61 |
Ökad lokal nytta av förnyelsebar energiproduktion med hybridkraftverkBeijner, David January 2018 (has links)
Förnyelsebar och miljövänlig elproduktion är en förutsättning för det mer eller mindre miljömässigt positiva värdet hos de produkter och processer som förbrukar elenergi. Det räcker inte med att dessa produkter och processer är effektiva i sitt användande av el om denna el är producerad med icke förnyelsebara metoder. Målet simuleringsprogram som kan simulera ett hybridkraftverk som använder sig av vindkraft och vattenkraft. Resultatet av detta projekt är ett simuleringsprogram som kan uppskatta storleken på ett pumpkraftverk i form av hur många megawatt dess vattenturbin behöver vara samt hur stor reservoar som behövs. Dessutom uppskattas hur många vindkraftverk som krävs i kombination med vattenkraftverket för att nå en önskad minskning av elektricitet från icke förnyelsebara källor. med detta projekt är skapandet av ett / Renewable and environmentally friendly electricity production is a necessity for the relative positive value of the products and processes that consumes electricity. It is not enough that these products and processes in and of themselves are effective in their use of electricity if that electricity is produced with non- renewable means. The goal of this project is the creation of a simulation software that can simulate a hybrid powerplant composed of wind turbines and a hydro powerplant. The result of this project is a simulation software that is able is to approximate the size of a pumped-storage megawatts and the size of the reservoir needed. In addition, the software calculates the amount of wind turbines needed in combination with the hydro powerplant to achieve a desired decrease in non-renewable electricity.
|
62 |
Analysis to reduce ice-related production losses for wind turbinesDe La Cruz, Jhason Paran January 2023 (has links)
In the rapidly growing wind energy market, regions with cold climates are currently in the spotlight owing to their abundance of wind resources. However, the operation of wind turbines in cold climate conditions is challenged by serious icing problems. Ice accretion on the rotor blades of a wind turbine results in a decline in power production, an increase in fatigue loads, and raises health and safety concerns. To mitigate these adverse effects, ice protection systems (IPS) are now widely being employed. These systems mainly rely on costly blade heating techniques, yet their efficiency is limited and they cannot effectively prevent or remove ice build-up under all ambient conditions. In this study, the performance of five identical wind turbines, each equipped with an electrothermal heating IPS, is analyzed over several icing events. All data are collected from an undisclosed wind park located in northern Sweden. Historical wind turbine data is studied to explore the extent of icing-induced losses and IPS activities, as well as the dependence of blade icing and IPS efficiency on meteorological conditions. Based on the results from the analysis, suggestions will be provided on how the control settings of the IPS can be modified to increase the de-icing effectiveness and reduce ice-related production losses. For the purposes of better understanding the performance of the wind turbines and their IPS in icing conditions, an analytic dashboard has been internally developed. To derive quantitative information about the IPS efficiency, a set of standardized metrics is utilized. An internal algorithm has been developed that classifies various forms of ice losses and different status codes of wind turbines. These ice losses and turbine status codes are monitored and analyzed using the analytic dashboard. Statistical analysis indicates that the most substantial source of ice losses is the stoppages caused by blade icing, whereas losses during de-icing operations are relatively insignificant. Results from the IPS performance analysis show that the icing-induced losses are further influenced by the inconsistency in the IPS behavior. The systems have shown to be inefficient even when operating under conditions of wind speed and ambient temperature that fall within their specified operational limits, indicating their dependence on external conditions. In the majority of icing events, a delay in IPS activation was observed, particularly when these events coincided with periods of high wind speeds. Moreover, the heating of the blades is not sufficient, as multiple attempts to melt the accreted ice are often required, yet success is not always achieved. The difficulty in validating whether the blades are free of ice stems from the fact that the heat is emitted only from the blade’s leading edge. The author suggests specific immediate measures to improve the control of the IPS, including changing the threshold values for IPS triggering and adjusting the duration