisch zu verändern (direkter und indirekter piezoelektrischer Effekt). Um eine Spannung anzulegen und den indirekten piezoelektrischen Effekt auszunutzen, werden Elektroden aufgebracht, deren Konfiguration einen erheblichen Einfluss auf mögliche Systemantworten hat. Daher werden das Potential, die Anzahl und die Größe der Elektroden zunächst im zweidimensionalen Fall optimiert. Das piezoelektrische Verhalten basiert im betrachteten Kleinsignalbereich auf zeitabhängigen, linearen partiellen Differentialgleichungen. Die Herleitung sowie Existenz und Eindeutigkeit der Lösungen werden gezeigt. Zur Berechnung der elektrischen Ladung und der Impedanz, die für das Materialidentifikationsproblem und damit für die Versuchsplanung relevant sind, werden zeit- und frequenzabhängige Simulationen auf Basis der Finite Elemente Methode (FEM) mit dem FEM Simulationstool FEniCS durchgeführt. Es wird auf Nachteile bei der Berechnung der Ableitungen eingegangen und erste adjungierte Gleichungen formuliert. Die Modellierung des Problems der optimalen Versuchsplanung erfolgt hauptsächlich durch die Kontrolle des Potentials der Dirichlet Randbedingungen des Randwertproblems. Anhand mehrerer numerischer Beispiele werden die resultierenden Konfigurationen gezeigt. Weitere Ansätze zur Elektrodenmodellierung, z.B. durch Kontrolle der Materialeigenschaften, werden ebenfalls vorgestellt. Schließlich wird auf mögliche Erweiterungen des vorgestellten OED Problems hingewiesen. / Piezoelectrics have a wide range of applications in industry, everyday life and research. This requires an accurate knowledge of the material behavior, which implies the solution of simulation-based inverse identification problems. This thesis focuses on the optimal design of experiments addressing this problem. Piezoelectric materials exhibit the property of mechanical or electrical changes in response to applied potentials or forces (direct and indirect piezoelectric effect). To apply voltage and to exploit the indirect piezoelectric effect, electrodes are attached whose configura- tion have a significant influence on possible system responses. Therefore, the potential, the number and the size of the electrodes are initially optimized in the two-dimensional case. The piezoelectric behavior in the considered small signal range is based on a time dependent linear partial differential equation system. The derivation as well as the exis- tence, uniqueness and regularity of the solutions of the equations are shown. Time- and frequency-dependent simulations based on the finite element method (FEM) with the FEM simulation tool FEniCS are performed to calculate the electric charge and the impedance, which are relevant for the material identification problem and thus for the experimental design. Drawbacks in the derivative calculations are pointed out and a first set of adjoint equations is formulated. The modeling of the optimal experimental design (OED) prob- lem is done mainly by controlling the potential of the Dirichlet boundary conditions of the boundary value problem. Several numerical examples are used to show the resulting configurations and to address the difficulties encountered. Further electrode modeling ap- proaches for example by controlling the material properties are then discussed. Finally, possible extensions of the presented OED problem are pointed out.
52

Heat transfer process between polymer and cavity wall during injection molding / Wärmeübergang zwischen Polymerwerkstoff und Werkzeugwand beim Spritzgießprozess

Liu, Yao 22 January 2015 (has links) (PDF)
Injection molding is one of the most commonly applied processing methods for plastic components. Heat transfer coefficient (HTC), which describes the heat conducting ability of the interface between a polymer and cavity wall, significantly influences the temperature distribution of a polymer and mold during injection molding and thus affects the process and quality of plastic products. This thesis focuses on HTC under diverse processing situations. On the basis of the heat conducting principle, a theoretical model for calculating HTC was presented. Injection mold specially used for measuring and calculating HTC was designed and fabricated. Experimental injection studies under different processing conditions, especially different surface roughness, were performed for acquiring necessary temperature data. The heat quantity across the interface and HTC between a polymer and cavity wall was calculated on the basis of experimental results. The influence of surface roughness on HTC during injection molding was investigated for the first time. The factors influencing the HTC were analyzed on the basis of the factor weight during injection molding. Subsequently FEM (Finite element method) simulations were carried out with observed and preset value of HTC respectively and the relative crystallinity and part density were obtained. In the comparison between results from simulation and experiment, the result calculated with observed HTC shows better agreement with actually measured value, which can verify the reliability and precision of the injection molding simulation with observed HTC. The results of this thesis is beneficial for understanding the heat transfer process comprehensively, predicting temperature distribution, arranging cooling system, reducing cycle time and improving precision of numerical simulation. / Das Spritzgießen ist eines der am häufigsten angewandten Verarbeitungsverfahren zur Herstellung von Kunststoffkomponenten. Der Wärmedurchgangskoeffizient (WDK), welcher den Wärmeübergang zwischen Kunststoff und Werkzeugwand beschreibt, beeinflusst während des Spritzgießens maßgeblich die Temperaturverteilung im Bauteil und dem Werkzeug und folglich den Prozess und die Qualität der Kunststoffprodukte. Der Inhalt dieser Arbeit beschäftigt sich mit dem WDK unter verschiedenen Prozessbedingungen. Auf Grundlage des Wärmeleitungsprinzips wurde ein theoretisches Modell für die Berechnung des WDK vorgestellt. Es wurde dazu ein Spritzgießwerkzeug konstruiert und hergestellt, welches Messungen zur späteren Berechnung des WDK ermöglicht. Praktische Spritzgießversuche unter verschiedenen Prozessbedingungen, insbesondere unterschiedlicher Oberflächenrauheit, wurden für die Erfassung der erforderlichen Temperaturdaten durchgeführt. Auf Grundlage der experimentellen Ergebnisse wurde der Wärmeübergang zwischen dem Polymer und der Werkzeugwand berechnet. Der Einfluss der Oberflächenrauhigkeit auf den WDK wurde hierbei zum ersten Mal untersucht. Auf Grundlage des Bauteilgewichtes wurden anschließend die Faktoren, die den WDK beeinflussen, berechnet. Des Weiteren wurden FEM-Simulationen (Finite Element Methode) mit dem gemessenen und dem voreingestellten WDK durchgeführt und daraus der Kristallinitätsgrad und die Bauteildichte gewonnen. Der Vergleich zwischen den realen Ergebnissen und der Simulation zeigt, dass die Berechnungen mit dem gemessenen WDK eine bessere Übereinstimmung mit den realen Werten aufweist, was die Zuverlässigkeit und Präzision der Spritzgusssimulation bestätigt. Die Ergebnisse dieser Arbeit tragen zum umfassenden Verständnis des Wärmeübergangs im Spritzgießprozess, zur Vorhersage der Temperaturverteilung, zur Auslegung des Kühlsystems, zur Reduzierung der Zykluszeit und zur Verbesserung der Genauigkeit der numerischen Simulation bei.
53

Beitrag zur Optimierung der Verfahrensparameter von Vliesstoffausrüstungsprozessen bei hohen Warengeschwindigkeiten

