• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 260
  • 67
  • 1
  • Tagged with
  • 328
  • 328
  • 235
  • 162
  • 160
  • 96
  • 93
  • 86
  • 63
  • 46
  • 44
  • 44
  • 36
  • 36
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

On efficient a posteriori error analysis for variational inequalities

Köhler, Karoline Sophie 14 November 2016 (has links)
Effiziente und zuverlässige a posteriori Fehlerabschätzungen sind eine Hauptzutat für die effiziente numerische Berechnung von Lösungen zu Variationsungleichungen durch die Finite-Elemente-Methode. Die vorliegende Arbeit untersucht zuverlässige und effiziente Fehlerabschätzungen für beliebige Finite-Elemente-Methoden und drei Variationsungleichungen, nämlich dem Hindernisproblem, dem Signorini Problem und dem Bingham Problem in zwei Raumdimensionen. Die Fehlerabschätzungen hängen vom zum Problem gehörenden Lagrange Multiplikator ab, der eine Verbindung zwischen der Variationsungleichung und dem zugehörigen linearen Problem darstellt. Effizienz und Zuverlässigkeit werden bezüglich eines totalen Fehlers gezeigt. Die Fehleranschätzungen fordern minimale Regularität. Die Approximation der exakten Lösung erfüllt die Dirichlet Randbedingungen und die Approximation des Lagrange Multiplikators ist nicht-positiv im Falle des Hindernis- und Signoriniproblems, und hat Betrag kleiner gleich 1 für das Bingham Problem. Dieses allgemeine Vorgehen ermöglicht das Einbinden nicht-exakter diskreter Lösungen, welche im Kontext dieser Ungleichungen auftreten. Aus dem Blickwinkel der Anwendungen ist Effizienz und Zuverlässigkeit im Bezug auf den Fehler der primalen Variablen in der Energienorm von großem Interesse. Solche Abschätzungen hängen von der Wahl eines effizienten diskreten Lagrange Multiplikators ab. Im Falle des Hindernis- und Signorini Problems werden postive Beispiele für drei Finite-Elemente Methoden, der konformen Courant Methode, der nicht-konformen Crouzeix-Raviart Methode und der gemischten Raviart-Thomas Methode niedrigster Ordnung hergeleitet. Partielle Resultate liegen im Fall des Bingham Problems vor. Numerischer Experimente heben die theoretischen Ergebnisse hervor und zeigen Effizienz und Zuverlässigkeit. Die numerischen Tests legen nahe, dass der aus den Abschätzungen resultierende adaptive Algorithmus mit optimaler Konvergenzrate konvergiert. / Efficient and reliable a posteriori error estimates are a key ingredient for the efficient numerical computation of solutions for variational inequalities by the finite element method. This thesis studies such reliable and efficient error estimates for arbitrary finite element methods and three representative variational inequalities, namely the obstacle problem, the Signorini problem, and the Bingham problem in two space dimensions. The error estimates rely on a problem connected Lagrange multiplier, which presents a connection between the variational inequality and the corresponding linear problem. Reliability and efficiency are shown with respect to some total error. Reliability and efficiency are shown under minimal regularity assumptions. The approximation to the exact solution satisfies the Dirichlet boundary conditions, and an approximation of the Lagrange multiplier is non-positive in the case of the obstacle and Signorini problem and has an absolute value smaller than 1 for the Bingham flow problem. These general assumptions allow for reliable and efficient a posteriori error analysis even in the presence of inexact solve, which naturally occurs in the context of variational inequalities. From the point of view of the applications, reliability and efficiency with respect to the error of the primal variable in the energy norm is of great interest. Such estimates depend on the efficient design of a discrete Lagrange multiplier. Affirmative examples of discrete Lagrange multipliers are presented for the obstacle and Signorini problem and three different first-order finite element methods, namely the conforming Courant, the non-conforming Crouzeix-Raviart, and the mixed Raviart-Thomas FEM. Partial results exist for the Bingham flow problem. Numerical experiments highlight the theoretical results, and show efficiency and reliability. The numerical tests suggest that the resulting adaptive algorithms converge with optimal convergence rates.
252

Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programming

Vigerske, Stefan 27 March 2013 (has links)
Diese Arbeit leistet Beiträge zu zwei Gebieten der mathematischen Programmierung: stochastische Optimierung und gemischt-ganzzahlige nichtlineare Optimierung (MINLP). Im ersten Teil erweitern wir quantitative Stetigkeitsresultate für zweistufige stochastische gemischt-ganzzahlige lineare Programme auf Situationen in denen Unsicherheit gleichzeitig in den Kosten und der rechten Seite auftritt, geben eine ausführliche Übersicht zu Dekompositionsverfahren für zwei- und mehrstufige stochastische lineare und gemischt-ganzzahlig lineare Programme, und diskutieren Erweiterungen und Kombinationen des Nested Benders Dekompositionsverfahrens und des Nested Column Generationsverfahrens für mehrstufige stochastische lineare Programme die es erlauben die Vorteile sogenannter rekombinierender Szenariobäume auszunutzen. Als eine Anwendung dieses Verfahrens betrachten wir die optimale Zeit- und Investitionsplanung für ein regionales Energiesystem unter Einbeziehung von Windenergie und Energiespeichern. Im zweiten Teil geben wir eine ausführliche Übersicht zum Stand der Technik bzgl. Algorithmen und Lösern für MINLPs und zeigen dass einige dieser Algorithmen innerhalb des constraint integer programming Softwaresystems SCIP angewendet werden können. Letzteres erlaubt uns die Verwendung schon existierender Technologien für gemischt-ganzzahlige linear Programme und constraint Programme für den linearen und diskreten Teil des Problems. Folglich konzentrieren wir uns hauptsächlich auf die Behandlung der konvexen und nichtkonvexen nichtlinearen Nebenbedingungen mittels Variablenschrankenpropagierung, äußerer Approximation und Reformulierung. In einer ausführlichen numerischen Studie untersuchen wir die Leistung unseres Ansatzes anhand von Anwendungen aus der Tagebauplanung und des Aufbaus eines Wasserverteilungssystems und mittels verschiedener Vergleichstests. Die Ergebnisse zeigen, dass SCIP ein konkurrenzfähiger Löser für MINLPs geworden ist. / This thesis contributes to two topics in mathematical programming: stochastic optimization and mixed-integer nonlinear programming (MINLP). In the first part, we extend quantitative continuity results for two-stage stochastic mixed-integer linear programs to include situations with simultaneous uncertainty in costs and right-hand side, give an extended review on decomposition algorithm for two- and multistage stochastic linear and mixed-integer linear programs, and discuss extensions and combinations of the Nested Benders Decomposition and Nested Column Generation methods for multistage stochastic linear programs to exploit the advantages of so-called recombining scenario trees. As an application of the latter, we consider the optimal scheduling and investment planning for a regional energy system including wind power and energy storages. In the second part, we give a comprehensive overview about the state-of-the-art in algorithms and solver technology for MINLPs and show that some of these algorithm can be applied within the constraint integer programming framework SCIP. The availability of the latter allows us to utilize the power of already existing mixed integer linear and constraint programming technologies to handle the linear and discrete parts of the problem. Thus, we focus mainly on the domain propagation, outer-approximation, and reformulation techniques to handle convex and nonconvex nonlinear constraints. In an extensive computational study, we investigate the performance of our approach on applications from open pit mine production scheduling and water distribution network design and on various benchmarks sets. The results show that SCIP has become a competitive solver for MINLPs.
253