and frequency of ice removal cycles. These measures are confined by constraints tied to Intellectual Property Rights, limiting the extent to which elements in the IPS control settings can be modified by the wind operator. Nevertheless, if these constraints are relaxed, there exists significant untapped potential for further optimizing the control of IPS. / På den snabbt växande vindkraftsmarknaden är regioner med kallt klimat för närvarande i fokus på grund av deras rikliga vindresurser. Driften av vindkraftverk i kalla klimatförhållanden utmanas dock av allvarliga problem med isbildning. Isbildning på vindkraftverkens rotorblad leder till minskad kraftproduktion, ökade utmattningsbelastningar och ger upphov till hälso- och säkerhetsproblem. För att mildra dessa negativa effekter används nu isskyddssystem (IPS) i stor utsträckning. Dessa system är huvudsakligen beroende av kostsamma tekniker för uppvärmning av bladen, men deras effektivitet är begränsad och de kan inte effektivt förhindra eller avlägsna isbildning under alla omgivningsförhållanden. I denna studie analyseras prestandan hos fem identiska vindkraftverk, vart och ett utrustat med en IPS för elektrotermisk uppvärmning, under flera nedisningshändelser. Alla data har samlats in från en icke namngiven vindkraftspark i norra Sverige. Historiska vindturbindata studeras för att undersöka omfattningen av nedisningsinducerade förluster och IPS-aktiviteter, samt beroendet av bladnedisning och IPS-effektivitet på meteorologiska förhållanden. Baserat på resultaten från analysen kommer förslag att ges på hur kontrollinställningarna för IPS kan modifieras för att öka avisningseffektiviteten och minska isrelaterade produktionsförluster. För att bättre förstå hur IPS-utrustade vindkraftverk presterar under isförhållanden har en analysverktyg utvecklats internt. För att få kvantitativ information om IPS-effektiviteten används en uppsättning standardiserade mätvärden. En intern algoritm har utvecklats som klassificerar olika former av isförluster och olika statuskoder för vindturbiner. Dessa isförluster och turbinstatuskoder övervakas och analyseras med hjälp av analysverktyget. Statistisk analys visar att den mest betydande källan till isförluster är de stopp som orsakas av isbildning på bladen, medan förluster under avisning är relativt obetydliga. Resultaten från IPS-prestandaanalysen visar att de isinducerade förlusterna påverkas ytterligare av inkonsekvensen i IPS-beteendet. Systemen har visat sig vara ineffektiva även när de arbetar under förhållanden med vindhastighet och omgivningstemperatur som faller inom deras angivna operativa gränser, vilket visar att de är beroende av yttre förhållanden. Vid de flesta isbildningstillfällen observerades en fördröjning av IPS-aktiveringen, särskilt när dessa händelser sammanföll med perioder med höga vindhastigheter. Vidare är uppvärmningen av bladen inte tillräcklig, eftersom det ofta krävs flera försök att smälta den ackumulerade isen, men man lyckas inte alltid. Svårigheten att avgöra om bladen är fria från is beror på att värmen endast avges från bladets framkant. Studien föreslår specifika omedelbara åtgärder för att förbättra kontrollen av IPS, inklusive ändring av tröskelvärdena för IPS-aktivering och justering av varaktigheten och frekvensen för isborttagningscykler. Dessa åtgärder begränsas av immateriella rättigheter, som begränsar i vilken utsträckning operatören kan ändra IPS-kontrollinställningarna. Om dessa begränsningar lättas finns det dock en betydande outnyttjad potential för ytterligare optimering av kontrollen av IPS.
|
63 |
Study on optimizing French wind farms bat curtailment plans: reducing production losses while protecting batsLeger, Clément January 2024 (has links)
This research delves into the complex interplay between wind turbine operations and bat conservation efforts, focusing on mitigating bat mortality caused by wind turbines in France. Despite comprehensive legal safeguards and conservation measures, bat fatalities remain a pressing concern, necessitating innovative solutions to reconcile environmental protection with energy production. The problem statement revolves around the challenge of optimising bat curtailment plans to minimise bat mortality while mitigating energy losses. With over 80% of bat species in France affected by wind turbine collisions, the urgency of this issue is underscored by the significant ecological implications and regulatory imperatives. Despite the existence of curtailment plans, there is a lack of comprehensive understanding regarding their effectiveness and potential trade-offs. This problem warrants a Master’s thesis project due to its multifaceted nature and practical implications. It requires a nuanced understanding of bat behaviours, wind turbine operations, and regulatory frameworks, making it both intellectually stimulating and socially