• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 31
  • 6
  • 5
  • Tagged with
  • 82
  • 82
  • 47
  • 30
  • 30
  • 24
  • 23
  • 19
  • 17
  • 14
  • 13
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Les principes d'action de l'urbanisme, Le projet Élyssar face aux quartiers irréguliers de Beyrouth

Clerc, Valérie 22 December 2002 (has links) (PDF)
À partir de l'analyse d'Élyssar, grand projet d'aménagement urbain de la reconstruction de Beyrouth, ce travail met en évidence des principes d'action de l'urbanisme lorsque ses acteurs politiques et techniques conçoivent de régulariser des quartiers irréguliers. Au Liban, ceux-ci sont surtout situés en banlieue sud de la capitale où défauts d'urbanisme et conflits de légitimité ont formé les conditions de leur développement. Établis dans une négociation politique entre le Premier ministre Hariri et les partis chiites Amal et Hezbollah, les choix du projet, compromis comme évidences, ressortissent à la fois au jeu stratégique des acteurs et à leurs représentations de la ville et de ses enjeux. Trois registres de raisonnement ont été identifiés, reliés à plusieurs systèmes de valeurs, mobilisés par les acteurs indépendamment de leur catégorie. Ils permettent de montrer l'articulation des représentations et des jugements dans les choix du projet et les conditions de leur mise en oeuvre.
72

Stratégies optimistes en apprentissage par renforcement

Filippi, Sarah 24 November 2010 (has links) (PDF)
Cette thèse traite de méthodes « model-based » pour résoudre des problèmes d'apprentissage par renforcement. On considère un agent confronté à une suite de décisions et un environnement dont l'état varie selon les décisions prises par l'agent. Ce dernier reçoit tout au long de l'interaction des récompenses qui dépendent à la fois de l'action prise et de l'état de l'environnement. L'agent ne connaît pas le modèle d'interaction et a pour but de maximiser la somme des récompenses reçues à long terme. Nous considérons différents modèles d'interactions : les processus de décisions markoviens, les processus de décisions markoviens partiellement observés et les modèles de bandits. Pour ces différents modèles, nous proposons des algorithmes qui consistent à construire à chaque instant un ensemble de modèles permettant d'expliquer au mieux l'interaction entre l'agent et l'environnement. Les méthodes dites « model-based » que nous élaborons se veulent performantes tant en pratique que d'un point de vue théorique. La performance théorique des algorithmes est calculée en terme de regret qui mesure la différence entre la somme des récompenses reçues par un agent qui connaîtrait à l'avance le modèle d'interaction et celle des récompenses cumulées par l'algorithme. En particulier, ces algorithmes garantissent un bon équilibre entre l'acquisition de nouvelles connaissances sur la réaction de l'environnement (exploration) et le choix d'actions qui semblent mener à de fortes récompenses (exploitation). Nous proposons deux types de méthodes différentes pour contrôler ce compromis entre exploration et exploitation. Le premier algorithme proposé dans cette thèse consiste à suivre successivement une stratégie d'exploration, durant laquelle le modèle d'interaction est estimé, puis une stratégie d'exploitation. La durée de la phase d'exploration est contrôlée de manière adaptative ce qui permet d'obtenir un regret logarithmique dans un processus de décision markovien paramétrique même si l'état de l'environnement n'est que partiellement observé. Ce type de modèle est motivé par une application d'intérêt en radio cognitive qu'est l'accès opportuniste à un réseau de communication par un utilisateur secondaire. Les deux autres algorithmes proposés suivent des stratégies optimistes : l'agent choisit les actions optimales pour le meilleur des modèles possibles parmi l'ensemble des modèles vraisemblables. Nous construisons et analysons un tel algorithme pour un modèle de bandit paramétrique dans un cas de modèles linéaires généralisés permettant ainsi de considérer des applications telles que la gestion de publicité sur internet. Nous proposons également d'utiliser la divergence de Kullback-Leibler pour la construction de l'ensemble des modèles vraisemblables dans des algorithmes optimistes pour des processus de décision markoviens à espaces d'états et d'actions finis. L'utilisation de cette métrique améliore significativement le comportement de des algorithmes optimistes en pratique. De plus, une analyse du regret de chacun des algorithmes permet de garantir des performances théoriques similaires aux meilleurs algorithmes de l'état de l'art.
73