Risk preferences and their robust representation

Drapeau, Samuel 16 June 2010 (has links)
Ziel dieser Dissertation ist es, den Begriff des Risikos unter den Aspekten seiner Quantifizierung durch robuste Darstellungen zu untersuchen. In einem ersten Teil wird Risiko anhand Kontext-Invarianter Merkmale betrachtet: Diversifizierung und Monotonie. Wir führen die drei Schlüsselkonzepte, Risikoordnung, Risikomaß und Risikoakzeptanzfamilen ein, und studieren deren eins-zu-eins Beziehung. Unser Hauptresultat stellt eine eindeutige duale robuste Darstellung jedes unterhalbstetigen Risikomaßes auf topologischen Vektorräumen her. Wir zeigen auch automatische Stetigkeitsergebnisse und robuste Darstellungen für Risikomaße auf diversen Arten von konvexen Mengen. Diese Herangehensweise lässt bei der Wahl der konvexen Menge viel Spielraum, und erlaubt damit eine Vielfalt von Interpretationen von Risiko: Modellrisiko im Falle von Zufallsvariablen, Verteilungsrisiko im Falle von Lotterien, Abdiskontierungsrisiko im Falle von Konsumströmen... Diverse Beispiele sind dann in diesen verschiedenen Situationen explizit berechnet (Sicherheitsäquivalent, ökonomischer Risikoindex, VaR für Lotterien, "variational preferences"...). Im zweiten Teil, betrachten wir Präferenzordnungen, die möglicherweise zusätzliche Informationen benötigen, um ausgedrückt zu werden. Hierzu führen wir einen axiomatischen Rahmen in Form von bedingten Präferenzordungen ein, die lokal mit der Information kompatibel sind. Dies erlaubt die Konstruktion einer bedingten numerischen Darstellung. Wir erhalten eine bedingte Variante der von Neumann und Morgenstern Darstellung für messbare stochastische Kerne und erweitern dieses Ergebnis zur einer bedingten Version der "variational preferences". Abschließend, klären wir das Zusammenpiel zwischen Modellrisiko und Verteilungsrisiko auf der axiomatischen Ebene. / The goal of this thesis is the conceptual study of risk and its quantification via robust representations. We concentrate in a first part on context invariant features related to this notion: diversification and monotonicity. We introduce and study the general properties of three key concepts, risk order, risk measure and risk acceptance family and their one-to-one relations. Our main result is a uniquely characterized dual robust representation of lower semicontinuous risk orders on topological vector space. We also provide automatic continuity and robust representation results on specific convex sets. This approach allows multiple interpretation of risk depending on the setting: model risk in the case of random variables, distributional risk in the case of lotteries, discounting risk in the case of consumption streams... Various explicit computations in those different settings are then treated (economic index of riskiness, certainty equivalent, VaR on lotteries, variational preferences...). In the second part, we consider preferences which might require additional information in order to be expressed. We provide a mathematical framework for this idea in terms of preorders, called conditional preference orders, which are locally compatible with the available information. This allows us to construct conditional numerical representations of conditional preferences. We obtain a conditional version of the von Neumann and Morgenstern representation for measurable stochastic kernels and extend then to a conditional version of the variational preferences. We finally clarify the interplay between model risk and distributional risk on the axiomatic level.
254

Regularität schwacher Lösungen nichtlinearer elliptischer und parabolischer Systeme partieller Differentialgleichungen mit Entartung

Wolf, Jörg 31 May 2002 (has links)
In der vorliegenden Arbeit untersuchen wir schwache Lösungen, die zu einem geeigneten Sobolevraum gehören, q-elliptischer und parabolischer Systeme partieller Differentialgleichungen auf deren Regularität für den Fall 1 / In the present work we study the regularity of weak solution to q-elliptic and parabolic systems partial differential equations in appropriate Sobolev spaces in case 1
255

Rigorous derivation of two-scale and effective damage models based on microstructure evolution