relevant. Previous efforts have largely focused on static curtailment plans, leaving room for exploration of dynamic approaches and optimisation strategies. The methodology employed in this study involves the development of a Power BI tool and key performance indicators (KPIs) to evaluate different curtailment plans. Through comparative analysis, insights are gained into the efficacy of static versus dynamic curtailment plans, as well as the influence of weather conditions, such as rain, on curtailment decisions. Additionally, sensitivityanalysis is conducted to identify the most influential parameters and optimise curtailment plans accordingly. The key results of this study demonstrate the superiority of dynamic curtailment plans in reducing energy losses while maintaining sufficient protection for bat activity (higher than the 90% protection rate required by law) compared to static approaches (50% reduction in losses over an entire curtailment season). Insights gleaned from sensitivity analysis highlight the critical parameters influencing energy losses, informing targeted modifications to curtailment plans. Furthermore, the study underscores the importance of considering continuous variables, such as humidity, and site-specific factors, such as sunrise and sunset times, for more precise conservation strategies. The implications of this research extend beyond academia, informing policy-making and industry practices in wind energy and biodiversity conservation. By optimizing curtailment plans, stakeholders can achieve a balance between environmental protection and renewable energy generation, paving the way for sustainable development. Future research avenues include refining curtailment strategies based on continuous variables and conducting field studies to validate findings across diverse wind farm locations. / Denna forskning utforskar det komplexa samspel mellan vindkraftverkens drift och fladdermusbevarande insatser, med fokus på att mildra fladdermusdödlighet orsakad av vindkraftverk i Frankrike. Trots omfattande lagliga skydd och bevarandeåtgärder förblir fladdermusdödsfall ett påtagligt bekymmer, vilket kräver innovativa lösningar för att förena miljöskydd med energiproduktion. Problemformuleringen kretsar kring utmaningen att optimera fladdermusbegränsningsplaner för att minimera fladdermusdödlighet samtidigt som energiförluster mildras. Med över 80% av fladdermusarterna i Frankrike påverkade av kollisioner med vindkraftverk, understryks brådskan i detta ärende av dess betydande ekologiska konsekvenser och reglerande krav. Trots att begränsningsplaner existerar, finns det en brist på en heltäckande förståelse för deras effektivitet och potentiella avvägningar. Detta problem motiverar ett magisterprojekt på grund av dess mångfacetterade natur och praktiska konsekvenser. Det kräver en nyanserad förståelse för fladdermusars beteenden, vindkraftverks drift och reglerande ramar, vilket gör det både intellektuellt stimulerande och socialt relevant. Tidigare insatser har i stor utsträckning fokuserat på statiska begränsningsplaner och lämnat utrymme för utforskning av dynamiska tillvägagångssätt och optimeringsstrategier. Metoden som används i denna studie innefattar utvecklingen av ett Power BI-verktyg och nyckelprestationsindikatorer för att utvärdera olika begränsningsplaner. Genom jämförande analys får man insikter om effektiviteten hos statiska jämfört med dynamiska begränsningsplaner, samt påverkan av väderförhållanden, såsom regn, på begränsningsbeslut. Dessutom genomförs känslighetsanalys för att identifiera de mest inflytelserika parametrarna och optimera begränsningsplanerna därefter. De viktigaste resultaten av denna studie visar överlägsenheten hos dynamiska begränsningsplaner när det gäller att minska energiförluster samtidigt som tillräckligt skydd för fladdermusaktivitet bibehålls (högre än den 90% skyddsnivå som krävs enligt lag) jämfört med statiska metoder (50% minskning av förluster under en hel begränsningssäsong). Insikter från känslighetsanalysen belyser de kritiska parametrarna som påverkar energiförluster och ger vägledning för målinriktade modifieringar av begränsningsplaner. Dessutom betonar studien vikten av att beakta kontinuerliga variabler, såsom luftfuktighet, och platsspecifika faktorer, såsom soluppgångs- och solnedgångstider, för mer precisa bevarandestrategier. Denna forsknings betydelse sträcker sig bortom akademin och informerar beslutsfattande inom politik och branschpraxis inom vindenergi och biologisk mångfaldsbevarande. Genom att optimera begränsningsplaner kan intressenter uppnå en balans mellan miljöskydd och förnybar energiproduktion, vilket banar väg för hållbar utveckling. Framtida forskningsvägar inkluderar att förädla begränsningsstrategier baserade på kontinuerliga variabler och att genomföra fältstudier för att validera resultat på olika vindkraftsplatser.