Grönke, Kerstin 19 September 2014 (has links)
Gegenstand der vorliegenden Arbeit ist die Untersuchung des Foulardierprozesses zur chemischen Nassausrüstung von Vliesstoffen bei Warengeschwindigkeiten bis zu 250 m/min. Hintergrund ist die abweisende Ausrüstung von Polypropylen-Spinnvliesstoffen für die Anwendung als Operationskittel. Wo bislang nach dem Stand der Technik eine Veredlung bei Lohnausrüstern bei geringen Warengeschwindigkeiten durchgeführt wurde, zeigt die Tendenz in der Vliesstoffindustrie in Richtung der eigenen Prozessbeherrschung. Eine grundlegende Voraussetzung, um den Foulardierprozess für diese Anwendung nutzbar zu machen, ist die Kenntnis über die Prozesseigenschaften bei den geforderten hohen Warengeschwindigkeiten. Für den abzudeckenden Versuchsraum mit sechs Einflussgrößen bei jeweils drei Faktorstufen wurde mittels der Methodik der statistischen Versuchsplanung ein D-optimaler Versuchsplan erstellt. Die Versuchsdurchführung erfolgte auf einem in eine Technikumsanlage eingebundenen Foulard mit horizontaler Walzenanordnung. Für jede der sieben Zielgrößen wurde auf Grundlage der erhaltenen Messwerte eine lineare Regressionsanalyse erstellt und ausgewertet. Eine detaillierte Analyse und Diskussion der Regressionsmodelle liefert Informationen zu Wirkungsrichtung und Intensität der einzelnen Einflussgrößen sowie zu Faktor-Faktor-Wechselwirkungen.:1 Einleitung 8 1.1 Ausgangspunkt 8 1.2 Produktionsmengen 8 1.3 Vliesstoffe in der medizinischen Anwendung 11 1.4 Vliesstoffauswahl 13 2 Wissenschaftlich-technische Problemstellung 16 2.1 Stand der Technik 16 2.2 Zielstellung und Vorgehensweise 21 3 Foulardierprozess: Prozessbeschreibung und Einflussgrößen 22 3.1 Foulardieren: Prozessbeschreibung 22 3.2 Foulardieren: Einflussgrößen 25 3.2.1 Einflussfaktoren Maschinendesign 25 3.2.2 Einflussfaktoren Verfahrensparameter 29 3.2.3 Einflussfaktoren Vliesstoffmaterial 30 3.2.4 Einflussfaktoren Imprägnierflotte 31 3.3 Einflussgrößen und Zielgrößen 33 4 Versuchsanordnung und Versuchsfoulard 34 4.1 Technikumsanlage am STFI 34 4.2 Versuchsfoulard 35 4.2.1 Horizontale Walzenanordnung 37 4.2.2 Hilfstrieb auf der S-Walze 38 4.2.3 Druckgebung und Quetschfugenbreite 38 4.2.4 Flottenführung 38 4.2.5 Niveauregelung, Flottenvolumen 39 4.2.6 Flottenverbrauch 40 4.2.7 Tauchstrecke, Verweilstrecke und Verweilzeit 42 4.2.8 Flottentemperatur 43 5 Material und Methoden 45 5.1 Vliesstoffmaterial 45 5.2 Ausrüstungsflotte 46 5.3 Mess- und Prüfmethoden 48 5.3.1 Feuchteaufnahme 48 5.3.2 Dicke 49 5.3.3 Luftdurchlässigkeit 50 5.3.4 Zugfestigkeit und Höchstzugkraftdehnung 50 6 Statistische Versuchsplanung und Regressionsanalyse 51 6.1 Vorbemerkung 51 6.2 D-optimale Versuchspläne 51 6.3 Versuchsplan 54 6.4 Darstellung des Versuchsraums 57 6.4.1 Faktor-Faktor-Kombinationen 57 6.4.2 Flottentemperatur TSoll versus TIst 58 6.5 Regressionsanalyse 59 6.5.1 Allgemeine Regressionsgleichung 59 6.5.2 Generelle Vorgehensweise 61 7 Regressionsanalyse für Zielgröße Feuchteaufnahme 62 7.1 Datenplausibilität der Zielgröße 62 7.2 Erstellen und Prüfen der Regressionsgleichung 64 7.2.1 Erstellen einer Regressionsgleichung 64 7.2.2 Bewertung der Güte der Regression, Residuenanalyse 69 7.2.3 Nachprüfen des Modells anhand von Beispieldaten 75 7.3 Auswerten der Regressionsgleichung 76 7.3.1 Intensität und Wichtung der Einflussgrößen 76 7.3.2 Wechselwirkungen 85 7.4 Grafische Darstellung des Gesamtmodells 90 8 Regressionsanalyse für Zielgröße Dicke 95 8.1 Datenplausibilität der Zielgröße 95 8.2 Erstellen und Prüfen der Regressionsgleichung 96 8.2.1 Erstellen einer Regressionsgleichung 96 8.2.2 Bewertung der Güte der Regression, Residuenanalyse 96 8.2.3 Nachprüfen des Modells anhand von Beispieldaten 97 8.3 Auswerten der Regressionsgleichung 98 8.3.1 Intensität und Wichtung der Einflussgrößen 98 8.3.2 Wechselwirkungen 103 8.4 Grafische Darstellung des Gesamtmodells 105 9 Regressionsanalyse für Zielgröße Luftdurchlässigkeit 107 9.1 Datenplausibilität der Zielgröße 107 9.2 Erstellen und Prüfen der Regressionsgleichung 107 9.2.1 Erstellen einer Regressionsgleichung 107 9.2.2 Bewertung der Güte der Regression, Residuenanalyse 108 9.2.3 Nachprüfen des Modells anhand von Beispieldaten 109 9.3 Auswerten der Regressionsgleichung 110 9.3.1 Intensität und Wichtung der Einflussgrößen 110 9.3.2 Wechselwirkungen 115 9.4 Grafische Darstellung des Gesamtmodells 118 10 Regressionsanalyse für Zielgröße Zugfestigkeit MD 120 10.1 Datenplausibilität der Zielgröße 120 10.2 Erstellen und Prüfen der Regressionsgleichung 120 10.2.1 Erstellen einer Regressionsgleichung 120 10.2.2 Bewertung der Güte der Regression, Residuenanalyse 121 10.2.3 Nachprüfen des Modells anhand von Beispieldaten 122 10.3 Auswerten der Regressionsgleichung 123 10.3.1 Intensität und Wichtung der Einflussgrößen 123 10.3.2 Wechselwirkungen 128 10.4 Grafische Darstellung des Gesamtmodells 131 11 Regressionsanalyse für Zielgröße Zugfestigkeit CD 133 11.1 Datenplausibilität der Zielgröße 133 11.2 Erstellen und Prüfen der Regressionsgleichung 133 11.2.1 Erstellen einer Regressionsgleichung 133 11.2.2 Bewertung der Güte der Regression, Residuenanalyse 134 11.2.3 Nachprüfen des Modells anhand von Beispieldaten 135 11.3 Auswerten der Regressionsgleichung 136 11.3.1 Intensität und Wichtung der Einflussgrößen 136 11.3.2 Wechselwirkungen 140 11.4 Grafische Darstellung des Gesamtmodells 141 12 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung MD 143 12.1 Datenplausibilität der Zielgröße 143 12.2 Erstellen und Prüfen der Regressionsgleichung 144 12.2.1 Erstellen einer Regressionsgleichung 144 12.2.2 Bewertung der Güte der Regression, Residuenanalyse 144 12.2.3 Nachprüfen des Modells anhand von Beispieldaten 145 12.3 Auswerten der Regressionsgleichung 146 12.3.1 Intensität und Wichtung der Einflussgrößen 146 12.3.2 Wechselwirkungen 151 12.4 Grafische Darstellung des Gesamtmodells 153 13 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung CD 155 13.1 Datenplausibilität der Zielgröße 155 13.2 Erstellen und Prüfen der Regressionsgleichung 155 13.2.1 Erstellen einer Regressionsgleichung 155 13.2.2 Bewertung der Güte der Regression, Residuenanalyse 156 13.2.3 Nachprüfen des Modells anhand von Beispieldaten 157 13.3 Auswerten der Regressionsgleichung 158 13.3.1 Intensität und Wichtung der Einflussgrößen 158 13.3.2 Wechselwirkungen 160 13.4 Grafische Darstellung des Gesamtmodells 161 14 Zusammenfassung 163 15 Ausblick 167 Literaturverzeichnis 169 Verzeichnis