Spelling suggestions: "subject:"floer homology"" "subject:"floer pomology""
21 |
Topological and Geometric Methods with a View Towards Data AnalysisEidi, Marzieh 12 April 2022 (has links)
In geometry, various tools have been developed to explore the topology and other features
of a manifold from its geometrical structure. Among the two most powerful ones are the
analysis of the critical points of a function, or more generally, the closed orbits of a dynamical
system defined on the manifold, and the evaluation of curvature inequalities. When any
(nondegenerate) function has to have many critical points and with different indices, then the
topology must be rich, and when certain curvature inequalities hold throughout the manifold,
that constrains the topology. It has been observed that these principles also hold for metric
spaces more general than Riemannian manifolds, and for instance also for graphs. This
thesis represents a contribution to this program. We study the relation between the closed
orbits of a dynamical system and the topology of a manifold or a simplicial complex via the
approach of Floer. And we develop notions of Ricci curvature not only for graphs, but more
generally for, possibly directed, hypergraphs, and we draw structural consequences from
curvature inequalities. It includes methods that besides their theoretical importance can be
used as powerful tools for data analysis. This thesis has two main parts; in the first part we
have developed topological methods based on the dynamic of vector fields defined on smooth
as well as discrete structures. In the second
part, we concentrate on some curvature notions which already proved themselves as powerful
measures for determining the local (and global) structures of smooth objects. Our main
motivation here is to develop methods that are helpful for the analysis of complex networks.
Many empirical networks incorporate higher-order relations between elements and therefore
are naturally modeled as, possibly directed and/or weighted, hypergraphs, rather than merely
as graphs. In order to develop a systematic tool for the statistical analysis of such hypergraphs,
we propose a general definition of Ricci curvature on directed hypergraphs and explore the
consequences of that definition. The definition generalizes Ollivier’s definition for graphs.
It involves a carefully designed optimal transport problem between sets of vertices. We can
then characterize various classes of hypergraphs by their curvature. In the last chapter, we
show that our curvature notion is a powerful tool for determining complex local structures in
a variety of real and random networks modeled as (directed) hypergraphs. Furthermore, it
can nicely detect hyperloop structures; hyperloops are fundamental in some real networks
such as chemical reactions as catalysts in such reactions are faithfully modeled as vertices
of directed hyperloops. We see that the distribution of our curvature notion in real networks deviates
from random models.
|
22 |
Exact Lagrangian cobordism and pseudo-isotopySuárez López, Lara Simone 09 1900 (has links)
Dans cette thèse, on étudie les propriétés des sous-variétés lagrangiennes dans une variété symplectique en utilisant la relation de cobordisme lagrangien. Plus précisément, on s'intéresse à déterminer les conditions pour lesquelles les cobordismes lagrangiens élémentaires sont en fait triviaux.
En utilisant des techniques de l'homologie de Floer et le théorème du s-cobordisme on démontre que, sous certaines hypothèses topologiques, un cobordisme lagrangien exact est une pseudo-isotopie lagrangienne. Ce resultat est une forme faible d'une conjecture due à Biran et Cornea qui stipule qu'un cobordisme lagrangien exact est hamiltonien isotope à une suspension lagrangianenne. / In this thesis we study the properties of Lagrangian submanifolds of a symplectic manifold by using the relation of Lagrangian cobordism. More precisely, we are interested in determining when an elementary Lagrangian cobordism is trivial.