Um mecanismo construtivista para aprendizagem de antecipações em agentes artificiais situados / Un mecanisme constructiviste d'apprentissage automatique d'anticipations pour des agents artificiels situes / A constructivist anticipatory learning mechanism for situated artificial agents

Perotto, Filipo Studzinski January 2010 (has links)
Cette recherche se caractérise, premièrement, par une discussion théorique sur le concept d'agent autonome, basée sur des éléments issus des paradigmes de l'Intelligence Artificielle Située et de l'Intelligence Artificielle Affective. Ensuite, cette thèse présente le problème de l'apprentissage de modèles du monde, en passant en revue la littérature concernant les travaux qui s'y rapportent. À partir de ces discussions, l'architecture CAES et le mécanisme CALM sont présentés. CAES (Coupled Agent-Environment System) constitue une architecture pour décrire des systèmes basés sur la dichotomie agent-environnement. Il définit l'agent et l'environnement comme deux systèmes partiellement ouverts, en couplage dynamique. L'agent, à son tour, est composé de deux sous-systèmes, l'esprit et le corps, suivant les principes de la situativité et de la motivation intrinsèque. CALM (Constructivist Anticipatory Learning Mechanism) est un mécanisme d'apprentissage fondé sur l'approche constructiviste de l'Intelligence Artificielle. Il permet à un agent situé de construire un modèle du monde dans des environnements partiellement observables et partiellement déterministes, sous la forme d'un processus de décision markovien partiellement observable et factorisé (FPOMDP). Le modèle du monde construit est ensuite utilisé pour que l'agent puisse définir une politique d'action visant à améliorer sa propre performance. / Esta pesquisa caracteriza-se, primeiramente, pela condução de uma discussão teórica sobre o conceito de agente autônomo, baseada em elementos provenientes dos paradigmas da Inteligência Artificial Situada e da Inteligência Artificial Afetiva. A seguir, a tese apresenta o problema da aprendizagem de modelos de mundo, fazendo uma revisão bibliográfica a respeito de trabalhos relacionados. A partir dessas discussões, a arquitetura CAES e o mecanismo CALM são apresentados. O CAES (Coupled Agent-Environment System) é uma arquitetura para a descrição de sistemas baseados na dicotomia agente-ambiente. Ele define agente e ambiente como dois sistemas parcialmente abertos, em acoplamento dinâmico. O agente, por sua vez, é composto por dois subsistemas, mente e corpo, seguindo os princípios de situatividade e motivação intrínseca. O CALM (Constructivist Anticipatory Learning Mechanism) é um mecanismo de aprendizagem fundamentado na abordagem construtivista da Inteligência Artificial. Ele permite que um agente situado possa construir um modelo de mundo em ambientes parcialmente observáveis e parcialmente determinísticos, na forma de um Processo de Decisão de Markov Parcialmente Observável e Fatorado (FPOMDP). O modelo de mundo construído é então utilizado para que o agente defina uma política de ações a fim de melhorar seu próprio desempenho. / This research is characterized, first, by a theoretical discussion on the concept of autonomous agent, based on elements taken from the Situated AI and the Affective AI paradigms. Secondly, this thesis presents the problem of learning world models, providing a bibliographic review regarding some related works. From these discussions, the CAES architecture and the CALM mechanism are presented. The CAES (Coupled Agent-Environment System) is an architecture for describing systems based on the agent-environment dichotomy. It defines the agent and the environment as two partially open systems, in dynamic coupling. The agent is composed of two sub-systems, mind and body, following the principles of situativity and intrinsic motivation. CALM (Constructivist Learning Anticipatory Mechanism) is based on the constructivist approach to Artificial Intelligence. It allows a situated agent to build a model of the world in environments partially deterministic and partially observable in the form of Partially Observable and Factored Markov Decision Process (FPOMDP). The model of the world is constructed and used for the agent to define a policy for action in order to improve its own performance.
74

L’analyse du risque politique dans les décisions stratégiques : le cas des réformes publiques en France. / Analyzing political risk in strategic decisions : the case of public policy reforms in France.