der Abbildungen 173 Verzeichnis der Tabellen 176 Verzeichnis der Anhänge 180 / The subject of the work presented here is the study of the padding process for the chemical wet finishing of nonwovens at web speeds up to 250 m/min. Background to the topic is the repellent treatment of polypropylene spunbond nonwovens applied for surgical gowns. Finishing carried out at subcontractors corresponding to best practice technology up to now, the trend in the nonwovens industry is turning towards an in-house process mastery. Essential requirement to make the padding process technologically exploitable for this kind of application is the knowledge of the process characteristics at the high web speeds claimed. For the experimental scenario to be covered comprising six determining factors at three level steps each, a D-optimal trial plan was defined using the statistic method of the design of experiments (DOE). The realization of the trials carried out on a padder with horizontal roll arrangement installed in a pilot line. For each of the seven responses a linear regression analyses was compiled and evaluated. A detailed analysis and discussion of the regression models provides information on direction of influence as well as intensity of each of the determining factors and factor-factor-interactions.:1 Einleitung 8 1.1 Ausgangspunkt 8 1.2 Produktionsmengen 8 1.3 Vliesstoffe in der medizinischen Anwendung 11 1.4 Vliesstoffauswahl 13 2 Wissenschaftlich-technische Problemstellung 16 2.1 Stand der Technik 16 2.2 Zielstellung und Vorgehensweise 21 3 Foulardierprozess: Prozessbeschreibung und Einflussgrößen 22 3.1 Foulardieren: Prozessbeschreibung 22 3.2 Foulardieren: Einflussgrößen 25 3.2.1 Einflussfaktoren Maschinendesign 25 3.2.2 Einflussfaktoren Verfahrensparameter 29 3.2.3 Einflussfaktoren Vliesstoffmaterial 30 3.2.4 Einflussfaktoren Imprägnierflotte 31 3.3 Einflussgrößen und Zielgrößen 33 4 Versuchsanordnung und Versuchsfoulard 34 4.1 Technikumsanlage am STFI 34 4.2 Versuchsfoulard 35 4.2.1 Horizontale Walzenanordnung 37 4.2.2 Hilfstrieb auf der S-Walze 38 4.2.3 Druckgebung und Quetschfugenbreite 38 4.2.4 Flottenführung 38 4.2.5 Niveauregelung, Flottenvolumen 39 4.2.6 Flottenverbrauch 40 4.2.7 Tauchstrecke, Verweilstrecke und Verweilzeit 42 4.2.8 Flottentemperatur 43 5 Material und Methoden 45 5.1 Vliesstoffmaterial 45 5.2 Ausrüstungsflotte 46 5.3 Mess- und Prüfmethoden 48 5.3.1 Feuchteaufnahme 48 5.3.2 Dicke 49 5.3.3 Luftdurchlässigkeit 50 5.3.4 Zugfestigkeit und Höchstzugkraftdehnung 50 6 Statistische Versuchsplanung und Regressionsanalyse 51 6.1 Vorbemerkung 51 6.2 D-optimale Versuchspläne 51 6.3 Versuchsplan 54 6.4 Darstellung des Versuchsraums 57 6.4.1 Faktor-Faktor-Kombinationen 57 6.4.2 Flottentemperatur TSoll versus TIst 58 6.5 Regressionsanalyse 59 6.5.1 Allgemeine Regressionsgleichung 59 6.5.2 Generelle Vorgehensweise 61 7 Regressionsanalyse für Zielgröße Feuchteaufnahme 62 7.1 Datenplausibilität der Zielgröße 62 7.2 Erstellen und Prüfen der Regressionsgleichung 64 7.2.1 Erstellen einer Regressionsgleichung 64 7.2.2 Bewertung der Güte der Regression, Residuenanalyse 69 7.2.3 Nachprüfen des Modells anhand von Beispieldaten 75 7.3 Auswerten der Regressionsgleichung 76 7.3.1 Intensität und Wichtung der Einflussgrößen 76 7.3.2 Wechselwirkungen 85 7.4 Grafische Darstellung des Gesamtmodells 90 8 Regressionsanalyse für Zielgröße Dicke 95 8.1 Datenplausibilität der Zielgröße 95 8.2 Erstellen und Prüfen der Regressionsgleichung 96 8.2.1 Erstellen einer Regressionsgleichung 96 8.2.2 Bewertung der Güte der Regression, Residuenanalyse 96 8.2.3 Nachprüfen des Modells anhand von Beispieldaten 97 8.3 Auswerten der Regressionsgleichung 98 8.3.1 Intensität und Wichtung der Einflussgrößen 98 8.3.2 Wechselwirkungen 103 8.4 Grafische Darstellung des Gesamtmodells 105 9 Regressionsanalyse für Zielgröße Luftdurchlässigkeit 107 9.1 Datenplausibilität der Zielgröße 107 9.2 Erstellen und Prüfen der Regressionsgleichung 107 9.2.1 Erstellen einer Regressionsgleichung 107 9.2.2 Bewertung der Güte der Regression, Residuenanalyse 108 9.2.3 Nachprüfen des Modells anhand von Beispieldaten 109 9.3 Auswerten der Regressionsgleichung 110 9.3.1 Intensität und Wichtung der Einflussgrößen 110 9.3.2 Wechselwirkungen 115 9.4 Grafische Darstellung des Gesamtmodells 118 10 Regressionsanalyse für Zielgröße Zugfestigkeit MD 120 10.1 Datenplausibilität der Zielgröße 120 10.2 Erstellen und Prüfen der Regressionsgleichung 120 10.2.1 Erstellen einer Regressionsgleichung 120 10.2.2 Bewertung der Güte der Regression, Residuenanalyse 121 10.2.3 Nachprüfen des Modells anhand von Beispieldaten 122 10.3 Auswerten der Regressionsgleichung 123 10.3.1 Intensität und Wichtung der Einflussgrößen 123 10.3.2 Wechselwirkungen 128 10.4 Grafische Darstellung des Gesamtmodells 131 11 Regressionsanalyse für Zielgröße Zugfestigkeit CD 133 11.1 Datenplausibilität der Zielgröße 133 11.2 Erstellen und Prüfen der Regressionsgleichung 133 11.2.1 Erstellen einer Regressionsgleichung 133 11.2.2 Bewertung der Güte der Regression, Residuenanalyse 134 11.2.3 Nachprüfen des Modells anhand von Beispieldaten 135 11.3 Auswerten der Regressionsgleichung 136 11.3.1 Intensität und Wichtung der Einflussgrößen 136 11.3.2 Wechselwirkungen 140 11.4 Grafische Darstellung des Gesamtmodells 141 12 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung MD 143 12.1 Datenplausibilität der Zielgröße 143 12.2 Erstellen und Prüfen der Regressionsgleichung 144 12.2.1 Erstellen einer Regressionsgleichung 144 12.2.2 Bewertung der Güte der Regression, Residuenanalyse 144 12.2.3 Nachprüfen des Modells anhand von Beispieldaten 145 12.3 Auswerten der Regressionsgleichung 146 12.3.1 Intensität und Wichtung der Einflussgrößen 146 12.3.2 Wechselwirkungen 151 12.4 Grafische Darstellung des Gesamtmodells 153 13 Regressionsanalyse für Zielgröße Höchstzugkraftdehnung CD 155 13.1 Datenplausibilität der Zielgröße 155 13.2 Erstellen und Prüfen der Regressionsgleichung 155 13.2.1 Erstellen einer Regressionsgleichung 155 13.2.2 Bewertung der Güte der Regression, Residuenanalyse 156 13.2.3 Nachprüfen des Modells anhand von Beispieldaten 157 13.3 Auswerten der Regressionsgleichung 158 13.3.1 Intensität und Wichtung der Einflussgrößen 158 13.3.2 Wechselwirkungen 160 13.4 Grafische Darstellung des Gesamtmodells 161 14 Zusammenfassung 163 15 Ausblick 167 Literaturverzeichnis 169 Verzeichnis der Abbildungen 173 Verzeichnis der Tabellen 176 Verzeichnis der Anhänge 180
54

