Spelling suggestions: "subject:"[een] HANDWRITING"" "subject:"[enn] HANDWRITING""
141 |
Finmotorikens betydelse för skrivinlärningen ur ett lärarperspektiv / The importance of fine motor skills when learning to write from a teachers´ perspectiveFors, Malin January 2021 (has links)
Abstrakt Syftet med denna studie är att bidra med kunskap om lärares uppfattning och förståelse om och för handskriftens betydelse för elevers finmotoriska utveckling i svenskundervisningen i årskurs 1 – 4. Detta för att belysa vikten av att fortsätta använda handskriften i skrivinlärningen. I denna studie har en kvalitativ metod använts vid intervjuer av respondenterna. Studiens teori baseras på det sociokulturella perspektivet och pragmatismen. En fenomenografisk forskningsansats har använts i studiens bearbetning, tolkning och analys av den insamlade datan. Resultatet har diskuterats mot bakgrund och tidigare forskning samt utifrån det sociokulturella perspektivet och pragmatismens syn på lärande. Resultatet visar att oavsett vilken metod lärare väljer att använda, handskrift eller tangentsinlärning, behöver eleverna olika övningar för att träna handen och finmotoriken, eftersom eleverna behöver kunna forma bokstäverna för att kunna skriva enkla texter med en läslig handstil. I resultatet framkommer det även att några lärare använder en form av ASL-metod i sin undervisning och är eniga om att handskriften behöver användas parallellt med tangentbordet. / Abstract The purpose of this study is to contribute to the knowledge about teachers´perception and understanding about the significance of the use of handwriting for the development of students' fine motor skills in the Swedish language classroom, in primary school during years 1 – 4. This is to highlight the importance of the continued use of handwriting when learning to write. In this study, a qualitative method was used in the interviews with the respondents. The study's theory is based on the sociocultural perspective and pragmatism. A phenomenographical research approach has been used in the processing, interpretation and analysis of the collected data. The results have been discussed in the context of previous research and based on socio-cultural and pragmatism's views on learning. The results show that regardless of which method teachers choose to use, handwriting or typing, students need complementary exercises to train the hand and the fine motor skills, as students need to be able to shape the letters to be able to write simple texts in a readable handwriting. The results also show that some teachers use some form of iWTR method in their teaching and they agree that handwriting needs to be used in parallel with a keyboard.
|
142 |
A Multitask Learning Encoder-N-Decoder Framework for Movie and Video DescriptionNina, Oliver A., Nina 11 October 2018 (has links)
No description available.
|
143 |
Handskrift, att vara eller inte vara? : Lärares syn på handskrift i dagens digitaliserade samhälle / Handwriting, to be or not to be? : Teachers view on handwriting in today’s digitizing societyAbrahamsson, Alva January 2023 (has links)
Writing by hand is not that obvious in todays digitalized society, much of what we write and read is digitized. Today we communicate via SMS, email, and social media instead of sending letters and postcards. What do teachers think of handwriting still being a part of the curriculum? Will handwriting survive or is it on its way out?In this survey nine teachers in preschool to sixth grade have been interviewed to hear their opinions about the handwriting, if they think it is important to preserve it. How they motivate their children to write by hand even though the society is digitalized. If they feel that the educational material companies have adapted to the digital curriculum or if there still are good analogue materials available.The results show that the teachers think handwriting is important as there is a connection between brain and hand which is good for learning. The students also practice their fine motor skills when they are allowed to write by hand, which the teachers attach great importance to. / Att skriva för hand är inte lika självklart i dagens digitaliserade samhälle, mycket av det vi skriver och läser är digitalt. Vi kommunicerar idag via sms, mejl och sociala medier i stället för att skriva brev eller vykort. Vad tycker lärarna om att handskriften fortfarande är en del av skolans läroplan? Kommer handskriften att bestå eller är den på väg bort? I denna undersökning har nio lärare i årskurserna förskoleklass till sexan intervjuats för att höra deras åsikter om handskriften, om de tycker att det är viktigt att bevara den. Hur de gör för att motivera sina elever att skriva för hand när vi lever i ett digitalt samhälle. Samt om de känner att läromedelsföretagen anpassat sig efter den digitala läroplanen eller om det fortfarande finns bra analogt material att tillgå.Resultatet visar att lärarna tycker att handskriften är viktig då det finns en koppling mellan hjärna och hand som är bra vid inlärning. Eleverna tränar också på finmotoriken när de får skriva för hand vilket lärarna lägger stor vikt vid.