Walbaum, Boris 11 March 2014 (has links)
La conduite de réformes présente un risque élevé pour les décideurs publics : les échecs sont lourds de conséquences pour les politiques publiques visées comme pour les responsables politiques qui les portent. Si le risque politique des réformes est reconnu comme un élément clé dans la prise de décision, sa définition reste floue pour les praticiens. Une revue de littérature en sciences de la décision, science politique et économie politique montre que ce concept est également dans un angle mort théorique. Sur le terrain des réformes, cette recherche vise à définir le risque politique comme la combinaison de facteurs de risque déclenchant des événements perturbateurs conduisant à un degré d'adoption plus ou moins élevé de la réforme projetée. Plus de quarante études de cas ont permis de dégager six facteurs de risque : les caractéristiques intrinsèques de la réforme, l’opinion publique, les parties prenantes, l’environnement politique, le processus de décision et le contexte socio-économique. Le concept de risque politique est ensuite opérationnalisé et testé grâce à des grilles de scores. Il en ressort qu'il existe des relations robustes entre les scores atteints sur les facteurs de risque, les événements perturbateurs et le degré d'adoption des réformes. Cette recherche est une contribution à une meilleure compréhension des interactions entre stratégie et politique dans la prise de décision, améliore la compréhension des ressorts de la prise de décision stratégique dans le secteur public et ouvre la voie à une approche de la conduite des réformes par la gestion des risques. / Carrying out reforms entails a high level of risk for policy makers: reform failure can have far-reaching consequences on both the public policy concerned and the reputation of the political leaders who are pushing for the reform. Policy makers widely acknowledge the role of “political risk” in public decision making. However, its definition remains vague. A literature review in decision sciences, political science and political economy shows that the concept of political risk is a blind spot in academic theory. This research project aims to develop a better understanding of the reasons why some reform initiatives fail while others succeed. It defines political risk as a combination of risk factors which contribute to trigger disruptive events and, in turn, influence the enactment of reforms. Six risk factors are identified on the basis of more than forty reform case studies: intrinsic characteristics of the reform, public opinion, stakeholders, political context and socio-economic context. The concept of political risk is then operationalized and tested using a scorecard approach. The tests show a consistent relation between risk factors, disruptive events and reform enactment. This project contributes to a better understanding of the link between strategy and politics in decision making and the dynamics of strategic decision making in the public sector. It paves the way for a risk based approach to steering public policy reforms.
75

Um mecanismo construtivista para aprendizagem de antecipações em agentes artificiais situados / Un mecanisme constructiviste d'apprentissage automatique d'anticipations pour des agents artificiels situes / A constructivist anticipatory learning mechanism for situated artificial agents