Using techniques coming from Floer homology and the s-cobordism theorem, we show that under some topological assumptions, an exact Lagrangian cobordism is a Lagrangian pseudo-isotopy. This is a weaker version of a conjecture proposed by Biran and Cornea, which states that any exact Lagrangian cobordism is Hamiltonian isotopic to a Lagrangian suspension.
|
23 |
Rabinowitz-Floer homology on Brieskorn manifoldsFauck, Alexander 19 May 2016 (has links)
In dieser Dissertation werden Kontaktstrukturen auf beliebigen differenzierbaren Mannigfaltigkeiten ungerader Dimension untersucht. Dies geschiet vermöge der Rabinowitz-Floer-Homologie (RFH), welche 2009 von Cieliebak und Frauenfelder eingeführt wurde. Ein großer Teil der Arbeit widmet sich den technischen Problemen bei der Definition von RFH. Insbesondere wird die Transversalität für die benötigten Modulräume gezeigt. In einem weiteren Abschnitt wird bewiesen, dass RFH im wesentlichen invariant unter subkrittischer Henkelanklebung ist. Schließlich enthält die Arbeit die Berechnung von RFH für einige Brieskorn-Mannigfaltigkeiten. Die dabei gewonnenen Resultate werden dazu verwendet zu zeigen, dass es auf jeder Mannigfaltigkeit, welche füllbare Kontaktstukturen zulässt, entweder unendlich viele verschiedene füllbare Kontaktstrukturen gibt, oder eine Kontaktstruktur mit unendlich vielen verschiedenen Füllungen oder das für alle füllbaren Kontaktstrukturen die RFH von unendlicher Dimension ist für alle Grade. / This thesis considers fillable contact structures on odd-dimensional manifolds. For that purpose, Rabinowitz-Floer homology (RFH) is used which was introduced by Cieliebak and Frauenfelder in 2009. A major part of the thesis is devoted to technical problems in the definition of RFH. In particular, it is shown that the moduli spaces involved are cut out transversally. Moreover, it is proved that RFH is essentially invariant under subcritical handle attachment. Finally, RFH is calculated for some Brieskorn manifolds. The obtained results are then used to show for every manifold, which supports fillable contact structures, that there exist either infinitely many different fillable contact structures, or one contact structure with infinitely many different fillings or for every fillable contact structure holds that RFH is infinite dimensional in every degree.
|
24 |
Lefschetz fibrations = Fibrações de Lefschetz / Fibrações de LefschetzCallander, Brian, 1986- 23 August 2018 (has links)
Orientador: Elizabeth Terezinha Gasparim / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T08:45:07Z (GMT). No. of bitstreams: 1
Callander_Brian_M.pdf: 1926930 bytes, checksum: 341dd0f9759ced382e138cd14fc4ae2c (MD5)
Previous issue date: 2013 / Resumo: O propósito desta tese é estudar fibrações de Lefschetz simpléticas, nas quais os ciclos evanescentes são subvariedades Lagrangianas das fibras. Para a descrição da teoria de interseção dos ciclos evanescentes utilizamos cohomologia de Floer Lagrangiana, cujo conceito revemos nesta tese. Apresentamos três exemplos principais e de caráteres distintos: (1) twists de Dehn generalizados, (2) o "espelho" da reta projetiva, e (3) uma fibração numa órbita adjunta de sl(3,C). O terceiro destes exemplos é original e utiliza um teorema recente de Gasparim- Grama-San Martin / Abstract: The objective of this thesis is to study symplectic Lefschetz fibrations, in which the vanishing cycles are Lagrangian submanifolds of the fibres. In order to describe the intersection theory of vanishing cycles we use Lagrangian intersection Floer cohomology, which we review. We present three main examples of distinct characters: (1) generalized Dehn twists, (2) the "mirror" of the projective line, and (3) a fibration on an adjoint orbit of sl(3,C). The third of these examples is original and uses a recent theorem of Gasparim- Grama-San Martin / Mestrado / Matematica / Mestre em Matemática
|
25 |
Growth rate of Legendrian contact homology and dynamics of Reeb flowsRibeiro De Resende Alv. Marcelo 05 December 2014 (has links)
