• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 92
  • 47
  • Tagged with
  • 274
  • 274
  • 168
  • 167
  • 124
  • 107
  • 81
  • 66
  • 62
  • 60
  • 59
  • 53
  • 53
  • 52
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Extrapolation vectorielle et applications aux équations aux dérivées partielles

Duminil, Sébastien 06 July 2012 (has links) (PDF)
Nous nous intéressons, dans cette thèse, à l'étude des méthodes d'extrapolation polynômiales et à l'application de ces méthodes dans l'accélération de méthodes de points fixes pour des problèmes donnés. L'avantage de ces méthodes d'extrapolation est qu'elles utilisent uniquement une suite de vecteurs qui n'est pas forcément convergente, ou qui converge très lentement pour créer une nouvelle suite pouvant admettreune convergence quadratique. Le développement de méthodes cycliques permet, deplus, de limiter le coût de calculs et de stockage. Nous appliquons ces méthodes à la résolution des équations de Navier-Stokes stationnaires et incompressibles, à la résolution de la formulation Kohn-Sham de l'équation de Schrödinger et à la résolution d'équations elliptiques utilisant des méthodes multigrilles. Dans tous les cas, l'efficacité des méthodes d'extrapolation a été montrée.Nous montrons que lorsqu'elles sont appliquées à la résolution de systèmes linéaires, les méthodes d'extrapolation sont comparables aux méthodes de sous espaces de Krylov. En particulier, nous montrons l'équivalence entre la méthode MMPE et CMRH. Nous nous intéressons enfin, à la parallélisation de la méthode CMRH sur des processeurs à mémoire distribuée et à la recherche de préconditionneurs efficaces pour cette même méthode.
172

Approximation polynômiale par projection L2 discrète aléatoire et application aux problèmes inverses pour les EDP à coefficients stochastiques

Migliorati, Giovanni 03 April 2013 (has links) (PDF)
Le sujet principal de cette thèse porte sur l'approximation polynômiale des fonctions aléatoires au moyen de la projection L2 aléatoire discrète, et son application aux problèmes inverses pour les équations aux dérivées partielles avec des données aléatoires. Les motivations proviennent de l'approximation paramétrique de la solution de modèles aux dérivées partielles. La thèse se compose de deux parties, avec un chapitre d'introduction qui résume les techniques modernes de l'approximation polynômiale des fonctions de variables aléatoires. La première partie, du chapitre 1 au chapitre 4, contient l'analyse théorique de la projection L2 aléatoire discrète pour résoudre le problème direct, par exemple, pour rapprocher les moments d'une fonction aléatoire à partir de ses observations, ou pour calculer la solution à un modèle numérique avec des coefficients stochastiques. La stabilité et l'optimalité de l'erreur d'approximation évaluée dans la norme L2 pondérée sont traités. Dans la dernière partie de la thèse, composé des chapitres 5 et 6, la méthodologie développée précédemment pour le problème direct est appliqué aux problèmes inverses pour les équations aux dérivées partielles à coefficients stochastiques. La méthode de factorisation est appliquée dans le cadre de la tomographie par impédance électrique, d'abord dans le cas de coefficient inhomogène, puis dans le cas de coefficient constante par morceaux, à valeurs dans chaque région affectée par l'incertitude. Enfin, dans le chapitre 6 les variantes de la méthode de factorisation proposées dans le chapitre précédent sont accélérés en utilisant les techniques qui ont été présentés dans la première partie de la thèse.
173

Nature, origine et réactivité de la matière organique fossile dans les sols et sédiments : développements et applications de la photoionisation - spectrométrie de masse haute résolution (APPI-QTOF) et couplage avec la chromatograhie d'exclusion stérique (SEC) / Nature, origin and reactivity of fossil organic matter in soils and sediments : Developments and applications of the Photoionization - High Resolution Mass Spectrometry (APPI-QTOF) and Coupling with Size Exclusion Chromatography (SEC)