Perotto, Filipo Studzinski January 2010 (has links)
Cette recherche se caractérise, premièrement, par une discussion théorique sur le concept d'agent autonome, basée sur des éléments issus des paradigmes de l'Intelligence Artificielle Située et de l'Intelligence Artificielle Affective. Ensuite, cette thèse présente le problème de l'apprentissage de modèles du monde, en passant en revue la littérature concernant les travaux qui s'y rapportent. À partir de ces discussions, l'architecture CAES et le mécanisme CALM sont présentés. CAES (Coupled Agent-Environment System) constitue une architecture pour décrire des systèmes basés sur la dichotomie agent-environnement. Il définit l'agent et l'environnement comme deux systèmes partiellement ouverts, en couplage dynamique. L'agent, à son tour, est composé de deux sous-systèmes, l'esprit et le corps, suivant les principes de la situativité et de la motivation intrinsèque. CALM (Constructivist Anticipatory Learning Mechanism) est un mécanisme d'apprentissage fondé sur l'approche constructiviste de l'Intelligence Artificielle. Il permet à un agent situé de construire un modèle du monde dans des environnements partiellement observables et partiellement déterministes, sous la forme d'un processus de décision markovien partiellement observable et factorisé (FPOMDP). Le modèle du monde construit est ensuite utilisé pour que l'agent puisse définir une politique d'action visant à améliorer sa propre performance. / Esta pesquisa caracteriza-se, primeiramente, pela condução de uma discussão teórica sobre o conceito de agente autônomo, baseada em elementos provenientes dos paradigmas da Inteligência Artificial Situada e da Inteligência Artificial Afetiva. A seguir, a tese apresenta o problema da aprendizagem de modelos de mundo, fazendo uma revisão bibliográfica a respeito de trabalhos relacionados. A partir dessas discussões, a arquitetura CAES e o mecanismo CALM são apresentados. O CAES (Coupled Agent-Environment System) é uma arquitetura para a descrição de sistemas baseados na dicotomia agente-ambiente. Ele define agente e ambiente como dois sistemas parcialmente abertos, em acoplamento dinâmico. O agente, por sua vez, é composto por dois subsistemas, mente e corpo, seguindo os princípios de situatividade e motivação intrínseca. O CALM (Constructivist Anticipatory Learning Mechanism) é um mecanismo de aprendizagem fundamentado na abordagem construtivista da Inteligência Artificial. Ele permite que um agente situado possa construir um modelo de mundo em ambientes parcialmente observáveis e parcialmente determinísticos, na forma de um Processo de Decisão de Markov Parcialmente Observável e Fatorado (FPOMDP). O modelo de mundo construído é então utilizado para que o agente defina uma política de ações a fim de melhorar seu próprio desempenho. / This research is characterized, first, by a theoretical discussion on the concept of autonomous agent, based on elements taken from the Situated AI and the Affective AI paradigms. Secondly, this thesis presents the problem of learning world models, providing a bibliographic review regarding some related works. From these discussions, the CAES architecture and the CALM mechanism are presented. The CAES (Coupled Agent-Environment System) is an architecture for describing systems based on the agent-environment dichotomy. It defines the agent and the environment as two partially open systems, in dynamic coupling. The agent is composed of two sub-systems, mind and body, following the principles of situativity and intrinsic motivation. CALM (Constructivist Learning Anticipatory Mechanism) is based on the constructivist approach to Artificial Intelligence. It allows a situated agent to build a model of the world in environments partially deterministic and partially observable in the form of Partially Observable and Factored Markov Decision Process (FPOMDP). The model of the world is constructed and used for the agent to define a policy for action in order to improve its own performance.
76

Um mecanismo construtivista para aprendizagem de antecipações em agentes artificiais situados / Un mecanisme constructiviste d'apprentissage automatique d'anticipations pour des agents artificiels situes / A constructivist anticipatory learning mechanism for situated artificial agents