Hanke, Hauke 26 September 2014 (has links)
Diese Dissertation beschäftigt sich mit der rigorosen Herleitung effektiver Modelle zur Beschreibung von Schädigungsprozessen. Diese effektiven Modelle werden für verschiedene raten-unabhängige Schädigungsmodelle linear elastischer Materialien hergeleitet. Den Ausgangspunkt stellt dabei ein unidirektionales Mikrostrukturevolutionsmodell dar, dessen Fundament eine Familie geordneter zulässiger Mikrostrukturen bildet. Jede Mikrostruktur dieser Familie besitzt die gleiche intrinsische Längenskala. Zur Herleitung eines effektiven Modells wird das asymptotische Verhalten dieser Längenskala mittels Techniken der Zwei-Skalen-Konvergenz untersucht. Um das Grenzmodell zu identifizieren, bedarf es einer Mikrostrukturregularisierung, die als diskreter Gradient für stückweise konstante Funktionen aufgefasst werden kann. Die Mikrostruktur des effektiven Modells ist punktweise durch ein Einheitszellenproblem gegeben, welches die Mikro- von der Makroskala trennt. Ausgehend vom Homogenisierungsresultat für die unidirektionale Mikrostrukturevolution werden effektive Modelle für Zwei-Phasen-Schädungsprozesse hergeleitet. Die aus zwei Phasen bestehende Mikrostruktur der mikroskopischen Modelle ermöglicht z.B. die Modellierung von Schädigung durch das Wachstum von Inklusionen aus geschädigtem Material verschiedener Form und Größe. Außerdem kann Schädigung durch das Wachstum mikroskopischer Hohlräume und Mikrorissen betrachtet werden. Die Größe der Defekte skaliert mit der intrinsischen Längenskala und die unidirektionale Mikrostrukturevolution verhindert, dass bei fixierter Längenskala die Defekte für fortlaufende Zeit schrumpfen. Das Material des Grenzmodells ist dann in jedem Punkt als Mischung von ungeschädigtem und geschädigtem Material durch das Einheitszellenproblem gegeben. Dabei liefert das Einheitszellenproblem nicht nur das Mischungsverhältnis sondern auch die genaue geometrische Mischungsverteilung, die dem effektiven Material des jeweiligen Materialpunktes zugrunde liegt. / This dissertation at hand deals with the rigorous derivation of such effective models used to describe damage processes. For different rate-independent damage processes in linear elastic material these effective models are derived as the asymptotic limit of microscopic models. The starting point is represented by a unidirectional microstructure evolution model which is based on a family of ordered admissible microstructures. Each microstructure of that family possesses the same intrinsic length scale. To derive an effective model, the asymptotic behavior of this intrinsic length scale is investigated with the help of techniques of the two-scale convergence. For this purpose, a microstructure-regularizing term, which can be understood as a discrete gradient for piecewise constant functions, is needed to identify the limit model. The microstructure of the effective model is given pointwisely by a so-called unit cell problem which separates the microscopic scale from the macroscopic scale. Based on these homogenization results for unidirectional microstructure evolution models, effective models for brutal damage processes are provided. There, the microstructure consists of only two phases, namely undamaged material which comprises defects of damaged material with various sizes and shapes. In this way damage progression can be modeled by the growth of inclusions of weak material, the growth of voids, or the growth of microscopic cracks. The size of the defects is scaled by the intrinsic length scale and the unidirectional microstructure evolution prevents that, for a fixed length scale, the defects shrink for progressing time. According to the unit cell problem, the material of the limit model is then given as a mixture of damaged and undamaged material. In a specific material point of the limit model, that unit cell problem does not only define the mixture ratio but also the exact geometrical mixture distribution.
256