Ghislain, Thierry 08 July 2011 (has links)
Le développement des outils analytiques pour l'analyse de la matière organique complexe en géochimie organique a connu de nombreuses avancées ces dernières années. Ce développement a permis de répondre à un grand nombre de questions quant à la composition de la matière organique. Cependant, beaucoup des points restent encore à élucider comme notamment la caractérisation des fractions de hauts poids moléculaires ainsi que le suivi de la réactivité de la matière organique. Ce travail de thèse a eu pour objectif (i) d'adapter les techniques de spectrométrie de masse déjà existantes pour l'analyse de la matière organique fossile (notamment par la sélection de la source d'ionisation atmosphérique la plus adaptée) mais également (ii) de développer un nouveau type de couplage entre la chromatographie d'exclusion stérique (SEC) et la spectrométrie de masse APPI-QTOF pour l'analyse des fractions peu polaires de hauts poids moléculaires. L'adaptation du l'APPI-QTOF a tout d'abord permis de mieux comprendre la réactivité de contaminants organiques polyaromatiques en présence de phases minérales. Le couplage SEC-APPI-QTOF a, quant à lui, permis d'améliorer les connaissances sur la structure des asphaltènes. Cependant, malgré la « simplification » rendue possible par la SEC, la très grande quantité d'informations reste difficile à interpréter et prend beaucoup de temps. Un modèle mathématique a donc été développé basé sur des analyses numériques et statistiques des spectres de masse, permettant de les comparer entre eux afin de distinguer l'origine des échantillons et de suivre l'impact de processus physico-chimiques (altérations naturelles - traitements de remédiation). / The development of analytical tools for organic geochemistry analysis has increased these past years. This development has allowed answering many questions about organic matter composition. However, many issues remain to be clarified including the characterization of high molecular weight fractions and monitoring the reactivity of organic matter. This thesis has focused on both (i) existing method improvements for fossil organic geochemistry analysis but also on (ii) developing a new type of coupling between the size exclusion chromatography (SEC) and the APPI-QTOF mass spectrometry for high molecular weight weakly polar fractions. Adjustments on APPI-QTOF mass spectrometry have allowed a better understanding of polyaromatic organic contaminant reactivity in presence of mineral matrices. The success of this coupling has allowed a better understanding of the structure of asphaltenes. However despite the "simplification" obtained by the SEC, the large amount of information remains difficult to interpret and time-consuming. A mathematical model has been developed based on numerical and statistical analysis of mass spectra, allowing direct comparison of mass spectra and being able to identify several types of information such as origins of samples, monitoring of physico-chemical processes and also the efficiency of soil recovery treatments as well as the identification of analytical protocols.
174

Analyse théorique et numérique de dynamiques non-réversibles en physique statistique computationnelle / Theoretical and numerical analysis of non-reversible dynamics in computational statistical physics