Perotto, Filipo Studzinski January 2010 (has links)
Cette recherche se caractérise, premièrement, par une discussion théorique sur le concept d'agent autonome, basée sur des éléments issus des paradigmes de l'Intelligence Artificielle Située et de l'Intelligence Artificielle Affective. Ensuite, cette thèse présente le problème de l'apprentissage de modèles du monde, en passant en revue la littérature concernant les travaux qui s'y rapportent. À partir de ces discussions, l'architecture CAES et le mécanisme CALM sont présentés. CAES (Coupled Agent-Environment System) constitue une architecture pour décrire des systèmes basés sur la dichotomie agent-environnement. Il définit l'agent et l'environnement comme deux systèmes partiellement ouverts, en couplage dynamique. L'agent, à son tour, est composé de deux sous-systèmes, l'esprit et le corps, suivant les principes de la situativité et de la motivation intrinsèque. CALM (Constructivist Anticipatory Learning Mechanism) est un mécanisme d'apprentissage fondé sur l'approche constructiviste de l'Intelligence Artificielle. Il permet à un agent situé de construire un modèle du monde dans des environnements partiellement observables et partiellement déterministes, sous la forme d'un processus de décision markovien partiellement observable et factorisé (FPOMDP). Le modèle du monde construit est ensuite utilisé pour que l'agent puisse définir une politique d'action visant à améliorer sa propre performance. / Esta pesquisa caracteriza-se, primeiramente, pela condução de uma discussão teórica sobre o conceito de agente autônomo, baseada em elementos provenientes dos paradigmas da Inteligência Artificial Situada e da Inteligência Artificial Afetiva. A seguir, a tese apresenta o problema da aprendizagem de modelos de mundo, fazendo uma revisão bibliográfica a respeito de trabalhos relacionados. A partir dessas discussões, a arquitetura CAES e o mecanismo CALM são apresentados. O CAES (Coupled Agent-Environment System) é uma arquitetura para a descrição de sistemas baseados na dicotomia agente-ambiente. Ele define agente e ambiente como dois sistemas parcialmente abertos, em acoplamento dinâmico. O agente, por sua vez, é composto por dois subsistemas, mente e corpo, seguindo os princípios de situatividade e motivação intrínseca. O CALM (Constructivist Anticipatory Learning Mechanism) é um mecanismo de aprendizagem fundamentado na abordagem construtivista da Inteligência Artificial. Ele permite que um agente situado possa construir um modelo de mundo em ambientes parcialmente observáveis e parcialmente determinísticos, na forma de um Processo de Decisão de Markov Parcialmente Observável e Fatorado (FPOMDP). O modelo de mundo construído é então utilizado para que o agente defina uma política de ações a fim de melhorar seu próprio desempenho. / This research is characterized, first, by a theoretical discussion on the concept of autonomous agent, based on elements taken from the Situated AI and the Affective AI paradigms. Secondly, this thesis presents the problem of learning world models, providing a bibliographic review regarding some related works. From these discussions, the CAES architecture and the CALM mechanism are presented. The CAES (Coupled Agent-Environment System) is an architecture for describing systems based on the agent-environment dichotomy. It defines the agent and the environment as two partially open systems, in dynamic coupling. The agent is composed of two sub-systems, mind and body, following the principles of situativity and intrinsic motivation. CALM (Constructivist Learning Anticipatory Mechanism) is based on the constructivist approach to Artificial Intelligence. It allows a situated agent to build a model of the world in environments partially deterministic and partially observable in the form of Partially Observable and Factored Markov Decision Process (FPOMDP). The model of the world is constructed and used for the agent to define a policy for action in order to improve its own performance.
77

Quality of Service Aware Mechanisms for (Re)Configuring Data Stream Processing Applications on Highly Distributed Infrastructure / Mécanismes prenant en compte la qualité de service pour la (re)configuration d’applications de traitement de flux de données sur une infrastructure hautement distribuée