|
64 |
Ice detection on wind turbine blades using sound level measurements / Isdetektion på vindkraftverk med hjälp av ljudnivåmätningarNilsson, Marcus January 2024 (has links)
When ice is accumulated on a wind turbine's rotor blade its aerodynamics are altered, leading to reduced efficiency and sometimes altered pressure oscillations around the blade. These pressure oscillations can be detected as sound. With sound level measurements over a long time, combined with known ice conditions in the same period, the measured sound data can be used to classify the ice conditions. This master's thesis aims to investigate the possibilities of using sound level measurements at 36 frequency bands in the range 6.3–20 000 Hz along with machine learning and wind speed to detect icing on wind turbine blades. Four k-NN models have been trained and evaluated using two different data configurations that each treat two different means of normalization: one uses the raw sound level data in dBA which has been standardized using z-score. The other uses the wind power density Iwind = 0.5ρU3 instead of the reference sound intensity I0 = 10-12 W/m2 in the decibel formula L = 10log10(I/I0) to reduce the influence of wind speed on the data. The sound/wind speed hybrid data was also z-score standardized. Available data was from February 21st to March 3rd in 2023 and March 1st to April 3rd in 2024. In the summer of 2023, the leading edges of the rotor blades on the investigated wind turbine were renovated which might have altered the sound. Therefore, what is denoted as Data configuration A used 2024 data as training data while 2023 data was used solely for testing. Data configuration B on the other hand used data from March 1st to March 17th 2024 for training and data from April 1st to April 3rd 2024 for testing as the rotor blades were identical between those data sets. Wind conditions were also more similar between training and testing data for Data configuration B. The models were optimized using grid search, varying k, distance metrics and feature combinations of the 36 frequency bands, while maximizing the balanced accuracy, BA, of the model using 5-fold cross-validation. For Data configuration A, this resulted in a balanced accuracy in the testing stage at BAtesting = 0.535 using the dBA sound level data, and BAtesting = 0.601 using the data normalized with wind power density. For Data configuration B, balanced accuracy was BAtesting = 0.845 using the dBA sound level data, and BAtesting = 0.773 using the data normalized with wind power density. The main conclusion is that icing can be detected using sound level measurements, wind speed and machine learning although the models in this project generalize poorly partly due to limited data and partly due to how the models were constructed. The models perform better with wind speeds similar to the training data. / När is ackumuleras på vindturbinblad ändras aerodynamiken vilket leder till lägre verkningsgrad och ibland förändrade tryckoscillationer kring bladet. Dessa tryckoscillationer kan detekteras i form av ljud. Med hjälp av ljudmätningar över en längre tid, kombinerat med kända isförhållanden under tidsperioden, kan ljuddatan användas för att klassificera isförhållandena. Målet med detta examensarbete är att undersöka möjligheterna att använda ljudnivåmätningar vid 36 frekvensspann mellan 6,3–20 000 Hz tillsammans med maskininlärning och vindhastighet för att detektera isbildning på vindkraftverk. Fyra modeller baserade på algoritmen k-NN har tränats och utvärderats med två olika datakonfigurationer som vardera behandlar två olika metoder för normalisering: en använder obehandlad ljudnivådata i enheten dBA som har standardiserats med z-poäng. Den andra använder vindenergidensiteten Iwind = 0.5ρU3 istället för referensintensiteten I0 = 10-12 W/m2 i formeln för decibel L = 10log10(I/I0) för att begränsa vindhastighetens inverkan på datan. Ljud-/vindhybriddatan standardiserades också med z-poäng. Den tillgängliga datan var mellan 21 februari och 3 mars 2023 samt 1 mars till 3 april 2024. Sommaren 2023 renoverades bladen på det undersökta vindkraftverket vilket kan ha påverkat ljudet. Därför användes data från 2024 som träningsdata och data från 2023 som testdata i vad som benämns som Data configuration A. Data configuration B använde istället data från 1-17 mars 2024 för träning och data från 1-3 april 2024 för testning eftersom rotorbladen var identiska mellan de datamängderna. Vindförhållandena var också mer lika inom Data configuration B. Modellerna optimerades med grid search genom att variera k, avståndsmått, och vilken kombination av de 36 frekvensspannen som ingår i modellen. Balanserad träffsäkerhet, BA, är resultatet som maximerades genom 5-delad korsvalidering. För Data configuration A resulterade detta under teststadiet i BAtesting = 0,535 med omodifierad ljuddata och BAtesting = 0,601 då vindenergidensiteten användes som ljudets referensnivå. För Data configuration B var den balanserade träffsäkerheten BAtesting = 0,845 med omodifierad ljuddata och BAtesting = 0,773 då vindenergidensiteten användes som ljudets referensnivå. Den främsta slutsatsen är att isbildning kan detekteras med ljudnivåmätningar, vindhastighet och maskininlärning men modellerna som har tagits fram i detta projekt presterar relativt dåligt, delvis på grund av en begränsad datamängd och delvis på grund av hur modellerna har konstruerats. Modellerna presterade bättre för testdata med liknande vindförhållanden.