Roussel, Julien 27 November 2018 (has links)
Cette thèse traite de quatre sujets en rapport avec les dynamiques non-réversibles. Chacun fait l'objet d'un chapitre qui peut être lu indépendamment.Le premier chapitre est une introduction générale présentant les problématiques et quelques résultats majeurs de physique statistique computationnelle.Le second chapitre concerne la résolution numérique d'équations aux dérivées partielles hypoelliptiques, c'est-à-dire faisant intervenir un opérateur différentiel inversible mais non coercif. Nous prouvons la consistance de la méthode de Galerkin ainsi que des taux de convergence pour l'erreur. L'analyse est également conduite dans le cas d'une formulation point-selle, qui s'avère être la plus adaptée dans les cas qui nous intéressent. Nous démontrons que nos hypothèses sont satisfaites dans un cas simple et vérifions numériquement nos prédictions théoriques sur cet exemple.Dans le troisième chapitre nous proposons une stratégie générale permettant de construire des variables de contrôle pour des dynamiques hors-équilibre. Cette méthode permet en particulier de réduire la variance des estimateurs de coefficient de transport par moyenne ergodique. Cette réduction de variance est quantifiée dans un régime perturbatif. La variable de contrôle repose sur la solution d'une équation aux dérivées partielles. Dans le cas de l'équation de Langevin cette équation est hypoelliptique, ce qui motive le chapitre précédent. La méthode proposée est testée numériquement sur trois exemples.Le quatrième chapitre est connecté au troisième puisqu'il utilise la même idée de variable de contrôle. Il s'agit d'estimer la mobilité d'une particule dans le régime sous-amorti, où la dynamique est proche d'être Hamiltonienne. Ce travail a été effectué en collaboration avec G. Pavliotis durant un séjour à l'Imperial College London.Le dernier chapitre traite des processus de Markov déterministes par morceaux, qui permettent l'échantillonnage de mesure en grande dimension. Nous prouvons la convergence exponentielle vers l'équilibre de plusieurs dynamiques de ce type sous un formalisme général incluant le processus de Zig-Zag (ZZP), l'échantillonneur à particule rebondissante (BPS) et la dynamique de Monte Carlo hybride randomisée (RHMC). La dépendances des bornes sur le taux de convergence que nous démontrons sont explicites par rapport aux paramètres du problème. Cela permet en particulier de contrôler la taille des intervalles de confiance pour des moyennes empiriques lorsque la dimension de l'espace des phases sous-jacent est grande. Ce travail a été fait en collaboration avec C. Andrieu, A. Durmus et N. Nüsken. / This thesis deals with four topics related to non-reversible dynamics. Each is the subject of a chapter which can be read independently. The first chapter is a general introduction presenting the problematics and some major results of computational statistical physics. The second chapter concerns the numerical resolution of hypoelliptic partial differential equations, i.e. involving an invertible but non-coercive differential operator. We prove the consistency of the Galerkin method as well as convergence rates for the error. The analysis is also carried out in the case of a saddle-point formulation, which is the most appropriate in the cases of interest to us. We demonstrate that our assumptions are met in a simple case and numerically check our theoretical predictions on this example. In the third chapter we propose a general strategy for constructing control variates for nonequilibrium dynamics. In particular, this method reduces the variance of transport coefficient estimators by ergodic mean. This variance reduction is quantified in a perturbative regime. The control variate is based on the solution of a partial differential equation. In the case of Langevin's equation this equation is hypoelliptic, which motivates the previous chapter. The proposed method is tested numerically on three examples. The fourth chapter is connected to the third since it uses the same idea of a control variate. The aim is to estimate the mobility of a particle in the underdamped regime, where the dynamics are close to being Hamiltonian. This work was done in collaboration with G. Pavliotis during a stay at Imperial College London. The last chapter deals with Piecewise Deterministic Markov Processes, which allow measure sampling in high-dimension. We prove the exponential convergence towards the equilibrium of several dynamics of this type under a general formalism including the Zig-Zag process (ZZP), the Bouncy Particle Sampler (BPS) and the Randomized Hybrid Monte Carlo (RHMC). The dependencies of the bounds on the convergence rate that we demonstrate are explicit with respect to the parameters of the problem. This allows in particular to control the size of the confidence intervals for empirical averages when the size of the underlying phase space is large. This work was done in collaboration with C. Andrieu, A. Durmus and N. Nüsken
175

Detection and treatment of inconsistent or locally over-constrained configurations during the manipulation of 3D geometric models made of free-form surfaces / Détection et traitement de la configuration de sur-contraintes discontinues ou locale lors de la manipulation de modèle 3D géométrique réalisé par de surface à gauche

Hu, Hao 23 January 2018 (has links)
Trois modules seront développés: Le module de détection a produit une analyse des problématiques figurations con, à savoir un ensemble de domaines où soit quelques nouveaux DDL ou des changements locaux dans les contraintes sont obligatoires. Le module de traitement permettra à la défi nition des mécanismes pour aider la décision sur modi cations. Le module de prédiction dire le degré de déformation en pré-analyser les caractéristiques des configurations de NURBS. / Three modules will be developed: The detection module has produced an analysis of problematic con figurations, i.e. a set of areas where either some new DOFs or some local changes in the constraints are mandatory. The treatment module will enable the defi nition of mechanisms to help the decision on modi cations. The prediction module will tell the degree of deformation by pre-analyzing the features of NURBS configurations.
176