Da Silva Veith, Alexandre 23 September 2019 (has links)
Une grande partie de ces données volumineuses ont plus de valeur lorsqu'elles sont analysées rapidement, au fur et à mesure de leur génération. Dans plusieurs scénarios d'application émergents, tels que les villes intelligentes, la surveillance opérationnelle de grandes infrastructures et l'Internet des Objets (Internet of Things), des flux continus de données doivent être traités dans des délais très brefs. Dans plusieurs domaines, ce traitement est nécessaire pour détecter des modèles, identifier des défaillances et pour guider la prise de décision. Les données sont donc souvent rassemblées et analysées par des environnements logiciels conçus pour le traitement de flux continus de données. Ces environnements logiciels pour le traitement de flux de données déploient les applications sous-la forme d'un graphe orienté ou de dataflow. Un dataflow contient une ou plusieurs sources (i.e. capteurs, passerelles ou actionneurs); opérateurs qui effectuent des transformations sur les données (e.g., filtrage et agrégation); et des sinks (i.e., éviers qui consomment les requêtes ou stockent les données). Nous proposons dans cette thèse un ensemble de stratégies pour placer les opérateurs dans une infrastructure massivement distribuée cloud-edge en tenant compte des caractéristiques des ressources et des exigences des applications. En particulier, nous décomposons tout d'abord le graphe d'application en identifiant quelques comportements tels que des forks et des joints, puis nous le plaçons dynamiquement sur l'infrastructure. Des simulations et un prototype prenant en compte plusieurs paramètres d'application démontrent que notre approche peut réduire la latence de bout en bout de plus de 50% et aussi améliorer d'autres métriques de qualité de service. L'espace de recherche de solutions pour la reconfiguration des opérateurs peut être énorme en fonction du nombre d'opérateurs, de flux, de ressources et de liens réseau. De plus, il est important de minimiser le coût de la migration tout en améliorant la latence. Des travaux antérieurs, Reinforcement Learning (RL) et Monte-Carlo Tree Searh (MCTS) ont été utilisés pour résoudre les problèmes liés aux grands nombres d’actions et d’états de recherche. Nous modélisons le problème de reconfiguration d'applications sous la forme d'un processus de décision de Markov (MDP) et étudions l'utilisation des algorithmes RL et MCTS pour concevoir des plans de reconfiguration améliorant plusieurs métriques de qualité de service. / A large part of this big data is most valuable when analysed quickly, as it is generated. Under several emerging application scenarios, such as in smart cities, operational monitoring of large infrastructure, and Internet of Things (IoT), continuous data streams must be processed under very short delays. In multiple domains, there is a need for processing data streams to detect patterns, identify failures, and gain insights. Data is often gathered and analysed by Data Stream Processing Engines (DSPEs).A DSPE commonly structures an application as a directed graph or dataflow. A dataflow has one or multiple sources (i.e., gateways or actuators); operators that perform transformations on the data (e.g., filtering); and sinks (i.e., queries that consume or store the data). Most complex operator transformations store information about previously received data as new data is streamed in. Also, a dataflow has stateless operators that consider only the current data. Traditionally, Data Stream Processing (DSP) applications were conceived to run in clusters of homogeneous resources or on the cloud. In a cloud deployment, the whole application is placed on a single cloud provider to benefit from virtually unlimited resources. This approach allows for elastic DSP applications with the ability to allocate additional resources or release idle capacity on demand during runtime to match the application requirements.We introduce a set of strategies to place operators onto cloud and edge while considering characteristics of resources and meeting the requirements of applications. In particular, we first decompose the application graph by identifying behaviours such as forks and joins, and then dynamically split the dataflow graph across edge and cloud. Comprehensive simulations and a real testbed considering multiple application settings demonstrate that our approach can improve the end-to-end latency in over 50% and even other QoS metrics. The solution search space for operator reassignment can be enormous depending on the number of operators, streams, resources and network links. Moreover, it is important to minimise the cost of migration while improving latency. Reinforcement Learning (RL) and Monte-Carlo Tree Search (MCTS) have been used to tackle problems with large search spaces and states, performing at human-level or better in games such as Go. We model the application reconfiguration problem as a Markov Decision Process (MDP) and investigate the use of RL and MCTS algorithms to devise reconfiguring plans that improve QoS metrics.
78

Comprendre et prévenir l’erreur récurrente dans les processus de décision stratégique : l’apport de la Behavioral Strategy / Understanding and preventing recurring errors in strategic decision processes : a Behavioral Strategy approach

Sibony, Olivier 14 December 2017 (has links)
Les erreurs récurrentes et systématiques dans les processus de décision stratégique sont fréquentes ; et les théories actuelles des organisations sont insuffisantes pour les expliquer. La « Behavioral Strategy » suggère de lier ces erreurs à la psychologie des décideurs, et notamment à leurs biais cognitifs. Toutefois, cette vision suppose de connecter le niveau d’analyse de l’individu et celui de l’organisation. Nous proposons pour ce faire un niveau « méso », la routine de choix stratégique (RCS), où interagissent la psychologie des décideurs et les décisions stratégiques. Après avoir distingué trois types de RCS, nous formulons des hypothèses d’intervention sur celles-ci visant à prévenir les erreurs stratégiques. Nous illustrons ces hypothèses par six cas pratiques, en testons certaines par une étude quantitative, et analysons les préférences qui conduisent les dirigeants à les adopter ou non. Nous concluons en discutant les implications théoriques et pratiques de notre démarche. / Many types of strategic decisions result in recurring, systematic errors. Extant theories of organizations are insufficient to account for this phenomenon. Behavioral Strategy suggests that an explanation may be found in the psychology of decision makers, and particularly in their cognitive biases. This, however, calls for a link between individual-level cognition and affects, and organization-level choices. We propose “Strategic Choice Routines” as a middle level of analysis to bridge this gap, and identify three broad types of Strategic Choice Routines.This leads us to formulate hypotheses on how Strategic Choice Routines can be modified to minimize strategic errors. We illustrate these hypotheses through case studies; test some of them quantitatively; and analyze preferences that drive their adoption by executives. Finally, we discuss theoretical and managerial implications.
79