|
144 |
Deep Learning for Document Image AnalysisTensmeyer, Christopher Alan 01 April 2019 (has links)
Automatic machine understanding of documents from image inputs enables many applications in modern document workflows, digital archives of historical documents, and general machine intelligence, among others. Together, the techniques for understanding document images comprise the field of Document Image Analysis (DIA). Within DIA, the research community has identified several sub-problems, such as page segmentation and Optical Character Recognition (OCR). As the field has matured, there has been a trend of moving away from heuristic-based methods, designed for particular tasks and domains of documents, and moving towards machine learning methods that learn to solve tasks from examples of input/output pairs. Within machine learning, a particular class of models, known as deep learning models, have established themselves as the state-of-the-art for many image-based applications, including DIA. While traditional machine learning models typically operate on features designed by researchers, deep learning models are able to learn task-specific features directly from raw pixel inputs.This dissertation is collection of papers that proposes several deep learning models to solve a variety of tasks within DIA. The first task is historical document binarization, where an input image of a degraded historical document is converted to a bi-tonal image to separate foreground text from background regions. The next part of the dissertation considers document segmentation problems, including identifying the boundary between the document page and its background, as well as segmenting an image of a data table into rows, columns, and cells. Finally, a variety of deep models are proposed to solve recognition tasks. These tasks include whole document image classification, identifying the font of a given piece of text, and transcribing handwritten text in low-resource languages.
|
145 |
[pt] MUROS QUE FALAM: LETRAS MANUSCRITAS NA PAISAGEM URBANA DO RIO DE JANEIRO / [en] WALLS THAT SPEAK: HANDWRITTEN LETTERS IN THE URBAN LANDSCAPE OF RIO DE JANEIRO.ANDREA CAROLINA CAMARGO CASTRO 27 April 2020 (has links)
[pt] O presente projeto trata sobre as letras manuscritas em muros e espaços públicos, com foco no grafite e a pichação como formas de expressão que interagem com os transeuntes, dentro do território urbano. Desde o campo do design e da arte, abordar uma manifestação urbana considerada marginal como objeto de pesquisa, é uma forma de aprofundar nesta pratica como plataforma comunicativa acessível e vigente nas ruas da cidade, que não deixa de existir apesar dos avanços tecnológicos. Propomos então uma classificação dos diversos estilos de letras em grafites e pichações encontrados em áreas determinadas da cidade do Rio de Janeiro, assim como uma visão panorâmica sobre diversos pontos de vista como são o de quem executa (grafiteiros e pichadores), o de quem observa (transeuntes e passantes) e o de quem cuida do território (legislação e entes governamentais). Assim, destacamos o valor desta manifestação dentro da cultura popular, como parte da gráfica urbana brasileira, e a importância do seu registro como um aporte à história da comunicação escrita, no Brasil e na América Latina. Documentar as letras encontradas nos muros da cidade, de maneira efêmera e ao mesmo tempo persistente, é o caminho não só para fazer um levantamento de sua diversidade, mas também é uma forma de entender a maneira em que dialogam com a população, no momento atual em que grafites e pichações se encontram entre a luta pela conquista da rua, a defesa da livre expressão diante os órgãos públicos e a aceitação como parte do cenário de transformação e renovação de espaços públicos. / [en] This project deals with the handwritten letters in walls and public spaces, focusing on graffiti and pichação as forms of expression that interact with pedestrians within the urban territory. From the field of design and art, addressing an urban manifestation considered marginal as an object of investigation, is a way to deepen this practice as an accessible and effective communication platform in the streets of the city, which does not cease to exist in spite of the technological advances. Then, we propose the classification of styles letters in graffiti and pichação found on predetermined areas at Rio de Janeiro. As well, a panoramic view from different viewpoints, such as the one who executes (graffiti makers and pichadores), the one of who observes (passers-by and interns) and the one who takes care of the territory (legislation and government entities). Thus, we highlight the value of this as a manifestation within popular culture, also, as part of the Brazilian urban graphic, and the importance of its registration as a contribution to the history of written communication, in Brazil and in Latin America. Documenting the found letters on the city walls from an ephemeral and persistent way at the same time, created a path not only to uplifting its diversity, but also to understand how they dialogue with the population. In a present moment in which graffiti and pichação are between the fight for the conquest of the street, the defense of the free expression in front of the public organs and the acceptance like part of the scene of transformation and renovation of public spaces.