L'objectif de cette thèse est d'investiguer la relation entre l'homologie de contact Legendrienne d'une variété de contact de dimension 3, et l'entropie topologique des flots de Reeb associés à cette variété de contact. Une variété de contact est une variété differentielle M de dimension impaire munie d'un champ d'hyperplan Y maximalement non-intégrable. Les champs de Reeb sont une classe speciale de champs de vecteurs sur M qui sont définis en utilisant la structure de contact; ils préservent la structure de contact et ils préservent aussi une forme de volume sur M.<p><p>L'entropie topologique h est un nombre non-négatif qu'on associe à un système dynamique et qui mesure la complexité de ce système. Si un système dynamique est d'entropie topologique positive, on dit que ce système est chaotique.<p><p>Comme les champs de Reeb sont construits en utilisant la structure de contact Y, il est naturel d'attendre que la topologie de (M,Y) influence la dynamique des champs de Reeb auxquels elle est associée. En particulier, il est naturel de se demander s'il existe des variétés de contact dont tous les champs de Reeb associés ont une entropie topologique positive. Si une varieté de contact a cette propriété, on dira qu'elle est d'entropie positive. <p><p>Macarini et Schlenk ont été les premiers à étudier cette question. Ils ont montré qu'il existe un grand ensemble de variétés différentielles Q, telles que le fibré unitaire T_1 Q muni de sa structure de contact canonique Y_{can} est d'entropie topologique positive. Plus précisement, ils ont utilisé l'homologie de Floer Lagrangienne, qui est un invariant symplectique, pour montrer que si Q est rationnellement hyperbolique alors (T_1 Q,Y_{can}) est d'entropie positive. <p><p>Pour étudier l'entropie topologique dans le cas où M n'est pas un fibré unitaire on substitue à l'homologie de Floer Lagrangienne un invariant plus naturel des variétés de contact: l'homologie de contact Legendrienne à bandes. On demontre dans cette thèse que l'homologie de contact Legendrienne à bandes est bien adaptée pour étudier l'entropie topologique. Plus précisement, on montre que quand l'homologie de contact Legendrienne à bandes est bien définie pour un champ de Reeb associé à (M,Y) et sa croissance est exponentielle, alors (M,Y) est d'entropie positive. <p><p>On utilise ce résultat pour trouver des nouveaux exemples de variétés de contact de dimension 3 qui sont d'entropie positive. On montre même qu'il y a des variétés de dimension 3 qui possèdent une infinité de structures de contact différentes qui sont toutes d'entropie positive. Ces résultats et bien d'autres nous permettent de conjecturer que la ``plupart' des variétés de contact de dimension 3 sont d'entropie positive. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
26 |
The Weinstein conjecture with multiplicities on spherizations / Conjecture de Weinstein avec multiplicités pour les spherisations.Heistercamp, Muriel 02 September 2011 (has links)
Soit M une variété lisse fermée et considérons sont fibré cotangent T*M muni de la structure symplectique usuelle induite par la forme de Liouville. Une hypersurface S de T*M$ est dite étoilée fibre par fibre si pour tout point q de M, l'intersection Sq de S avec la fibre au dessus de q est le bord d'un domaine étoilé par rapport à l'origine 0q de la fibre T*qM. Un flot est naturellement associé à S, il s'agit de l'unique flot généré par le champ de Reeb le long de S, le flot de Reeb. <p><p>L'existence d'une orbite orbite fermée du flot de Reeb sur S fut annoncée par Weinstein dans sa conjecture en 1978. Indépendamment, Weinstein et Rabinowitz ont montré l'existence d'une orbite fermée sur les hypersurfaces de type étoilées dans l'espace réel de dimension 2n. Sous les hypothèses précédentes, l'existence d'une orbite fermée fut démontrée par Hofer et Viterbo. Dans le cas particulier du flot géodésique, l'existence de plusieurs orbites fermées fut notamment étudiée par Gromov, Paternain et Paternain-Petean. Dans cette thèse, ces résultats sont généralisés. <p><p>Les résultats principaux de cette thèse montrent que la structure topologique de la variété M implique, pour toute hypersurface étoilée fibre par fibre, l'existence de beaucoup d'orbites fermées du flot de Reeb. Plus précisément, une borne inférieure de la croissance du nombre d'orbites fermées du flot de Reeb en fonction de leur période est mise en évidence. /<p><p>Let M be a smooth closed manifold and denote by T*M the cotangent bundle over M endowed with its usual symplectic structure induced by the Liouville form. A hypersurface S of T*M is said to be fiberwise starshaped