Aufbau des Schockwellenlabors im Lehr- und Forschungsbergwerk 'Reiche Zeche' der TU Bergakademie Freiberg und die Entwicklung von dynamischen Höchstdrucksynthesemethoden

Schlothauer, Thomas 30 January 2024 (has links)
In dieser Arbeit werden folgende Arbeiten vorgestellt: ● Aufbau eines Schockwellenlabors für unterschiedliche Einsatzzwecke für eine Nettoexplosivmasse von bis zu 20 kg, bezogen auf NSH 711 (C4 nach MIL-Standard), ● Klärung der Ursachen des Probenverlustes bei Schockwellensyntheseexperimenten ab Überschreitung eines gewissen materialabhängigen Grenzdruckes unter Verwendung von in der Literatur vorgegebenen Standardmethoden sowie eine wissenschaftlich fundierte Prob-lembehebung auf der Basis empirischer Theorien, ● Berechnung der Zustandsgrößen Druck (p), Temperatur (T) sowie Zeit (t) unter den ge-wählten Versuchsbedingungen für unterschiedliche Problemstellungen und Materialien mit Kontrollmöglichkeiten sowie ● Gewährleistung des maximal möglichen Phasenumwandlungsgrades für die entsprechende Hochdruckphase. Insgesamt wurden im Verlauf der Entwicklungsarbeiten im Schockwellenlabor 122 Spren-gungen durchgeführt. Die Drücke betragen dabei zwischen 15 GPa und ca. 180 GPa. Es gelangen zahlreiche erfolgreiche Synthesen der Hochdruckphasen gamma-Si3N4 sowie rs-AlN mit Probenmengen von 0,2g bis zu 7,3g Hochdruckphase pro Versuch. Es wurden auf Basis der Rankine-Hugoniot-Zustandsgleichung drei empirische Grundprinzipien der Schockwellensynthese entwickelt, welche es nunmehr gestatten, die Schockwellenversuche reproduzierbar sowie gut kontrollierbar zu gestalten. Dies sind die „Vermeidung von Mach-Effekten“, die „Impedanzkorrektur der Probeneinheit“ sowie die „Kontrolle der adiabatischen Dekompression“. In mehr als 100 Experimenten, welche mit der impedanzkorrigierten Probeneinheit durchgeführt wurden, trat in keinem Fall Probenverlust auf, Gasdichtheit konnte teilweise hergestellt werden. Dies war unabhängig von dem erreichten Druck oberhalb des technisch bedingten Mindestdruckes von 15 GPa innerhalb der Probeneinheit möglich. Es wurden Versuche sowohl mit der Reflektionsmethode als auch mit der Impedanzmethode durchgeführt sowie für besondere Experimente dünne Metallplatten zwischen Flugplatte und Containeroberseite verwendet. In allen genannten Fällen sind die unterschiedlichen Druck- und Temperaturbedingungen in den Proben eindeutig verifizierbar. Weiterhin gelang es im Rahmen dieser Arbeit erstmals, sowohl Calciumcarbonat als auch Kaolinit (sogenannte fluidreiche Phasen) bis in den Druckbereich p> 100 GPa unter unterschiedlichen Temperaturen dynamisch zu belasten, ohne dass die empfindlichen Proben Ent-gasungs- bzw. Zerfallserscheinungen (Calcit) bzw. Aufschmelzungen (Kaolinit) aufwiesen. Besonderes Augenmerk ist dabei auf die Schocktemperatur zu richten, um den Druckaufbau nicht durch eine zu starke Aufheizung der Probe zu reduzieren (sogenanntes Knudson-Problem). Jede zukünftige Erhöhung des Druckes macht gleichzeitig eine Reduzierung der relativen Schocktemperatur erforderlich. Diese experimentellen Erfolge sind lediglich in dem Falle möglich, wenn im Schockwellenlabor folgende Grenzbedingungen eingehalten werden: ● Die Schockgeschwindigkeit Us ist größer als die Schallgeschwindigkeit des betreffenden Stoffes. ● Die erzielten Drücke sind höher als das Hugoniot-Elastic-Limit des betreffenden Stoffes und somit im Bereich des plastischen Verhaltens. ● Die maximale Porosität k des Impedanzpulvers ist kleiner als die Mie-Grüneisen-Grenze des betreffenden Stoffes. ● Die maximalen Drücke sind geringer als der Bulk-Modulus des betreffenden Stoffes und die Schallgeschwindigkeit im dichten Medium ist größer als die Schockgeschwindigkeit (Bereich der so genannten „schwachen Schockwellen“). ● Es wird ein Impedanzpulver-Probe-Verhältnis von >9:1 verwendet. ● Weiterhin stellt für die Schockwellensyntheseexperimente unter Vermeidung der freien adiabatischen Dekompression die Schocktemperatur (die Temperatur im Bereich des konstanten Druckes) die ausschlaggebende Größe dar. Für die Berechnung wurde entschieden, die Software MatLab zu verwenden. Die Berechnungen folgen den Grundlagen der linearen Algebra. Für die Berechnung der Zustandsgleichung wurden im Rahmen dieser Arbeit folgende vereinfachende Annahmen verifiziert: ● Unter den genannten Bedingungen gilt der lineare Zusammenhang zwischen Partikelge-schwindigkeit Up und Schockgeschwindigkeit Us. ● Unter den Bedingungen des Freiberger Schockwellenlabors sind die Unterschiede zwischen der gespiegelten Hugoniot und der release-adiabat-Kurve sehr gering, es kann an deren Stelle die gespiegelte Hugoniot verwendet werden. ● Die maximalen Drücke sind niedriger als der Schmelzpunkt auf der Hugoniot, sämtliche in dieser Arbeit dargestellten Berechnungen betreffen die beteiligten Stoffe im festen Zustand. Die impedanzkorrigierte Probeneinheit ist nicht zum Messen von Zustandsgleichungen geeignet, die Methoden „vollständige Probenrückgewinnung“ sowie „Messung der Zustands-gleichung“ schließen sich gegenseitig aus.:Motivation 1 1 Einführung 5 1.1 Das Hochdruckforschungszentrum (FHP) der Dr. Erich-Krüger-Stiftung 5 1.2 Möglichkeiten zur Erzeugung hoher dynamischer Drücke sowie zur Schockwel-lensynthese 24 1.3 Aufgaben des neuen Schockwellenlabors in Freiberg 31 2 Aufbau und Betrieb des neuen untertägigen Schockwellen- labors der TU Bergakademie Freiberg 35 2.1 Sprengarbeiten unter Bergrecht an einer Hochschule 35 2.2 Rechtliche Situation des Schockwellenlabors an der TU Bergakademie Freiberg 39 2.3 Lage und Dimensionierung des Schockwellenlabors 47 2.4 Ausrüstung des Labors 51 3. Physikalische Grundlagen 58 3.1 Verwendete Sprengstoffe 58 3.2 Detonation des Sprengstoffes und die Rankine-Hugoniot- Zustandsgleichung 60 3.2.1 Die Druck-Partikelgeschwindigkeits-Beziehung 64 3.2.2. Die Beziehung zwischen Druck und Differenz der spezifischen Volumina 66 3.2.3. Die Beziehung zwischen Druck und Differenz der spezifischen Inneren Energien 67 3.3 Plane-Wave-Generator (PWG) mit Flyer-Plate 69 3.3.1. Aktiver PWG 73 3.3.2. Passiver PWG 73 3.4 Beschleunigung der Flugplatte 74 3.5 Kollision der Flugplatte mit dem Probencontainer 77 3.6 Mie-Grüneisen-EoS und die Berechnung der Schocktemperatur 82 3.7 Verdichtung poröser Materialien 89 3.8 Schockwellenreflektionen 94 3.8.1 Reguläre Reflektionen 95 3.8.1.1 Reflektion an einer freien Oberfläche sowie adiabatische Dekompression 95 3.8.1.2 Reflektion an einer Materialgrenze 99 3.8.2 Irreguläre Reflektionen (Mach-Effekte) 102 3.9 Impedanzmethode 103 3.10 Reflektionsmethode beziehungsweise „ramp compression“ 107 3.11 Phasenumwandlungen aus schockwellenphysikalischer Sicht 112 4. Detaillierter Aufbau der Versuchsanordnung sowie Funktion der Einzelbestandteile 115 4.1 Versuchsanordnung 115 4.2 Explosiveinheit mit PWG und Arbeitsladung 116 4.2.1 Plane-Wave-Generator 116 4.2.2 Arbeitsladung 120 4.2.3 Flugplatte 122 4.2.4 Schaumstoffeinlage 123 4.2.5 Distanzring 124 4.2.6 Beschleunigung der Flugplatte 124 4.3. Probeneinheit 127 4.3.1 Probencontainer 129 4.3.2 Cu-Folie 131 4.3.3 Metallpulver und Probe 132 4.3.4 Probenhalter 135 4.3.5 Probenstempel 135 4.3.6 Schraubenboden 136 4.3.7 Stahlronde 136 4.3.8 HARDOX‐Unterlage 137 5. Berechnung der Zustandsgleichungen für die Impedanzmethode mit Hilfe der Software MatLab 139 5.1 Randbedingungen 139 5.2 Tests der Möglichkeit der Verwendung der getroffenen Annahmen 142 5.2.1 Gültigkeit der linearen Up‐Us‐Relation anstelle quadratischer Gleichungen 141 5.2.2 Verwendung der gespiegelten Hugoniot anstelle der adiabatischen Entspannungskurve 144 5.3 Berechnung der Hugoniot-EoS für die Kollision der Flugplatte mit dem Probencontainer 145 5.4 Berechnung der Kenngrößen „Druck“ und „Dichte“ für das Metallpulver mit Hilfe der Rankine‐Hugoniot‐EoS 152 5.5 Überprüfung der mit MatLab berechneten Zustandsgrößen 156 5.6 Berechnung der Kenngröße „Schocktemperatur“ für Kupferpulver im festen Zustand mit Hilfe der Mie‐Grüneisen‐EoS 158 5.7 Erstellen des X‐t‐Diagramms sowie Berechnung der Kenngröße „Schockdauer“ mit Hilfe linearer Gleichungssysteme 162 6. Empirisch methodische Weiterentwicklungen der Synthesemethoden 169 6.1 Vermeidung von Mach-Effekten 169 6.2 Impedanzkorrektur der Probeneinheit 173 6.2.1 Zerstörung des Probencontainers infolge ungünstiger Impedanzverhältnisse 173 6.2.2 Die Impedanzfunktion als zeit- und ortsaufgelöster Bestandteil der Hugoniot‐EoS 175 6.2.3 Konsequenzen der orts‐ und zeitabhängigen Impedanz- funktion für die Materialauswahl der Probeneinheit 180 6.3 Die Rolle der adiabatischen Dekompression unter Einbeziehung zusätzlicher Volumina. 183 7. Anwendungen 197 7.1 Untersuchungen des Microjettings 197 7.2 Reflektionsmethode mit Impedanzkorrigierter Probeneinheit und gekapseltem Reflektor 207 7.2.1 Versuchsaufbau 207 7.2.2 Testergebnisse 209 7.2.3 Berechnung der Druck‐ und Temperaturbedingungen für die Reflektionsmethode mit Hilfe der Software MatLab 211 7.2.3.1 Berechnung des p=f(Up)-Diagramms 211 7.2.3.2 Berechnung der Temperatur sowie der Geschwindigkeiten Up und Us 215 7.3 Halidbasierte Schockwellenbeanspruchung fluidreicher Phasen 222 7.4 Synthese von rs-AlN sowie -Si3N4 222 7.5 Upscaling der impedanzkorrigierten Probeneinheit mit vollständiger Probenrückgewinnung 223 7.5.1 Versuchsaufbau 223 7.5.2 Ergebnisse 225 8. Schlussfolgerungen 229 9. Danksagung 234 Literaturverzeichnis 235
55