Large state spaces and self-supervision in reinforcement learning

Touati, Ahmed 08 1900 (has links)
L'apprentissage par renforcement (RL) est un paradigme d'apprentissage orienté agent qui s'intéresse à l'apprentissage en interagissant avec un environnement incertain. Combiné à des réseaux de neurones profonds comme approximateur de fonction, l'apprentissage par renforcement profond (Deep RL) nous a permis récemment de nous attaquer à des tâches très complexes et de permettre à des agents artificiels de maîtriser des jeux classiques comme le Go, de jouer à des jeux vidéo à partir de pixels et de résoudre des tâches de contrôle robotique. Toutefois, un examen plus approfondi de ces remarquables succès empiriques révèle certaines limites fondamentales. Tout d'abord, il a été difficile de combiner les caractéristiques souhaitables des algorithmes RL, telles que l'apprentissage hors politique et en plusieurs étapes, et l'approximation de fonctions, de manière à obtenir des algorithmes stables et efficaces dans de grands espaces d'états. De plus, les algorithmes RL profonds ont tendance à être très inefficaces en raison des stratégies d'exploration-exploitation rudimentaires que ces approches emploient. Enfin, ils nécessitent une énorme quantité de données supervisées et finissent par produire un agent étroit capable de résoudre uniquement la tâche sur laquelle il est entrainé. Dans cette thèse, nous proposons de nouvelles solutions aux problèmes de l'apprentissage hors politique et du dilemme exploration-exploitation dans les grands espaces d'états, ainsi que de l'auto-supervision dans la RL. En ce qui concerne l'apprentissage hors politique, nous apportons deux contributions. Tout d'abord, pour le problème de l'évaluation des politiques, nous montrons que la combinaison des méthodes populaires d'apprentissage hors politique et à plusieurs étapes avec une paramétrisation linéaire de la fonction de valeur pourrait conduire à une instabilité indésirable, et nous dérivons une variante de ces méthodes dont la convergence est prouvée. Deuxièmement, pour l'optimisation des politiques, nous proposons de stabiliser l'étape d'amélioration des politiques par une régularisation de divergence hors politique qui contraint les distributions stationnaires d'états induites par des politiques consécutives à être proches les unes des autres. Ensuite, nous étudions l'apprentissage en ligne dans de grands espaces d'états et nous nous concentrons sur deux hypothèses structurelles pour rendre le problème traitable : les environnements lisses et linéaires. Pour les environnements lisses, nous proposons un algorithme en ligne efficace qui apprend activement un partitionnement adaptatif de l'espace commun en zoomant sur les régions les plus prometteuses et fréquemment visitées. Pour les environnements linéaires, nous étudions un cadre plus réaliste, où l'environnement peut maintenant évoluer dynamiquement et même de façon antagoniste au fil du temps, mais le changement total est toujours limité. Pour traiter ce cadre, nous proposons un algorithme en ligne efficace basé sur l'itération de valeur des moindres carrés pondérés. Il utilise des poids exponentiels pour oublier doucement les données qui sont loin dans le passé, ce qui pousse l'agent à continuer à explorer pour découvrir les changements. Enfin, au-delà du cadre classique du RL, nous considérons un agent qui interagit avec son environnement sans signal de récompense. Nous proposons d'apprendre une paire de représentations qui mettent en correspondance les paires état-action avec un certain espace latent. Pendant la phase non supervisée, ces représentations sont entraînées en utilisant des interactions sans récompense pour encoder les relations à longue portée entre les états et les actions, via une carte d'occupation prédictive. Au moment du test, lorsqu'une fonction de récompense est révélée, nous montrons que la politique optimale pour cette récompense est directement obtenue à partir de ces représentations, sans aucune planification. Il s'agit d'une étape vers la construction d'agents entièrement contrôlables. Un thème commun de la thèse est la conception d'algorithmes RL prouvables et généralisables. Dans la première et la deuxième partie, nous traitons de la généralisation dans les grands espaces d'états, soit par approximation de fonctions linéaires, soit par agrégation d'états. Dans la dernière partie, nous nous concentrons sur la généralisation sur les fonctions de récompense et nous proposons un cadre d'apprentissage non-supervisé de représentation qui est capable d'optimiser toutes les fonctions de récompense. / Reinforcement Learning (RL) is an agent-oriented learning paradigm concerned with learning by interacting with an uncertain environment. Combined with deep neural networks as function approximators, deep reinforcement learning (Deep RL) allowed recently to tackle highly complex tasks and enable artificial agents to master classic games like Go, play video games from pixels, and solve robotic control tasks. However, a closer look at these remarkable empirical successes reveals some fundamental limitations. First, it has been challenging to combine desirable features of RL algorithms, such as off-policy and multi-step learning with function approximation in a way that leads to both stable and efficient algorithms in large state spaces. Moreover, Deep RL algorithms tend to be very sample inefficient due to the rudimentary exploration-exploitation strategies these approaches employ. Finally, they require an enormous amount of supervised data and end up producing a narrow agent able to solve only the task that it was trained on. In this thesis, we propose novel solutions to the problems of off-policy learning and exploration-exploitation dilemma in large state spaces, as well as self-supervision in RL. On the topic of off-policy learning, we provide two contributions. First, for the problem of policy evaluation, we show that combining popular off-policy and multi-step learning methods with linear value function parameterization could lead to undesirable instability, and we derive a provably convergent variant of these methods. Second, for policy optimization, we propose to stabilize the policy improvement step through an off-policy divergence regularization that constrains the discounted state-action visitation induced by consecutive policies to be close to one another. Next, we study online learning in large state spaces and we focus on two structural assumptions to make the problem tractable: smooth and linear environments. For smooth environments, we propose an efficient online algorithm that actively learns an adaptive partitioning of the joint space by zooming in on more promising and frequently visited regions. For linear environments, we study a more realistic setting, where the environment is now allowed to evolve dynamically and even adversarially over time, but the total change is still bounded. To address this setting, we propose an efficient online algorithm based on weighted least squares value iteration. It uses exponential weights to smoothly forget data that are far in the past, which drives the agent to keep exploring to discover changes. Finally, beyond the classical RL setting, we consider an agent interacting with its environments without a reward signal. We propose to learn a pair of representations that map state-action pairs to some latent space. During the unsupervised phase, these representations are trained using reward-free interactions to encode long-range relationships between states and actions, via a predictive occupancy map. At test time, once a reward function is revealed, we show that the optimal policy for that reward is directly obtained from these representations, with no planning. This is a step towards building fully controllable agents. A common theme in the thesis is the design of provable RL algorithms that generalize. In the first and the second part, we deal with generalization in large state spaces either by linear function approximation or state aggregation. In the last part, we focus on generalization over reward functions and we propose a task-agnostic representation learning framework that is provably able to solve all reward functions.
80