|
146 |
A COMPREHENSIVE FRAMEWORK FOR STROKE TRAJECTORY RECOVERY FOR UNCONSTRAINED HANDWRITTEN DOCUMENTSHanif, Sidra, 0000-0001-6531-7656 05 1900 (has links)
For a long time, handwriting analysis, such as handwriting recognition and signature verification, has been an active research area. There are two categories of handwriting, online and offline. Online handwriting is captured in real-time on a digital device such as a tablet screen with a stylus pen. In contrast, the handwritten text scanned or captured by a camera from a physical medium such as paper is referred to as offline handwriting. For offline handwriting, the input is limited to handwritten images, making handwriting analysis much more difficult. In our work, we proposed a Stroke Trajectory Recover (STR) for offline and unconstrained handwritten documents. For this purpose, we introduce large-scale word-level annotations for the English handwriting sampled from the IAM-online dataset. The current STR architectures for English handwriting use lines of text or characters of the alphabet as input. However, a word-level STR method estimates loss for each word rather than averaging DTW loss over the entire line of text. Furthermore, to avoid the stray points/artifacts in predicted stroke points, we employ a marginal Chamfer distance that penalizes large, easily noticeable deviations and artifacts. For word detection, we propose the fusion of character region scores with bounding box estimation. Since the character level annotations are not available for handwritten text, we estimate the character region scores in a weakly supervised manner. Character region scores are estimated autonomously from the word’s bounding box estimation to learn the character level information in handwriting. We propose to fuse the character region scores and images to detect words in camera-captured handwriting images. We also propose an automated evaluation to check the quality of the predicted stroke trajectory. The existing handwriting datasets have limited availability of stroke coordinates information. Hence, although the proposed system can be applied to handwriting datasets without stroke coordinates information, it is impossible to evaluate the quality of its predicted strokes using the existing methods. Therefore, in our work, we propose two measures for evaluating the quality of recovered stroke trajectories when ground truth stroke information is not given. First, we formulated an automated evaluation measure based on image matching by finding the difference between original and rendered images. We also evaluated the preservation of readability of words for original and rendered images with a transformer-based word recognition network. Since our proposed STR system works with words, we demonstrate that our method is scalable to unconstrained handwritten documents, i.e., full-page text. Finally, we present a probabilistic diffusion model conditioned on handwriting style template for generating writing strokes. In our work, we propose to learn the localized patches for handwriting style features from multiscale attention network. The multiscale attention network captures fine details about local character style and global handwriting style. Moreover, we train our diffusion model with the Dynamic Time Warping (DTW) loss function, along with the diffusion loss, which eliminates the need to train any auxiliary networks for text or writer style recognition and adversarial networks. / Computer and Information Science
|
147 |
Mathematical Expression Recognition based on Probabilistic GrammarsÁlvaro Muñoz, Francisco 15 June 2015 (has links)
[EN] Mathematical notation is well-known and used all over the
world. Humankind has evolved from simple methods representing
countings to current well-defined math notation able to account for
complex problems. Furthermore, mathematical expressions constitute a
universal language in scientific fields, and many information
resources containing mathematics have been created during the last
decades. However, in order to efficiently access all that information,
scientific documents have to be digitized or produced directly in
electronic formats.
Although most people is able to understand and produce mathematical
information, introducing math expressions into electronic devices
requires learning specific notations or using editors. Automatic
recognition of mathematical expressions aims at filling this gap
between the knowledge of a person and the input accepted by
computers. This way, printed documents containing math expressions
could be automatically digitized, and handwriting could be used for
direct input of math notation into electronic devices.
This thesis is devoted to develop an approach for mathematical
expression recognition. In this document we propose an approach for
recognizing any type of mathematical expression (printed or
handwritten) based on probabilistic grammars. In order to do so, we
develop the formal statistical framework such that derives several
probability distributions. Along the document, we deal with the
definition and estimation of all these probabilistic sources of
information. Finally, we define the parsing algorithm that globally
computes the most probable mathematical expression for a given input
according to the statistical framework.
An important point in this study is to provide objective performance
evaluation and report results using public data and standard
metrics. We inspected the problems of automatic evaluation in this
field and looked for the best solutions. We also report several
experiments using public databases and we participated in several
international competitions. Furthermore, we have released most of the
software developed in this thesis as open source.