Entwicklung eines miniaturisierten Fluoreszenzsensors basierend auf molekular geprägten Polymeren / Development of a miniaturized fluorescence sensor based on molecularly imprinted polymers

Kunath, Stephanie 03 June 2013 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Entwicklung von Biosensoren mit dem Ziel, mit Hilfe der Kopplung molekular geprägter Polymere (MIPs) als neuartiges Rezeptormaterial und dem sensitiven Nachweisprinzip der Fluoreszenz eine neue Qualität des Analytnachweises zu erreichen. Es wurde eine neue Strategie zur Optimierung der Bindungseigenschaften von molekular geprägten Polymeren in wässrigen Lösungsmitteln entwickelt, die die Kopplung aus Design of Experiments und der Optimierung multipler Zielgrößen umfasst. Damit konnten die Polymerbindungseigenschaften für alle vier betrachteten Parameter wesentlich verbessert werden. Mit Hilfe stationärer und zeitaufgelöster Fluoreszenztechniken wurde die Aufklärung der Wechselwirkung zwischen MIP und Analyt auf molekularer Ebene sowie die Charakterisierung einer neuen Nachweisstrategie basierend auf einen Förster-Resonanzenergietransfer-Mechanismus realisiert. Es wurde ferner ein MIP-Sensor für biologische Proben mit mikrofluidischer Probenzuführung aufgebaut und mittels Fluoreszenzspektrometer als konventionelles Nachweisverfahren etabliert. Darauf aufbauend wurde der optische Nachweis miniaturisiert und somit miniaturisierte Lichtquellen und Detektoren sowie eine faser-optische Lichtleitung eingesetzt. Davon ausgehend erfolgte die Optimierung des Messaufbaus hinsichtlich der Sensitivität und Nachweisgrenze des fluoreszierenden Analyten. Schließlich wurden erstmalig fluoreszenzmarkierte MIP-Partikel zur Lokalisation und Quantifizierung auf Zelloberflächen eingesetzt, d.h. diese dienten als Antikörperersatz der Immunfärbung. / This thesis deals with the development of biosensors with the aim to couple molecularly imprinted polymers (MIPs) as new receptor material with the sensitive detection principle of fluorescence in order to improve analyte detection. A new strategy for optimization of binding parameters of molecularly imprinted polymers in aqueous media was developed which is based on the coupling of design of experiments and the optimization of multiple objective parameters. Due to that the polymer binding properties for all four considered parameters could be optimized considerably. With the help of steady state and time-resolved fluorescence techniques the interaction between MIP and analyte could be clarified on a molecular basis. Furthermore the characterization of a new detection strategy based on a Förster resonance energy transfer mechanism was realized. Moreover a MIP sensor with microfluidic sample handling for biological samples was built-up and established with fluorescence spectroscopy as conventional detection method. Based on that, the optical detection was miniaturized with respect to light sources, detectors as well as optical fibers for light guidance. This set-up was optimized concerning sensitivity and limit of detection of the fluorescent analyte. Finally, for the first time fluorescently marked MIP particles were applied for imaging on cell surfaces – meaning that they were used for immunostaining as antibody mimics.
56

Entwicklung eines miniaturisierten Fluoreszenzsensors basierend auf molekular geprägten Polymeren