if for each point q in M the intersection Sq of S with the fiber at q bounds a domain starshaped with respect to the origin 0q in T*qM. There is a flow naturally associated to S, generated by the unique Reeb vector field R along S ,the Reeb flow. <p><p>The existence of one closed orbit was conjectured by Weinstein in 1978 in a more general setting. Independently, Weinstein and Rabinowitz established the existence of a closed orbit on star-like hypersurfaces in the 2n-dimensional real space. In our setting the Weinstein conjecture without the assumption was proved in 1988 by Hofer and Viterbo. The existence of many closed orbits has already been well studied in the special case of the geodesic flow, for example by Gromov, Paternain and Paternain-Petean. In this thesis we will generalize their results.<p><p>The main result of this thesis is to prove that the topological structure of $M$ forces, for all fiberwise starshaped hypersurfaces S, the existence of many closed orbits of the Reeb flow on S. More precisely, we shall give a lower bound of the growth rate of the number of closed Reeb-orbits in terms of their periods. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
27 |
Quantum structures of some non-monotone Lagrangian submanifolds / Structures quantiques de certaines sous-variétés lagrangiennes non monotonesNgo, Fabien 03 September 2010 (has links)
In this thesis we present a slight generalisation of the Pearl complex or relative quantum homology to some non monotone Lagrangian submanifolds. First we develop the theory for the so called almost monotone Lagrangian submanifolds, We apply it to uniruling problems as well as estimates for the relative Gromov width. In the second part we develop the theory for toric fiber in toric Fano manifolds, recovering previous computaional results of Floer homology . / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
28 |
Homologie symplectique Tⁿ-équivariante pour les variétés toriques hamiltoniennes / Tⁿ-equivariant symplectic homology for toric hamiltonian manifoldsMennesson, Pierre 22 October 2018 (has links)
Cette thèse établit l'existence d'une variante de l'homologie de Floer de type Morse-Bott. Étant donnés une variété torique (W²ⁿ, ω, µ) et un hamiltonien H : W × S ¹ → ℝ invariant par l’action du tore de dimension n Tⁿ, , les orbites de H sont stables par l’action torique. Cette dernière admettant des points fixes dans W, elle n’est pas libre, pareillement pour celle induit sur les lacets de W et il est, a priori, impossible de construire une théorie de Morse-Bott équivariante au niveau de C∞(S¹, W)/Tⁿ. Nous remédions à ce problème en adoptant la construction de Borel : nous choisissons un espace E contractile muni d’une action libre du tore regardons l’homologie de Morse-Bott en dimension infinie de l’espace (C∞(S¹, W) × E)/Tⁿ où Tⁿ agit cette fois de manière diagonale sur le produit.L’homologie obtenue est un invariant pour les variétés symplectiques toriques et nous le calculons dans le cas d’une variété fermée. / This thesis establishes the existence of a version of Floer homology in a Morse-Bottcontext. Given a toric manifold (Wⁿ, ω, µ) and a hamiltonian H : W × S¹ → ℝ invariant bythe action of the torus Tⁿ, the periodical orbits of H are stable by the toric action.The latter admits fix points in W and hence it not free, neither one induced on the spaceof the loops of W and it is, a priori, impossible to establish a equivariant infinite-dimensionalMorse-Bott theory on C∞(S¹, W)/Tⁿ. We deal with this problem using Borel’s construction : we choose a space contractible E witha free action from the torus and look at the infinite-dimensional Morse-Bott homology of thespace (C∞(S¹, W) × E)/Tⁿ where Tⁿ act in a diagonal way on the product.We obtain an invariant for symplectic toric manifold and computes it for a closed manifold.
|
29 |
The Leray-Serre spectral sequence in Morse homology on Hilbert manifolds and in Floer homology on cotangent bundlesSchneider, Matti 30 January 2013 (has links)
The Leray-Serre spectral sequence is a fundamental tool for studying singular homology of a fibration E->B with typical fiber F. It expresses H (E) in terms of H (B) and H (F). One of the classic examples of a fibration is given by the free loop space fibration, where the typical fiber is given by the based loop space .