Analyse et simulation d'équations de Schrödinger déterministes et stochastiques. Applications aux condensats de Bose-Einstein en rotation / Analysis and simulation of deterministic and stochastic Schrödinger equations. Applications to rotating Bose-Einstein condensates

Duboscq, Romain 28 November 2013 (has links)
Dans cette thèse, nous étudions différents aspects mathématiques et numériques des équations de Gross-Pitaevskii et de Schrödinger non linéaire. Nous commençons (chapitre 1) par introduire différents modèles à partir des systèmes physiques que sont les condensats de Bose-Einstein et les impulsions lumineuses dans les fibres optiques. Cette modélisation conduit aux équations aux dérivées partielles stochastiques suivantes : l'équation de Gross-Pitaevskii stochastique et l'équation de Schrödinger non linéaire avec dispersion aléatoire. Ensuite, dans le second chapitre, nous nous intéressons au problème de l'existence et l'unicité d'une solution de ces équations. On montre notamment que le problème de Cauchy a une solution pour l'équation de Gross-Pitaevskii stochastique avec rotation grâce à la construction de la solution associée au problème. Nous abordons ensuite dans le troisième chapitre le problème du calcul des états stationnaires pour l'équation de Gross-Pitaevskii. Nous développons une méthode pseudo-spectrale de discrétisation du Continuous Normalized Gradient Flow, associée à une résolution itérative préconditionnée des sous-espaces de Krylov. Le quatrième chapitre concerne l'étude de schémas pseudo-spectraux pour la dynamique de l'équation de Gross-Pitaevskii et de Schrödinger non linéaire. On procède à une étude numérique de ces schémas (schéma de splitting de Lie et de Strang, ainsi qu'un schéma de relaxation). De plus, on analyse le schéma de Lie dans le cadre de l'équation de Schrödinger non linéaire avec dispersion aléatoire. Finalement, nous présentons, dans le cinquième chapitre, une boîte à outils Matlab (GPELab) développée dans le but de fournir les méthodes numériques que nous avons étudiées / The aim of this Thesis is to study various mathematical and numerical aspects related to the Gross-Pitaevskii and nonlinear Schrödinger equations. We begin (chapter 1) by introducing a few models starting from the physics of Bose-Einstein condensates and optical fibers. This naturally leads to introducing a stochastic Gross-Pitaevskii equation and a nonlinear Schrödinger equation with random dispersion. Next, in the second chapter, we analyze the existence and uniqueness problem for these two equations. We prove that the Cauchy problem admits a solution for the stochastic Gross-Pitaevskii equation with a rotational term by constructing the solution associated with the linear. The third chapter is concerned with the computation of stationary states for the Gross-Pitaevskii equation. We develop a pseudo-spectral approximation scheme for the Continuous Normalized Gradient Flow formulation, combined with preconditioned Krylov subspace methods. This original approach leads to the robust and efficient computation of ground states for fast rotations and strong nonlinearities. In the fourth chapter, we consider some pseudo-spectral schemes for computing the dynamics of the Gross-Pitaevskii and nonlinear Schrödinger equations. These schemes (the Lie's and Strang's splitting schemes and the relaxation scheme) are numerically studied. Moreover, we proceed to a rigorous numerical analysis of the Lie scheme for the associated stochastic PDEs. Finally, we present in the fifth chapter a Matlab toolbox (called GPELab) that provides computational solutions based on the schemes previously introduced in the Thesis
177

Méthodes de domaines fictifs pour les éléments finis, application à la mécanique des structures / Fictitious domain methods for finite element methods, application to structural mechanics