Drift estimation for jump diffusions

Mai, Hilmar 08 October 2012 (has links)
Das Ziel dieser Arbeit ist die Entwicklung eines effizienten parametrischen Schätzverfahrens für den Drift einer durch einen Lévy-Prozess getriebenen Sprungdiffusion. Zunächst werden zeit-stetige Beobachtungen angenommen und auf dieser Basis eine Likelihoodtheorie entwickelt. Dieser Schritt umfasst die Frage nach lokaler Äquivalenz der zu verschiedenen Parametern auf dem Pfadraum induzierten Maße. Wir diskutieren in dieser Arbeit Schätzer für Prozesse vom Ornstein-Uhlenbeck-Typ, Cox-Ingersoll-Ross Prozesse und Lösungen linearer stochastischer Differentialgleichungen mit Gedächtnis im Detail und zeigen starke Konsistenz, asymptotische Normalität und Effizienz im Sinne von Hájek und Le Cam für den Likelihood-Schätzer. In Sprungdiffusionsmodellen ist die Likelihood-Funktion eine Funktion des stetigen Martingalanteils des beobachteten Prozesses, der im Allgemeinen nicht direkt beobachtet werden kann. Wenn nun nur Beobachtungen an endlich vielen Zeitpunkten gegeben sind, so lässt sich der stetige Anteil der Sprungdiffusion nur approximativ bestimmen. Diese Approximation des stetigen Anteils ist ein zentrales Thema dieser Arbeit und es wird uns auf das Filtern von Sprüngen führen. Der zweite Teil dieser Arbeit untersucht die Schätzung der Drifts, wenn nur diskrete Beobachtungen gegeben sind. Dabei benutzen wir die Likelihood-Schätzer aus dem ersten Teil und approximieren den stetigen Martingalanteil durch einen sogenannten Sprungfilter. Wir untersuchen zuerst den Fall endlicher Aktivität und zeigen, dass die Driftschätzer im Hochfrequenzlimes die effiziente asymptotische Verteilung erreichen. Darauf aufbauend beweisen wir dann im Falle unendlicher Sprungaktivität asymptotische Effizienz für den Driftschätzer im Ornstein-Uhlenbeck Modell. Im letzten Teil werden die theoretischen Ergebnisse für die Schätzer auf endlichen Stichproben aus simulierten Daten geprüft und es zeigt sich, dass das Sprungfiltern zu einem deutlichen Effizienzgewinn führen. / The problem of parametric drift estimation for a a Lévy-driven jump diffusion process is considered in two different settings: time-continuous and high-frequency observations. The goal is to develop explicit maximum likelihood estimators for both observation schemes that are efficient in the Hájek-Le Cam sense. The likelihood function based on time-continuous observations can be derived explicitly for jump diffusion models and leads to explicit maximum likelihood estimators for several popular model classes. We consider Ornstein-Uhlenbeck type, square-root and linear stochastic delay differential equations driven by Lévy processes in detail and prove strong consistency, asymptotic normality and efficiency of the likelihood estimators in these models. The appearance of the continuous martingale part of the observed process under the dominating measure in the likelihood function leads to a jump filtering problem in this context, since the continuous part is usually not directly observable and can only be approximated and the high-frequency limit. In the second part of this thesis the problem of drift estimation for discretely observed processes is considered. The estimators are constructed from discretizations of the time-continuous maximum likelihood estimators from the first part, where the continuous martingale part is approximated via a thresholding technique. We are able to proof that even in the case of infinite activity jumps of the driving Lévy process the estimator is asymptotically normal and efficient under weak assumptions on the jump behavior. Finally, the finite sample behavior of the estimators is investigated on simulated data. We find that the maximum likelihood approach clearly outperforms the least squares estimator when jumps are present and that the efficiency gap between both techniques becomes even more severe with growing jump intensity.
257