The first part of this thesis constructs the Leray-Serre spectral sequence in Morse homology on Hilbert manifolds under certain natural conditions, valid for instance for the free loop space fibration if the base is a closed manifold. We extend the approach of Hutchings which is restricted to closed manifolds. The spectral sequence might provide answers to questions involving closed geodesics, in particular to spectral invariants for the geodesic energy functional. Furthermore we discuss another example, the free loop space of a compact G-principal bundle, where G is a connected compact Lie group. Here we encounter an additional difficulty, namely the base manifold of the fiber bundle is infinite-dimensional. Furthermore, as H ( P) = HF (T P) and H ( Q) =HF (T Q), where HF denotes Floer homology for periodic orbits, the spectral sequence for P -> Q might provide a stepping stone towards a similar spectral sequence defined in purely Floer-theoretic terms, possibly even for more general symplectic quotients.
Hutchings’ approach to the Leray-Serre spectral sequence in Morse homology couples a fiberwise negative gradient flow with a lifted negative gradient flow on the base. We study the Morse homology of a vector field that is not of gradient type. The central issue in the Hilbert manifold setting to be resolved is compactness of the involved moduli spaces. We overcome this difficulty by utilizing the special structure of the vector field. Compactness up to breaking of the corresponding moduli spaces is proved with the help of Gronwall-type estimates. Furthermore we point out and close gaps in the standard literature, see Section 1.4 for an overview.
In the second part of this thesis we introduce a Lagrangian Floer homology on cotangent bundles with varying Lagrangian boundary condition. The corresponding complex allows us to obtain the Leray-Serre spectral sequence in Floer homology on the cotangent bundle of a closed manifold Q for Hamiltonians quadratic in the fiber directions. This corresponds to the free loop space fibration of a closed manifold of the first part. We expect applications to spectral invariants for the Hamiltonian action functional.
The main idea is to study pairs of Morse trajectories on Q and Floer strips on T Q which are non-trivially coupled by moving Lagrangian boundary conditions. Again, compactness of the moduli spaces involved forms the central issue. A modification of the compactness proof of Abbondandolo-Schwarz along the lines of the Morse theory argument from the first part of the thesis can be utilized.
|
30 |
Abelianization and Floer homology of Lagrangians in clean intersectionSchmäschke, Felix 10 April 2017 (has links) (PDF)
This thesis is split up into two parts each revolving around Floer
homology and quantum cohomology of closed monotone symplectic
manifolds. In the first part we consider symplectic manifolds obtained
by symplectic reduction. Our main result is that a quantum version of
an abelianization formula of Martin holds, which relates
the quantum cohomologies of symplectic quotients by a group and by its
maximal torus. Also we show a quantum version of the Leray-Hirsch
theorem for Floer homology of Lagrangian intersections in the
quotient.
The second part is devoted to Floer homology of a pair of monotone
Lagrangian submanifolds in clean intersection. Under these assumptions
the symplectic action functional is degenerated. Nevertheless
Frauenfelder defines a version of Floer
homology, which is in a certain sense an infinite dimensional analogon
of Morse-Bott homology. Via natural filtrations on the chain level we
were able to define two spectral sequences which serve as a tool to
compute Floer homology. We show how these are used to obtain new
intersection results for simply connected Lagrangians in the product
of two complex projective spaces.
The link between both parts is that in the background the same
technical methods are applied; namely the theory of holomorphic strips
with boundary on Lagrangians in clean intersection. Since all our
constructions rely heavily on these methods we also give a detailed
account of this theory although in principle many results are not new
or require only straight forward generalizations.
|
Page generated in 0.0698 seconds