Kunath, Stephanie 18 February 2013 (has links)
Die vorliegende Arbeit befasst sich mit der Entwicklung von Biosensoren mit dem Ziel, mit Hilfe der Kopplung molekular geprägter Polymere (MIPs) als neuartiges Rezeptormaterial und dem sensitiven Nachweisprinzip der Fluoreszenz eine neue Qualität des Analytnachweises zu erreichen. Es wurde eine neue Strategie zur Optimierung der Bindungseigenschaften von molekular geprägten Polymeren in wässrigen Lösungsmitteln entwickelt, die die Kopplung aus Design of Experiments und der Optimierung multipler Zielgrößen umfasst. Damit konnten die Polymerbindungseigenschaften für alle vier betrachteten Parameter wesentlich verbessert werden. Mit Hilfe stationärer und zeitaufgelöster Fluoreszenztechniken wurde die Aufklärung der Wechselwirkung zwischen MIP und Analyt auf molekularer Ebene sowie die Charakterisierung einer neuen Nachweisstrategie basierend auf einen Förster-Resonanzenergietransfer-Mechanismus realisiert. Es wurde ferner ein MIP-Sensor für biologische Proben mit mikrofluidischer Probenzuführung aufgebaut und mittels Fluoreszenzspektrometer als konventionelles Nachweisverfahren etabliert. Darauf aufbauend wurde der optische Nachweis miniaturisiert und somit miniaturisierte Lichtquellen und Detektoren sowie eine faser-optische Lichtleitung eingesetzt. Davon ausgehend erfolgte die Optimierung des Messaufbaus hinsichtlich der Sensitivität und Nachweisgrenze des fluoreszierenden Analyten. Schließlich wurden erstmalig fluoreszenzmarkierte MIP-Partikel zur Lokalisation und Quantifizierung auf Zelloberflächen eingesetzt, d.h. diese dienten als Antikörperersatz der Immunfärbung. / This thesis deals with the development of biosensors with the aim to couple molecularly imprinted polymers (MIPs) as new receptor material with the sensitive detection principle of fluorescence in order to improve analyte detection. A new strategy for optimization of binding parameters of molecularly imprinted polymers in aqueous media was developed which is based on the coupling of design of experiments and the optimization of multiple objective parameters. Due to that the polymer binding properties for all four considered parameters could be optimized considerably. With the help of steady state and time-resolved fluorescence techniques the interaction between MIP and analyte could be clarified on a molecular basis. Furthermore the characterization of a new detection strategy based on a Förster resonance energy transfer mechanism was realized. Moreover a MIP sensor with microfluidic sample handling for biological samples was built-up and established with fluorescence spectroscopy as conventional detection method. Based on that, the optical detection was miniaturized with respect to light sources, detectors as well as optical fibers for light guidance. This set-up was optimized concerning sensitivity and limit of detection of the fluorescent analyte. Finally, for the first time fluorescently marked MIP particles were applied for imaging on cell surfaces – meaning that they were used for immunostaining as antibody mimics.
57

Network Inference from Perturbation Data: Robustness, Identifiability and Experimental Design

Groß, Torsten 29 January 2021 (has links)
Hochdurchsatzverfahren quantifizieren eine Vielzahl zellulärer Komponenten, können aber selten deren Interaktionen beschreiben. Daher wurden in den letzten 20 Jahren verschiedenste Netzwerk-Rekonstruktionsmethoden entwickelt. Insbesondere Perturbationsdaten erlauben dabei Rückschlüsse über funktionelle Mechanismen in der Genregulierung, Signal Transduktion, intra-zellulärer Kommunikation und anderen Prozessen zu ziehen. Dennoch bleibt Netzwerkinferenz ein ungelöstes Problem, weil die meisten Methoden auf ungeeigneten Annahmen basieren und die Identifizierbarkeit von Netzwerkkanten nicht aufklären. Diesbezüglich beschreibt diese Dissertation eine neue Rekonstruktionsmethode, die auf einfachen Annahmen von Perturbationsausbreitung basiert. Damit ist sie in verschiedensten Zusammenhängen anwendbar und übertrifft andere Methoden in Standard-Benchmarks. Für MAPK und PI3K Signalwege in einer Adenokarzinom-Zellline generiert sie plausible Netzwerkhypothesen, die unterschiedliche Sensitivitäten von PI3K-Mutanten gegenüber verschiedener Inhibitoren überzeugend erklären. Weiterhin wird gezeigt, dass sich Netzwerk-Identifizierbarkeit durch ein intuitives Max-Flow Problem beschreiben lässt. Dieses analytische Resultat erlaubt effektive, identifizierbare Netzwerke zu ermitteln und das experimentelle Design aufwändiger Perturbationsexperimente zu optimieren. Umfangreiche Tests zeigen, dass der Ansatz im Vergleich zu zufällig generierten Perturbationssequenzen die Anzahl der für volle Identifizierbarkeit notwendigen Perturbationen auf unter ein Drittel senkt. Schließlich beschreibt die Dissertation eine mathematische Weiterentwicklung der Modular Response Analysis. Es wird gezeigt, dass sich das Problem als analytisch lösbare orthogonale Regression approximieren lässt. Dies erlaubt eine drastische Reduzierung des nummerischen Aufwands, womit sich deutlich größere Netzwerke rekonstruieren und neueste Hochdurchsatz-Perturbationsdaten auswerten lassen. / 'Omics' technologies provide extensive quantifications of components of biological systems but rarely characterize the interactions between them. To fill this gap, various network reconstruction methods have been developed over the past twenty years. Using perturbation data, these methods can deduce functional mechanisms in gene regulation, signal transduction, intra-cellular communication and many other cellular processes. Nevertheless, this reverse engineering problem remains essentially unsolved because inferred networks are often based on inapt assumptions, lack interpretability as well as a rigorous description of identifiability. To overcome these shortcoming, this thesis first presents a novel inference method which is based on a simple response logic. The underlying assumptions are so mild that the approach is suitable for a wide range of applications while also outperforming existing methods in standard benchmark data sets. For MAPK and PI3K signalling pathways in an adenocarcinoma cell line, it derived plausible network hypotheses, which explain distinct sensitivities of PI3K mutants to targeted inhibitors. Second, an intuitive maximum-flow problem is shown to describe identifiability of network interactions. This analytical result allows to devise identifiable effective network models in underdetermined settings and to optimize the design of costly perturbation experiments. Benchmarked on a database of human pathways, full network identifiability is obtained with less than a third of the perturbations that are needed in random experimental designs. Finally, the thesis presents mathematical advances within Modular Response Analysis (MRA), which is a popular framework to quantify network interaction strengths. It is shown that MRA can be approximated as an analytically solvable total least squares problem. This insight drastically reduces computational complexity, which allows to model much bigger networks and to handle novel large-scale perturbation data.
58