Metastability of the Chafee-Infante equation with small heavy-tailed Lévy Noise

Högele, Michael Anton 31 March 2011 (has links)
Wird der Äquator-Pol-Energietransfer als Wärmediffusion berücksichtigt, so gehen Energiebilanzmodelle in Reaktions-Diffusionsgleichungen über, deren Modellfall die (deterministische) Chafee-Infante-Gleichung darstellt. Ihre Lösung besitzt zwei stabile Zustände und mehrere instabile auf der separierenden Mannigfaltigkeit (Separatrix) der stabilen Anziehungsgebiete. Es wird bewiesen, dass die Lösung auf geeignet verkleinerten Anziehungsgebieten mit Minimalabstand zur Separatrix innerhalb von Zeitskalen relaxiert, die höchstens logarithmisch darin anwachsen. Motiviert durch statistische Belege aus grönländischen Zeitreihen wird diese partielle Differentialgleichung unter Störung mit unendlichdimensionalem, Hilbertraum-wertigen, regulär variierenden Lévy''schen reinen Sprungrauschen mit index alpha und Intensität epsilon untersucht. Ein kanonisches Beispiel dieses Rauschens ist alpha-stabiles Rauschen im Hilbertraum. Durch Erweiterung einer Methode von Imkeller und Pavlyukevich auf stochastische partielle Differentialgleichungen wird unter milden Bedingungen bewiesen, dass im Gegensatz zu Gauß''schem Rauschen die erwarteten Austritts- und übertrittszeiten zwischen Anziehungsgebieten polynomiell mit Ordnung in der inversen Intensität für kleine Rauschintensität anwachsen. In Kapitel 6 wird eine zusätzliche natürliche “Separatrixhypothese” über das Sprungmaß, eingeführt, die eine obere Schranke für die Austrittszeiten aus einer Umgebung der Separatrix impliziert. Dies ermöglicht den Nachweis einer oberen Schranke für die Austrittszeiten, welche gleichmäßig für Anfangsbedingungen in dem ganzen Anziehungsgebiet gilt. Es folgen zwei Lokalisierungsergebnisse. Schließlich wird gezeigt, dass die Lösung metastabiles Verhalten aufweist. Unter der “Separatrixhypothese” wird dies auf ein Ergebnis erweitert, welches gleichmäßig im Raum gilt. / If equator-to-pole energy transfer by heat diffusion is taken into account, Energy Balance Models turn into reaction-diffusion equations, whose prototype is the (deterministic) Chafee-Infante equation. Its solution has two stable states and several unstable ones on the separating manifold (separatrix) of the stable domains of attraction. We show, that on appropriately reduced domains of attraction of a minimal distance to the separatrix the solution relaxes in time scales increasing only logarithmically in it. Motivated by the statistical evidence from Greenland ice core time series, we consider this partial differential equation perturbed by an infinite-dimensional Hilbert space-valued regularly varying (pure jump) Lévy noise of index alpha and intensity epsilon. A proto-type of this noise is alpha-stable noise in the Hilbert space. Extending a method developed by Imkeller and Pavlyukevich to the SPDE setting we prove under mild conditions that in contrast to Gaussian perturbations the expected exit and transition times between the domains of attraction increase polynomially in the inverse intensity. In Chapter 6 we introduce an additional natural separatrix hypothesis on the jump measure that implies an upper bound on the exit time of a neighborhood of the separatrix. This allows to obtain an upper bound for the asymptotic exit time uniform for the initial positions inside the entire domain of attraction. It is followed by two localization results. Finally we prove that the solution exhibits metastable behavior. Under the separatrix hypothesis we can extend this to a result that holds uniformly in space.
258

On the quasi-optimal convergence of adaptive nonconforming finite element methods in three examples