|
65 |
Validering av vakförluster : En jämförelsestudie av vindkraftsparken Skäppentorps vakförluster / Validation of wake losses : A comparative study of the wind power plant Skäppentorps wake lossesDahlqvist, Oliver, Karupovic, Dino January 2020 (has links)
Climate change is mankind’s biggest challenge and scientists around the globe agree that civilization is pushing towards a breaking point. Renewable energy are alternatives that are capable to remove the need for fossil fuel. Wind power will play a vital role and has the possibility to confront the challenges that face the globe. In order for wind power to reach its full potential constructors need to take into account the distance between each wind power turbine, as it can cause energy loss and generate less electricity into the system. These energy losses decrease the potential of wind power and thus also for renewable as a whole. Energy losses that emerge within the space between wind power plants are named wake losses. Once the wind has passed the plant, a distance equal to seven rotor diameters is needed for the wind to regain its full force. By positioning the plants within the announced distance, the production of each plant decreases since downstream turbines are not able to generate a full effect. This Bachelor thesis in Energy Engineering aims to analyse these wake losses for the wind power plant Skäppentorp, which is situated in Mönsterås County. The nearby wind power plant Brotorp is affecting Skäppentorps production and the authors of this degree project chose to present the wake losses as a percentage. A third wind power plant named Idhult functioned as a reference. Idhult is of course not affected before the positioning of Brotorp but neither after it, therefore the plant was used to ensure that weak winds were not ascribed to Brotorp but are a result of a weak wind year. The Bachelor thesis covered thus three wind power plants, Skäppentorp which interacts and is affected by Brotorp and Idhult which served as reference. The wake losses were calculated in Microsoft Excel and set against the software windPRO to validate the programmed produced losses for the same plant. Skäppentorp’s surrounding were divided into 12 sectors, where each sector covers an angle of 30 degrees. By doing so a full circle, 360 degrees, surrounding the plant was established. The wind speed and the production before respectively after Brotorp deployment was produced by using a nearby measuring post. Via an average production value for each sector, before and after Brotorp, a percentage wake loss was calculated. This was set against Idhult to sort away better respectively worse wind years. The period before covered the year 2012 until 2015 and the period after covered 2016 until 2018. The result from Microsoft Excel indicates that sector four and sector nine were subjected to the highest percentage of losses. The results from the software windPRO however indicated the highest loss in sector four. Three sectors obtained the same percentage loss as windPRO while remaining values came out dissimilar. The distinction between some of the sectors may be caused by the positioning of some of the Brotorp turbines, where some are located on the borderline between sectors. This implies that some turbines affect two sectors when calculated with Microsoft Excel, which it does not when simulated with windPRO. The sum of all sections indicated that Brotorp turbines caused a wake loss of 3,8 %. This was compared to the simulation in windPRO which resulted in 5,7 %.