Heat transfer process between polymer and cavity wall during injection molding

Liu, Yao 05 December 2014 (has links)
Injection molding is one of the most commonly applied processing methods for plastic components. Heat transfer coefficient (HTC), which describes the heat conducting ability of the interface between a polymer and cavity wall, significantly influences the temperature distribution of a polymer and mold during injection molding and thus affects the process and quality of plastic products. This thesis focuses on HTC under diverse processing situations. On the basis of the heat conducting principle, a theoretical model for calculating HTC was presented. Injection mold specially used for measuring and calculating HTC was designed and fabricated. Experimental injection studies under different processing conditions, especially different surface roughness, were performed for acquiring necessary temperature data. The heat quantity across the interface and HTC between a polymer and cavity wall was calculated on the basis of experimental results. The influence of surface roughness on HTC during injection molding was investigated for the first time. The factors influencing the HTC were analyzed on the basis of the factor weight during injection molding. Subsequently FEM (Finite element method) simulations were carried out with observed and preset value of HTC respectively and the relative crystallinity and part density were obtained. In the comparison between results from simulation and experiment, the result calculated with observed HTC shows better agreement with actually measured value, which can verify the reliability and precision of the injection molding simulation with observed HTC. The results of this thesis is beneficial for understanding the heat transfer process comprehensively, predicting temperature distribution, arranging cooling system, reducing cycle time and improving precision of numerical simulation. / Das Spritzgießen ist eines der am häufigsten angewandten Verarbeitungsverfahren zur Herstellung von Kunststoffkomponenten. Der Wärmedurchgangskoeffizient (WDK), welcher den Wärmeübergang zwischen Kunststoff und Werkzeugwand beschreibt, beeinflusst während des Spritzgießens maßgeblich die Temperaturverteilung im Bauteil und dem Werkzeug und folglich den Prozess und die Qualität der Kunststoffprodukte. Der Inhalt dieser Arbeit beschäftigt sich mit dem WDK unter verschiedenen Prozessbedingungen. Auf Grundlage des Wärmeleitungsprinzips wurde ein theoretisches Modell für die Berechnung des WDK vorgestellt. Es wurde dazu ein Spritzgießwerkzeug konstruiert und hergestellt, welches Messungen zur späteren Berechnung des WDK ermöglicht. Praktische Spritzgießversuche unter verschiedenen Prozessbedingungen, insbesondere unterschiedlicher Oberflächenrauheit, wurden für die Erfassung der erforderlichen Temperaturdaten durchgeführt. Auf Grundlage der experimentellen Ergebnisse wurde der Wärmeübergang zwischen dem Polymer und der Werkzeugwand berechnet. Der Einfluss der Oberflächenrauhigkeit auf den WDK wurde hierbei zum ersten Mal untersucht. Auf Grundlage des Bauteilgewichtes wurden anschließend die Faktoren, die den WDK beeinflussen, berechnet. Des Weiteren wurden FEM-Simulationen (Finite Element Methode) mit dem gemessenen und dem voreingestellten WDK durchgeführt und daraus der Kristallinitätsgrad und die Bauteildichte gewonnen. Der Vergleich zwischen den realen Ergebnissen und der Simulation zeigt, dass die Berechnungen mit dem gemessenen WDK eine bessere Übereinstimmung mit den realen Werten aufweist, was die Zuverlässigkeit und Präzision der Spritzgusssimulation bestätigt. Die Ergebnisse dieser Arbeit tragen zum umfassenden Verständnis des Wärmeübergangs im Spritzgießprozess, zur Vorhersage der Temperaturverteilung, zur Auslegung des Kühlsystems, zur Reduzierung der Zykluszeit und zur Verbesserung der Genauigkeit der numerischen Simulation bei.
59

Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA) / Physikochemische Prozesse während der Reaktivleimung mit Alkenyl-Bernsteinsäure-Anhydrid (ASA)

Porkert, Sebastian 27 February 2017 (has links) (PDF)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure. The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors. This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry. The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.
60

Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA)