We also explore some of the applications of mathematical expression
recognition. In addition to the direct applications of transcription
and digitization, we report two important proposals. First, we
developed mucaptcha, a method to tell humans and computers apart by
means of math handwriting input, which represents a novel application
of math expression recognition. Second, we tackled the problem of
layout analysis of structured documents using the statistical
framework developed in this thesis, because both are two-dimensional
problems that can be modeled with probabilistic grammars.
The approach developed in this thesis for mathematical expression
recognition has obtained good results at different levels. It has
produced several scientific publications in international conferences
and journals, and has been awarded in international competitions. / [ES] La notación matemática es bien conocida y se utiliza en todo el
mundo. La humanidad ha evolucionado desde simples métodos para
representar cuentas hasta la notación formal actual capaz de modelar
problemas complejos. Además, las expresiones matemáticas constituyen
un idioma universal en el mundo científico, y se han creado muchos
recursos que contienen matemáticas durante las últimas décadas. Sin
embargo, para acceder de forma eficiente a toda esa información, los
documentos científicos han de ser digitalizados o producidos
directamente en formatos electrónicos.
Aunque la mayoría de personas es capaz de entender y producir
información matemática, introducir expresiones matemáticas en
dispositivos electrónicos requiere aprender notaciones especiales o
usar editores. El reconocimiento automático de expresiones matemáticas
tiene como objetivo llenar ese espacio existente entre el conocimiento
de una persona y la entrada que aceptan los ordenadores. De este modo,
documentos impresos que contienen fórmulas podrían digitalizarse
automáticamente, y la escritura se podría utilizar para introducir
directamente notación matemática en dispositivos electrónicos.
Esta tesis está centrada en desarrollar un método para reconocer
expresiones matemáticas. En este documento proponemos un método para
reconocer cualquier tipo de fórmula (impresa o manuscrita) basado en
gramáticas probabilísticas. Para ello, desarrollamos el marco
estadístico formal que deriva varias distribuciones de probabilidad. A
lo largo del documento, abordamos la definición y estimación de todas
estas fuentes de información probabilística. Finalmente, definimos el
algoritmo que, dada cierta entrada, calcula globalmente la expresión
matemática más probable de acuerdo al marco estadístico.
Un aspecto importante de este trabajo es proporcionar una evaluación
objetiva de los resultados y presentarlos usando datos públicos y
medidas estándar. Por ello, estudiamos los problemas de la evaluación
automática en este campo y buscamos las mejores soluciones. Asimismo,
presentamos diversos experimentos usando bases de datos públicas y
hemos participado en varias competiciones internacionales. Además,
hemos publicado como código abierto la mayoría del software
desarrollado en esta tesis.
También hemos explorado algunas de las aplicaciones del reconocimiento
de expresiones matemáticas. Además de las aplicaciones directas de
transcripción y digitalización, presentamos dos propuestas
importantes. En primer lugar, desarrollamos mucaptcha, un método para
discriminar entre humanos y ordenadores mediante la escritura de
expresiones matemáticas, el cual representa una novedosa aplicación
del reconocimiento de fórmulas. En segundo lugar, abordamos el
problema de detectar y segmentar la estructura de documentos
utilizando el marco estadístico formal desarrollado en esta tesis,
dado que ambos son problemas bidimensionales que pueden modelarse con
gramáticas probabilísticas.
El método desarrollado en esta tesis para reconocer expresiones
matemáticas ha obtenido buenos resultados a diferentes niveles. Este
trabajo ha producido varias publicaciones en conferencias
internacionales y revistas, y ha sido premiado en competiciones
internacionales. / [CA] La notació matemàtica és ben coneguda i s'utilitza a tot el món. La
humanitat ha evolucionat des de simples mètodes per representar
comptes fins a la notació formal actual capaç de modelar
problemes complexos. A més, les expressions matemàtiques
constitueixen un idioma universal al món científic, i s'han creat
molts recursos que contenen matemàtiques durant les últimes
dècades. No obstant això, per accedir de forma eficient a tota
aquesta informació, els documents científics han de ser
digitalitzats o produïts directament en formats electrònics.
Encara que la majoria de persones és capaç d'entendre i produir
informació matemàtica, introduir expressions matemàtiques en
dispositius electrònics requereix aprendre notacions especials o usar
editors. El reconeixement automàtic d'expressions matemàtiques
té per objectiu omplir aquest espai existent entre el coneixement
d'una persona i l'entrada que accepten els ordinadors. D'aquesta
manera, documents impresos que contenen fórmules podrien
digitalitzar-se automàticament, i l'escriptura es podria utilitzar per
introduir directament notació matemàtica en dispositius electrònics.