Fabre, Mathieu 10 July 2015 (has links)
Cette thèse est consacrée à l’étude de méthodes de domaines fictifs pour les éléments finis. Ces méthodes, initialement conçues pour l’approximation de problèmes d’interactions fluide/structure, consistent à prolonger un domaine réel par un domaine de géométrie simple appelé domaine fictif. On applique ces méthodes à un problème de contact unilatéral sans frottement en petite déformation entre deux corps élastiques séparés par une distance initiale non nulle et possédant par ailleurs des conditions aux bords de type Dirichlet et Neumann. Les deux premiers chapitres sont consacrés à l’introduction des méthodes de domaines fictifs et du problème unilatéral de contact de deux corps élastiques. Le chapitre 3 est consacré à l’analyse a priori et à l’étude numérique de ce problème de contact en domaine fictif avec les conditions aux bords de Dirichlet et de contact qui sont prises en compte à l’aide d’une méthode de type Nitsche. Des résultats théoriques de consistance de la méthode discrète, d’existence et d’unicité sont présentés. Afin d’obtenir une estimation d’erreur a priori optimale, une stabilisation de la méthode de domaine fictif est nécessaire. Ces résultats sont validés numériquement sur des cas tests en dimensions deux et trois. Le chapitre 4 est consacré à l’étude d’un estimateur d’erreur de type résidu d’un problème de contact sans domaine fictif entre un corps élastique et un corps rigide. Les résultats théoriques sont également validés sur deux cas tests numériques : un domaine rectangulaire avec seulement une partie de la zone de contact en contact effectif ainsi qu’un contact de type Hertz en dimensions deux et trois. Le chapitre 5 est une généralisation du chapitre 4 à l’approche domaine fictif et au cas de deux corps élastiques. / This thesis is dedicated to the study of the fictitious domain methods for the finite element methods. These methods, initially designed for the fluid-structure interaction, consist in immersing the real domain in a simply-shaped and a geometrically bigger domain called the fictitious domain. We apply these methods to a unilateral frictionless contact problem in small deformation of two deformable elastics bodies separated by an initial gap and satisfying boundary Dirichlet and Neumann conditions. The first two chapters are devoted to the introduction of these methods and to the unilateral contact problem. The chapter 3 is dedicated to a theoretical study for Dirichlet and contact boundary conditions taken into account with a Nitsche type method. Some theoretical results are presented: the consistency of the discrete method, existence and uniqueness results. To obtain an optimal a priori error estimate, a stabilized fictitious domain method is necessary. These results are numerically validated using Hertz contact in two and three dimensions. The chapter 4 is devoted to the study of a residual-based a posteriori error estimator, without the fictitious domain approach, between an elastic body and rigid obstacle. The numerical study of two tests cases will be performed: a rectangular domain with only a part of the potential zone of contact in effective contact as well as a Hertz contact in two and three dimensions. The chapter 5 is a generalization of the chapter 4 to the fictitious domain approach and the care of to two elastics bodies.
178

Étude asymptotique et numérique d’inclusions fines dans des domaines élastiques / Asymptotic and numerical study of fine inclusions in elastic domains