Porkert, Sebastian 09 December 2016 (has links)
Sizing (hydrophobization) is one of the most important process steps within the added-value chain of about 1/3rd of the worldwide produced paper & board products. Even though sizing with so-called reactive sizing agents, such as alkenyl succinic anhydride (ASA) was implemented in the paper industry decades ago, there is no total clarity yet about the detailed chemical and physical mechanisms that lead to their performance. Previous research was carried out on the role of different factors influencing the sizing performance, such as bonding between ASA and cellulose, ASA hydrolysis, size revision as well as the most important interactions with stock components, process parameters and additives during the paper making process. However, it was not yet possible to develop a holistic model for the explanation of the sizing performance given in real life application. This thesis describes a novel physico-chemical approach to this problem by including results from previous research and combining these with a wide field of own basic research and a newly developed method that allows tracing back the actual localization of ASA within the sheet structure. The carried out measurements and trial sets for the basic field of research served to evaluate the stock and process parameters that most dominantly influence the sizing performance of ASA. Interactions with additives other than retention aids were not taken into account. The results show that parameters, such as the content of secondary fibers, the degree of refining, the water hardness as well as the suspension conductivity, are of highest significance. The sample sets of the trials with the major impacting parameters were additionally analyzed by a newly developed localization method in order to better understand the main influencing factors. This method is based on optical localization of ASA within the sheet structure by confocal white light microscopy. In order to fulfill the requirements at magnification rates of factor 100 optical zoom, it was necessary to improve the contrast between ASA and cellulose. Therefore, ASA was pretreated with an inert red diazo dye, which does not have any impact on neither the sizing nor the handling properties of ASA. Laboratory hand sheets that were sized with dyed ASA, were analyzed by means of their sizing performance in correlation to measurable ASA agglomerations in the sheet structure. The sizing performance was measured by ultrasonic penetration analysis. The agglomeration behavior of ASA was analyzed automatically by multiple random imaging of a sample area of approx. 8650 µm² with a minimum resolution for particles of 500 nm in size. The gained results were interpreted by full factorial design of experiments (DOE). The trials were carried out with ASA dosages between 0% and 0.8% on laboratory hand sheets, made of 80% bleached eucalyptus short fiber kraft pulp and 20% northern bleached softwood kraft pulp, beaten to SR° 30, produced with a RDA sheet former at a base weight of 100 g/m² oven dry. The results show that there is a defined correlation between the ASA dosage, the sizing performance and the number and area of ASA agglomerates to be found in the sheet structure. It was also possible to show that the agglomeration behavior is highly influenced by external factors like furnish composition and process parameters. This enables a new approach to the explanation of sizing performance, by making it possible to not only examine the performance of the sizing agent, but to closely look at the predominant position where it is located in the sheet structure. These results lead to the explanation that the phenomenon of sizing is by far not a pure chemical process but rather a more physical one. Based on the gained findings it was possible so far to optimize the ASA sizing process in industrial-scale by means of ~ 50% less ASA consumption at a steady degree of sizing and improved physical sheet properties.:Acknowledgment I Abstract III Table of Content V List of Illustrations XI List of Tables XVI List of Formulas XVII List of Abbreviations XVIII 1 Introduction and Problem Description 1 1.1 Initial Situation 1 1.2 Objective 2 2 Theoretical Approach 3 2.1 The Modern Paper & Board Industry on the Example of Germany 3 2.1.1 Raw Materials for the Production of Paper & Board 5 2.2 The Sizing of Paper & Board 8 2.2.1 Introduction to Paper & Board Sizing 8 2.2.2 The Definition of Paper & Board Sizing 10 2.2.3 The Global Markets for Sized Paper & Board Products and Sizing Agents 11 2.2.4 Physical and Chemical Background to the Mechanisms of Surface-Wetting and Penetration 13 2.2.4.1 Surface Wetting 14 2.2.4.2 Liquid Penetration 15 2.2.5 Surface and Internal Sizing 17 2.2.6 Sizing Agents 18 2.2.6.1 Alkenyl Succinic Anhydride (ASA) 19 2.2.6.2 Rosin Sizes 19 2.2.6.3 Alkylketen Dimer (AKD) 23 2.2.6.4 Polymeric Sizing Agents (PSA) 26 2.2.7 Determination of the Sizing Degree (Performance Analysis) 28 2.2.7.1 Cobb Water Absorption 29 2.2.7.2 Contact Angle Measurement 30 2.2.7.3 Penetration Dynamics Analysis 31 2.2.7.4 Further Qualitative Analysis Methods 33 2.2.7.4.1 Ink Stroke 33 2.2.7.4.2 Immersion Test 33 2.2.7.4.3 Floating Test 34 2.2.7.4.4 Hercules Sizing Tester (HST) 34 2.2.8 Sizing Agent Detection (Qualitative Analysis) and Determination of the Sizing Agent Content (Quantitative Analysis) 35 2.2.8.1 Destructive Methods 35 2.2.8.2 Non Destructive Methods 36 2.3 Alkenyl Succinic Anhydride (ASA) 36 2.3.1.1 Chemical Composition and Production of ASA 37 2.3.1.2 Mechanistic Reaction Models 39 2.3.1.3 ASA Application 42 2.3.1.3.1 Emulsification 42 2.3.1.3.2 Dosing 44 2.3.1.4 Mechanistic Steps of ASA Sizing 46 2.3.2 Physico-Chemical Aspects during ASA Sizing 48 2.3.2.1 Reaction Plausibility 48 2.3.2.1.1 Educt-Product Balance / Kinetics 48 2.3.2.1.2 Energetics 51 2.3.2.1.3 Sterics 52 2.3.2.2 Phenomena based on Sizing Agent Mobility 53 2.3.2.2.1 Sizing Agent Orientation 54 2.3.2.2.2 Intra-Molecular Orientation 55 2.3.2.2.3 Sizing Agent Agglomeration 55 2.3.2.2.4 Fugitive Sizing / Sizing Loss / Size Reversion 56 2.3.2.2.5 Sizing Agent Migration 58 2.3.2.2.6 Sizing Reactivation / Sizing Agent Reorientation 59 2.3.3 Causes for Interactions during ASA Sizing 60 2.3.3.1 Process Parameters 61 2.3.3.1.1 Temperature 61 2.3.3.1.2 pH-Value 62 2.3.3.1.3 Water Hardness 63 2.3.3.2 Fiber Types 64 2.3.3.3 Filler Types 65 2.3.3.4 Cationic Additives 66 2.3.3.5 Anionic Additives 67 2.3.3.6 Surface-Active Additives 68 2.4 Limitations of State-of-the-Art ASA-Sizing Analysis 69 2.5 Optical ASA Localization 71 2.5.1 General Background 71 2.5.2 Confocal Microscopy 72 2.5.2.1 Principle 72 2.5.2.2 Features, Advantage and Applicability for Paper-Component Analysis 74 2.5.3 Dying / Staining 75 3 Discussion of Results 77 3.1 Localization of ASA within the Sheet Structure 77 3.1.1 Choice of Dyes 77 3.1.1.1 Dye Type 78 3.1.1.2 Evaluation of Dye/ASA Mixtures 80 3.1.1.2.1 Maximum Soluble Dye Concentration 80 3.1.1.2.2 Thin Layer Chromatography 81 3.1.1.2.3 FTIR-Spectroscopy 82 3.1.1.3 Evaluation of the D-ASA Emulsion 84 3.1.1.4 Paper Chromatography with D-ASA & F-ASA Emulsions 85 3.1.1.5 Evaluation of the D-ASA Emulsion’s Sizing Efficiency 86 3.1.2 The Localization Method 87 3.1.2.1 The Correlation between ASA Distribution and Agglomeration 88 3.1.2.2 Measurement Settings 89 3.1.2.3 Manual Analysis 90 3.1.2.4 Automated Analysis 92 3.1.2.4.1 Automated Localization / Microscopy Measurement 92 3.1.2.4.2 Automated Analysis / Image-Processing 93 3.1.2.5 Result Interpretation and Example Results 96 3.1.2.6 Reproducibility 97 3.1.2.7 Sample Mapping 98 3.1.3 Approaches to Localization-Method Validation 102 3.1.3.1 Raman Spectroscopy 102 3.1.3.2 Confocal Laser Scanning Fluorescent Microscopy 102 3.1.3.3 Decolorization 103 3.2 Factors Impacting the Sizing Behavior of ASA 104 3.2.1 ASA Type 105 3.2.2 Emulsion Parameters 107 3.2.2.1 Hydrolyzed ASA Content 107 3.2.2.2 ASA/Starch Ratio 109 3.2.2.3 Emulsion Age 110 3.2.3 Stock Parameters 111 3.2.3.1 Long Fiber/Short Fiber Ratio 111 3.2.3.2 Furnish Type 112 3.2.3.3 Degree of Refining 114 3.2.3.4 Filler Type/Content 116 3.2.4 Process Parameters 119 3.2.4.1 Temperature 119 3.2.4.2 pH-Value 120 3.2.4.3 Conductivity 122 3.2.4.4 Water Hardness 123 3.2.4.5 Shear Rate 125 3.2.4.6 Dwell Time 127 3.2.4.7 Dosing Position & Dosing Order 128 3.2.4.8 Drying 130 3.2.4.9 Aging 131 3.3 Factors Impacting the Localization Behavior of ASA 132 3.3.1 Degree of Refining 132 3.3.2 Sheet Forming Conductivity 135 3.3.3 Water Hardness 136 3.3.4 Retention Aid (PAM) 137 3.3.5 Contact Curing 138 3.3.6 Accelerated Aging 139 3.4 Main Optimization Approach 141 3.4.1 Optimization of ASA Sizing Performance Characteristics 142 3.4.2 Emulsion Modification 144 3.4.2.1 Lab Trials / RDA Sheet Forming 146 3.4.2.2 TPM Trials 147 3.4.2.3 Industrial-Scale Trials 149 3.4.2.4 Correlation between Sizing Performance Optimization and Agglomeration Behavior on the Example of PAAE 152 3.5 Holistic Approach to Sizing Performance Explanation 154 4 Experimental Approach 157 4.1 Characterization of Methods, Measurements and Chemicals used for the Optical Localization-Analysis of ASA 157 4.1.1 Characterization of used Chemicals 157 4.1.1.1 Preparation of Dyed-ASA Solutions 157 4.1.1.2 Thin Layer Chromatography 157 4.1.1.3 Fourier Transformed Infrared Spectroscopy 157 4.1.1.4 Emulsification of ASA 158 4.1.1.5 Paper Chromatography 159 4.1.1.6 Particle Size Measurement 159 4.1.2 Optical Analysis of ASA Agglomerates 160 4.1.2.1 Microscopy 160 4.1.2.2 Automated Analysis 163 4.1.2.2.1 Adobe Photoshop 163 4.1.2.2.2 Adobe Illustrator 164 4.1.2.3 Confocal Laser Scanning Fluorescent Microscopy 166 4.2 Characterization of Used Standard Methods and Measurements 166 4.2.1 Stock and Paper Properties 166 4.2.1.1 Stock pH, Conductivity and Temperature Measurement 166 4.2.1.2 Dry Content / Consistency Measurement 167 4.2.1.3 Drainability (Schopper-Riegler) Measurement 167 4.2.1.4 Base Weight Measurement 168 4.2.1.5 Ultrasonic Penetration Measurement 168 4.2.1.6 Contact Angle Measurement 169 4.2.1.1 Cobb Measurement 169 4.2.1.2 Air Permeability Measurements 170 4.2.1.3 Tensile Strength Measurements 170 4.2.2 Preparation of Sample Sheets 171 4.2.2.1 Stock Preparation 171 4.2.2.2 Laboratory Refining (Valley Beater) 171 4.2.2.3 RDA Sheet Forming 171 4.2.2.4 Additive Dosing 173 4.2.2.5 Contact Curing 174 4.2.2.6 Hot Air Curing 174 4.2.2.7 Sample Aging 174 4.2.2.8 Preparation of Hydrolyzed ASA 175 4.2.2.9 Trial Paper Machine 175 4.2.2.10 Industrial-Scale Board Machine 177 4.3 Characterization of used Materials 178 4.3.1 Fibers 178 4.3.1.1 Reference Stock System 178 4.3.1.2 OCC Fibers 179 4.3.1.3 DIP Fibers 179 4.3.2 Fillers 180 4.3.3 Chemical Additives 180 4.3.3.1 ASA 180 4.3.3.2 Starches 181 4.3.3.3 Retention Aids 181 4.3.3.4 Poly Aluminum Compounds 181 4.3.3.5 Wet Strength Resin 181 4.3.4 Characterization of used Additives 182 4.3.4.1 Solids Content 182 4.4 Description of Implemented Advanced Data Analysis- and Visualization Methods 183 4.4.1 Design of Experiments (DOE183 4.4.2 Contour Plots 184 4.4.3 Box-Whisker Graphs 185 5 Conclusion 186 6 Outlook for Further Work 191 7 Bibliography 192 Appendix 207 7.1 Localization Method Reproducibility 207 7.2 DOE - Coefficient Lists 208 7.2.1 Trial 3.3.4 – Impact of Retention Aid (PAM) on Agglomeration Behavior and Sizing Performance 208 7.2.2 Trial 3.3.5 – Impact of Contact Curing on Agglomeration Behavior and Sizing Performance 208 7.2.3 Trial 3.3.6 – Impact of Accelerated Aging on Agglomeration Behavior and Sizing Performance 209

Page generated in 0.0509 seconds