Aquesta tesi està centrada en desenvolupar un mètode per reconèixer
expressions matemàtiques. En aquest document proposem un mètode per
reconèixer qualsevol tipus de fórmula (impresa o manuscrita) basat en
gramàtiques probabilístiques. Amb aquesta finalitat, desenvolupem el
marc estadístic formal que deriva diverses distribucions de
probabilitat. Al llarg del document, abordem la definició i estimació
de totes aquestes fonts d'informació probabilística. Finalment,
definim l'algorisme que, donada certa entrada, calcula globalment
l'expressió matemàtica més probable d'acord al marc estadístic.
Un aspecte important d'aquest treball és proporcionar una avaluació
objectiva dels resultats i presentar-los usant dades públiques i
mesures estàndard. Per això, estudiem els problemes de l'avaluació
automàtica en aquest camp i busquem les millors solucions. Així
mateix, presentem diversos experiments usant bases de dades públiques
i hem participat en diverses competicions internacionals. A més, hem
publicat com a codi obert la majoria del software desenvolupat en
aquesta tesi.
També hem explorat algunes de les aplicacions del reconeixement
d'expressions matemàtiques. A més de les aplicacions directes de
transcripció i digitalització, presentem dues propostes
importants. En primer lloc, desenvolupem mucaptcha, un mètode per
discriminar entre humans i ordinadors mitjançant l'escriptura
d'expressions matemàtiques, el qual representa una nova aplicació del
reconeixement de fórmules. En segon lloc, abordem el problema de
detectar i segmentar l'estructura de documents utilitzant el marc
estadístic formal desenvolupat en aquesta tesi, donat que ambdós són
problemes bidimensionals que poden modelar-se amb gramàtiques
probabilístiques.
El mètode desenvolupat en aquesta tesi per reconèixer expressions
matemàtiques ha obtingut bons resultats a diferents nivells. Aquest
treball ha produït diverses publicacions en conferències
internacionals i revistes, i ha sigut premiat en competicions
internacionals. / Álvaro Muñoz, F. (2015). Mathematical Expression Recognition based on Probabilistic Grammars [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/51665
|
148 |
Virtueller Zusammenschluss digitaler Papyrussammlungen : das „Papyrusportal"Gerhardt, Marius 06 April 2016 (has links) (PDF)
No description available.
|
149 |
Das Buch in Antike, Mittelalter und Neuzeit11 May 2016 (has links)
Die Universitätsbibliothek Leipzig gehört zu den großen Altbestandsbibliotheken in Deutschland. Sie besitzt eine Vielzahl an bedeutenden Sonderbeständen, die den Rang eines nationalen Kulturerbes einnehmen. <i>Das Buch in Antike, Mittelalter und Neuzeit</i> gibt einen Einblick in die Arbeit mit diesen Sonderbeständen.
Von Beiträgen zu Dokumenten aus antiker Zeit, Papyri und Ostraka über Aufsätze zu mittelalterlichen Handschriften bis hin zur neuzeitlichen Handschriftenüberlieferung (Buchhandschriften, aber auch Nachlässe, Autographensammlungen und Stammbücher) werden Erschließungsfragen diskutiert, für die in den letzten Jahren durch die Einbindung EDV-technischer Verfahren neue Lösungsvorschläge erarbeitet wurden. Aufsätze über druckgraphische Sammlungen, Gelehrtenbibliotheken und Schulschriftensammlungen tragen dem zentralen Bestandteil einer jeden Bibliothek, dem gedruckten Buch, und der Geschichte des europäischen Buchdrucks Rechnung. Zudem wird der Erschließung von Sammlungen nichteuropäischer Handschriften, von Texten in den Sprachen Arabisch, Persisch und Türkisch sowie in indischen Sprachen nachgegangen, die die Leipziger Bibliothek vor besondere Herausforderungen stellen. Die Konzentration auf die Dokumentation des Bucherbes hat es nicht verhindert, dass an der Universitätsbibliothek auch andere Medientypen gesammelt wurden. Dazu gehört an erster Stelle die größte universitäre Sammlung in Deutschland von 85.000 Münzen und Medaillen, die nun erstmals vorgestellt wird.
|
150 |
Bibliotheken zwischen Kultureller Memoria, Wissenschaft und MusealitätFuchs, Thomas 05 April 2016 (has links) (PDF)
No description available.
|
Page generated in 0.0324 seconds