|
66 |
Load Control Aerodynamics in Offshore Wind Turbines / Aerodynamik av laststyrning i havsbaserade vindkraftverkCantoni, Lorenzo January 2021 (has links)
Due to the increase of rotor size in horizontal axis wind turbine (HAWT) during the past 25 years in order to achieve higher power output, all wind turbine components and blades in particular, have to withstand higher structural loads. This upscalingproblem could be solved by applying technologies capable of reducing aerodynamic loads the rotor has to withstand, either with passive or active control solutions. These control devices and techniques can reduce the fatigue load upon the blades up to 40% and therefore less maintenance is needed, resulting in an important money savings for the wind farm manager. This project consists in a study of load control techniques for offshore wind turbines from an aerodynamic and aeroelastic point ofview, with the aim to assess a cost effective, robust and reliable solution which could operate maintenance free in quite hostile environments. The first part of this study involves 2D and 3D aerodynamic and aeroelastic simulations to validate the computational model with experimental data and to analyze the interaction between the fluid and the structure. The second part of this study is an assessment of the unsteady aerodynamic loads produced by a wind gust over the blades and to verify how a trailing edge flap would influence the aerodynamic control parameters for the selected wind turbine blade. / På grund av ökningen av rotorstorleken hos horisontella vindturbiner (HAWT) under de senaste 25 åren, en design som har uppstod för att uppnå högre effekt, måste alla vindkraftkomponenter och blad stå emot högre strukturella belastningar. Detta uppskalningsproblem kan lösas genom att använda metoder som kan minska aerodynamiska belastningar som rotorn måste tåla, antingen med passiva eller aktiva styrlösningar. Dessa kontrollanordningar och tekniker kan minska utmattningsbelastningen på bladen med upp till 40 % och därför behövs mindre underhåll, vilket resulterar i viktiga besparingar för vindkraftsägaren. Detta projekt består av en studie av lastkontrolltekniker för havsbaserade vindkraftverk ur en aerodynamisk och aeroelastisk synvinkel, i syfte att bedöma en kostnadseffektiv, robust och pålitlig lösning som kan fungera underhållsfri i tuffa miljöer. Den första delen av denna studie involverar 2D- och 3D-aerodynamiska och aeroelastiska simuleringar för att validera beräkningsmodellen med experimentella data och för att analysera interaktionen mellan fluiden och strukturen. Den andra delen av denna studie är en bedömning av de ojämna aerodynamiska belastningarna som produceras av ett vindkast över bladen och för att verifiera hur en bakkantklaff skulle påverka de aerodynamiska styrparametrarna för det valda vindturbinbladet.
|
67 |
A Comparative Study on Two Offshore Wind Farm Siting Approaches in Sweden / En jämförande studie av två tillvägagångssätt för siting av havsbaserade vindkraftsparker i SverigeNyberg, Anders, Sundström, Oskar January 2023 (has links)
This study aims to explore the ability of a multi-criteria decision making with analytical hierarchy process (MCDM-AHP) model to emulate the results of a cost benefit analysis (CBA) model in the context of offshore wind farm siting within the Swedish exclusive economic zone (EEZ). The research question addressed is whether the MCDM-AHP analysis produces similar results to the CBA analysis. In addition to this, the strengths and weaknesses of each model is explored. The MCDM-AHP model employs the spatial criteria in a more basic manner compared to the CBA model, simplifying the evaluation process while still explaining 89.5% of the variation in the CBA model and defining similar areas as suitable. Thus, it can be concluded that the MCDM-AHP model adequately emulates the CBA model within the context of offshore wind farm siting within the Swedish EEZ. However, it is crucial to note that the two models produce outputs on different scales. While the CBA model provides levelized cost of energy (LCOE) values that can be thresholded for investment viability comparisons, the suitability score generated by the MCDM-AHP model remains a relative and arbitrary score within the model. Both models entail uncertainties, limiting their usage beyond making general assumptions or identifying areas of interest. The findings reveal that the CBA model demonstrates greater robustness when confronted with changes in spatial input parameters compared to the MCDM-AHP model. This discrepancy is attributed to the iterative computation process and consideration of flat cost inputs in the CBA model, whereas the MCDM-AHP model represents a linear combination of various spatial parameters. However, the calculated LCOE values in the CBA model are highly sensitive to changes in modeling assumptions regarding external parameters, resulting in significant linear variations. The LCOE values obtained from the CBA model baseline case fall within a range of 52.1 - 98.9 EUR/MWh, which aligns with similar studies, validating the CBA model. Nonetheless, caution should be exercised when considering these results as an accurate representation of the real world due to inherent uncertainties in cost inputs and the LCOE measure. The strengths of the MCDM-AHP model lie in its robustness when the order of relative importance remains stable for key spatial evaluators. It is sensitive to significant changes in water depth and wind speed, which heavily influence its output. The model's simplicity allows for a quick overview of the problem, but it requires assumptions that introduce uncertainties. Validation of the MCDM-AHP model using existing and planned offshore wind farms within the Swedish EEZ was possible but limited by the arbitrary scale and limited validation areas. The comparison between the two models could be enhanced with more comprehensive spatial and economic data for an in-depth CBA model, which could serve as a ground truth for the MCDM-AHP model. Nevertheless, the comparison made in this study considers the CBA model to be closer to the truth, acknowledging the underlying assumptions that should be considered during evaluation. In conclusion, within the context of offshore wind farm siting, the MCDM-AHP model produces outputs that are similar to the CBA model.
|
Page generated in 0.0615 seconds