Rabus, Hella 23 May 2014 (has links)
Eine Vielzahl von Anwendungen in der numerischen Simulation der Strömungsdynamik und der Festkörpermechanik begründen die Entwicklung von zuverlässigen und effizienten Algorithmen für nicht-standard Methoden der Finite-Elemente-Methode (FEM). Um Freiheitsgrade zu sparen, wird in jedem Durchlauf des adaptiven Algorithmus lediglich ein Teil der Gebiete verfeinert. Einige Gebiete bleiben daher möglicherweise verhältnismäßig grob. Die Analyse der Konvergenz und vor allem die der Optimalität benötigt daher über die a priori Fehleranalyse hinausgehende Argumente. Etablierte adaptive Algorithmen beruhen auf collective marking, d.h. die zu verfeinernden Gebiete werden auf Basis eines Gesamtfehlerschätzers markiert. Bei adaptiven Algorithmen mit separate marking wird der Gesamtfehlerschätzer in einen Volumenterm und in einen Fehlerschätzerterm aufgespalten. Da der Volumenterm unabhängig von der diskreten Lösung ist, kann einer schlechten Datenapproximation durch eine lokal tiefe Verfeinerung begegnet werden. Bei hinreichender Datenapproximation wird das Gitter dagegen bezüglich des neuen Fehlerschätzerterms wie üblich level-orientiert verfeinert. Die numerischen Experimente dieser Arbeit liefern deutliche Indizien der quasi-optimalen Konvergenz für den in dieser Arbeit untersuchten adaptiven Algorithmus, der auf separate marking beruht. Der Parameter, der die Verbesserung der Datenapproximation sicherstellt, ist frei wählbar. Dadurch ist es erstmals möglich, eine ausreichende und gleichzeitig optimale Approximation der Daten innerhalb weniger Durchläufe zu erzwingen. Diese Arbeit ermöglicht es, Standardargumente auch für die Konvergenzanalyse von Algorithmen mit separate marking zu verwenden. Dadurch gelingt es Quasi-Optimalität des vorgestellten Algorithmus gemäß einer generellen Vorgehensweise für die drei Beispiele, dem Poisson Modellproblem, dem reinen Verschiebungsproblem der linearen Elastizität und dem Stokes Problem, zu zeigen. / Various applications in computational fluid dynamics and solid mechanics motivate the development of reliable and efficient adaptive algorithms for nonstandard finite element methods (FEMs). To reduce the number of degrees of freedom, in adaptive algorithms only a selection of finite element domains is marked for refinement on each level. Since some element domains may stay relatively coarse, even the analysis of convergence and more importantly the analysis of optimality require new arguments beyond an a priori error analysis. In adaptive algorithms, based on collective marking, a (total) error estimator is used as refinement indicator. For separate marking strategies, the (total) error estimator is split into a volume term and an error estimator term, which estimates the error. Since the volume term is independent of the discrete solution, if there is a poor data approximation the improvement may be realised by a possibly high degree of local mesh refinement. Otherwise, a standard level-oriented mesh refinement based on an error estimator term is performed. This observation results in a natural adaptive algorithm based on separate marking, which is analysed in this thesis. The results of the numerical experiments displayed in this thesis provide strong evidence for the quasi-optimality of the presented adaptive algorithm based on separate marking and for all three model problems. Furthermore its flexibility (in particular the free steering parameter for data approximation) allows a sufficient and optimal data approximation in just a few number of levels of the adaptive scheme. This thesis adapts standard arguments for optimal convergence to adaptive algorithms based on separate marking with a possibly high degree of local mesh refinement, and proves quasi-optimality following a general methodology for three model problems, i.e., the Poisson model problem, the pure displacement problem in linear elasticity and the Stokes equations.
259

Geometric cycles on moduli spaces of curves

Tarasca, Nicola 24 May 2012 (has links)
Ziel dieser Arbeit ist die explizite Berechnung gewisser geometrischer Zykel in Modulräumen von Kurven. In den letzten Jahren wurden Divisoren auf $\Mbar_{g,n}$ ausgiebig untersucht. Durch die Berechnung von Klassen in Kodimension 1 konnten wichtige Ergebnisse in der birationalen Geometrie der Räume $\Mbar_{g,n}$ erzielt werden. In Kapitel 1 geben wir einen Überblick über dieses Thema. Im Gegensatz dazu sind Klassen in Kodimension 2 im Großen und Ganzen unerforscht. In Kapitel 2 betrachten wir den Ort, der im Modulraum der Kurven vom Geschlecht 2k durch die Kurven mit einem Büschel vom Grad k definiert wird. Da die Brill-Noether-Zahl hier -2 ist, hat ein solcher Ort die Kodimension 2. Mittels der Methode der Testflächen berechnen wir die Klasse seines Abschlusses im Modulraum der stabilen Kurven. Das Ziel von Kapitel 3 ist es, die Klasse des Abschlusses des effektiven Divisors in $\Mbar_{6,1}$ zu berechnen, der durch punktierte Kurven [C, p] gegeben ist, für die ein ebenes Modell vom Grad 6 existiert, bei dem p auf einen Doppelpunkt abgebildet wird. Wie Jensen gezeigt hat, erzeugt dieser Divisor einen extremalen Strahl im pseudoeffektiven Kegel von $\Mbar_{6,1}$. Ein allgemeines Ergebnis über gewisse Familien von Linearsystemen mit angepasster Brill-Noether-Zahl 0 oder -1 wird eingeführt, um die Berechnung zu vervollständigen. / The aim of this thesis is the explicit computation of certain geometric cycles in moduli spaces of curves. In recent years, divisors of $\Mbar_{g,n}$ have been extensively studied. Computing classes in codimension one has yielded important results on the birational geometry of the spaces $\Mbar_{g,n}$. We give an overview of the subject in Chapter 1. On the contrary, classes in codimension two are basically unexplored. In Chapter 2 we consider the locus in the moduli space of curves of genus 2k defined by curves with a pencil of degree k. Since the Brill-Noether number is equal to -2, such a locus has codimension two. Using the method of test surfaces, we compute the class of its closure in the moduli space of stable curves. The aim of Chapter 3 is to compute the class of the closure of the effective divisor in $\M_{6,1}$ given by pointed curves [C,p] with a sextic plane model mapping p to a double point. Such a divisor generates an extremal ray in the pseudoeffective cone of $\Mbar_{6,1}$ as shown by Jensen. A general result on some families of linear series with adjusted Brill-Noether number 0 or -1 is introduced to complete the computation.
260