Ben Hassine, Mohamed Rafik 26 September 2017 (has links)
Ce travail de thèse a concerné la modélisation mathématique et l’approximation numérique de l’influence d‘une inclusion très fine sur un substrat élastique de différente rigidité. L’étude est motivée par les applications dans les pneumatiques et ne se base pas sur des techniques d’homogénéisation classiques. En effet, l’objectif a été de traiter l’interaction entre une seule inclusion et son milieu élastique et non une densité d’inclusions. L’étude a comporté trois volets, le premier concernant une modélisation mathématique pour des lois de comportement linéaires aboutissant à une expression de la contribution de l’inclusion sous la forme du champ sans inclusion corrigé par des correcteurs à différents ordres. Ces correcteurs sont indépendants de la taille caractéristique de l’inclusion, Le second a concerné l’approximation numérique de cette influence moyennant la méthode des éléments finis et celle des éléments finis inversés. Une stratégie numérique de prise en compte de l’influence de plusieurs inclusions y est aussi présentée. Le dernier volet est prospectif et discute de la possibilité de l’extension de l’approche pour des lois de comportement non linéaires. / This work focused on mathematical modeling and numerical approximation of the influence of a very thin inclusion on an elastic substrate of different stiffness. The study is motivated by applications in tires and is not based on conventional homogenization techniques. Indeed, the objective was to treat the interaction between a single inclusion and its elastic medium and not a density of inclusions. The study consisted of three parts, the first concerning mathematical modeling for linear behavior laws leading to an expression of the contribution of the inclusion in the form of the inclusion-free field corrected by correctors at different orders. These correctors are independent of the characteristic size of the inclusion. The second relates to the numerical approximation of this influence by means of the finite element method and that of the inverted finite elements. A numerical strategy for taking into account the influence of several inclusions is also presented. The last part is prospective and discusses the possibility of extending the approach for nonlinear behavioral laws.
179

Étude théorique de méthodes numériques pour les systèmes de réaction-diffusion; application à des équations paraboliques non linéaires et non locales

Ribot, Magali 11 December 2003 (has links) (PDF)
On s'intéresse dans cette thèse à l'étude de méthodes numériques pour les systèmes de réaction-diffusion. Tout d'abord, on étudie le schéma par régularisation du résidu et ses extrapolations; ce schéma introduit un préconditionneur en espace lors de la discrétisation en temps. On prouve la stabilité en norme usuelle et la convergence en norme d'énergie de cette méthode et on l'applique au préconditionnement de méthodes spectrales par des méthodes d'éléments finis. Cette application nécessite le calcul d'asymptotiques précises des polynômes de Legendre et de leurs extrema. On prouve aussi la convergence et l'ordre deux d'une méthode de splitting semi-discrétisée en temps pour les systèmes de réaction-diffusion, l'approximation de Peaceman-Rachford. Enfin, on applique ces méthodes à la simulation d'une équation parabolique non linéaire pour modéliser la croissance de grains et à une équation parabolique non locale venant de la mécanique statistique et modélisant les systèmes autogravitants de fermions.
180

Etude numérique d'écoulements réactifs transsoniques

Chargy, Didier 17 June 1991 (has links) (PDF)
Le travail présenté dans cette thèse porte sur l'étude numérique d'écoulements réactifs en régime transsonique. Le modèle mathématique pour résoudre ces écoulements est constitué des équations d'Euler multi-espèces écrites pour un mélange de gaz parfaits auxquelles nous ajoutons les termes modélisant les effets diffusifs et les effets dus à la combustion. Pour résoudre numériquement le système d'équations ainsi défini, nous utilisons une formulation mixte éléments finis - volumes finis basée sur la méthodologie MUSCL et utilisant des fonctions de flux numériques décentrés. Pour le traitement des conditions aux limites, on utilise des flux numériques adaptés aux écoulements multi-espèces qui traitent les frontières où l'écoulement est subsonique ou supersonique. A l'aide de ce schéma on étudie différents problèmes monodimensionnels de détonation stable et instable ainsi que des problèmes bidimensionnels d'interaction réactive de jets et de flammes de diffusion. La difficulté des cas tests étudiés avec des rapports de pression parfois supérieurs à 30 prouve la robustesse de la méthode. De plus l'utilisation de la méthode MUSCL associée à des maillages fins obtenus par raffinement statique ou dynamique conduit à des solutions numériques précises et sans oscillations. Pour s'affranchir des difficultés liées à la disparité des échelles temporelles qui apparaissent dans ces écoulements, on propose différents schémas explicites et implicites par décomposition des opérateurs qui permettent (tout en conservant une solution instationnaire de bonne qualité) des gains supérieurs à 5 par rapport à l'explicite.

Page generated in 0.0609 seconds