Spectral invariants for polygons and orbisurfaces

Uçar, Eren 17 October 2017 (has links)
In dieser Arbeit beschäftigen wir uns mit Spektralinvarianten von Polygonen und geschlossenen Orbiflächen konstanter Gaußkrümmung. Unsere Methode ist es jeweils den Wärmeleitungskern und die asymptotische Entwicklung der Wärmespur zu untersuchen. Als erstes untersuchen wir hyperbolische Polygone, d.h. relativ kompakte Gebiete in der hyperbolischen Ebene mit stückweise geodätischem Rand. Wir berechnen die asymptotische Entwicklung der Wärmespur bezüglich des Dirichlet-Laplace Operators eines beliebigen hyperbolischen Polygons, und wir erhalten explizite Formeln für alle Wärmeinvarianten. Analoge Resultate für euklidische und sphärische Polygone waren vorher bekannt. Wir vereinheitlichen diese Resultate und leiten die Wärmeinvarianten für beliebige Polygone her, d.h. für relativ kompakte Gebiete mit stückweise geodätischem Rand in einer vollständigen Riemann'schen Mannigfaltigkeit konstanter Gaußkrümmung. Es stellt sich heraus, dass die Wärmeinvarianten viele Informationen über ein Polygon liefern, falls die Krümmung nicht verschwindet. Zum Beispiel sind dann die Multimenge aller echten Winkel (d.h. derjenigen Winkel die ungleich Pi sind) und die Euler-Charakteristik eines Polygons Spektralinvarianten. Außerdem berechnen wir die asymptotische Entwicklung der Wärmespur von geschlossenen Riemann'schen Orbiflächen konstanter Krümmung und erhalten explizite Formeln für alle Wärmeinvarianten. Falls die Krümmung nicht verschwindet, so kann man interessante Informationen aus den Wärmeinvarianten über die Topologie und die singuläre Menge einer Orbifläche ermitteln. / In this thesis we deal with spectral invariants for polygons and closed orbisurfaces of constant Gaussian curvature. In each case our method is to study the heat kernel and the asymptotic expansion of the heat trace. First, we investigate hyperbolic polygons, i.e. relatively compact domains in the hyperbolic plane with piecewise geodesic boundary. We compute the asymptotic expansion of the heat trace associated to the Dirichlet Laplacian of any hyperbolic polygon, and we obtain explicit formulas for all heat invariants. Analogous results for Euclidean and spherical polygons were known before. We unify these results and deduce the heat invariants for arbitrary polygons, i.e. for relatively compact domains with piecewise geodesic boundary contained in a complete Riemannian manifold of constant Gaussian curvature. It turns out that the heat invariants provide much information about a polygon, if the curvature does not vanish. For example, then the multiset of all real angles (i.e. those which are not equal to pi) and the Euler characteristic of a polygon are spectral invariants. Furthermore, we compute the asymptotic expansion of the heat trace for any closed Riemannian orbisurface of constant curvature, and obtain explicit formulas for all heat invariants. If the curvature does not vanish, then it is possible to detect interesting information about the topology and the singular set of an orbisurface from the heat invariants.

Page generated in 0.0773 seconds