Utilisation des communications Device-to-Device pour améliorer l'efficacité des réseaux cellulaires / Use of Device-to-Device communications for efficient cellular networks

Ibrahim, Rita 04 February 2019 (has links)
Cette thèse étudie les communications directes entre les mobiles, appelées communications D2D, en tant que technique prometteuse pour améliorer les futurs réseaux cellulaires. Cette technologie permet une communication directe entre deux terminaux mobiles sans passer par la station de base. La modélisation, l'évaluation et l'optimisation des différents aspects des communications D2D constituent les objectifs fondamentaux de cette thèse et sont réalisés principalement à l'aide des outils mathématiques suivants: la théorie des files d'attente, l'optimisation de Lyapunov et les processus de décision markovien partiellement observable POMDP. Les résultats de cette étude sont présentés en trois parties. Dans la première partie, nous étudions un schéma de sélection entre mode cellulaire et mode D2D. Nous dérivons les régions de stabilité des scénarios suivants: réseaux cellulaires purs et réseaux cellulaires où les communications D2D sont activées. Une comparaison entre ces deux scénarios conduit à l'élaboration d'un algorithme de sélection entre le mode cellulaire et le mode D2D qui permet d'améliorer la capacité du réseau. Dans la deuxième partie, nous développons un algorithme d'allocation de ressources des communications D2D. Les utilisateurs D2D sont en mesure d'estimer leur propre qualité de canal, cependant la station de base a besoin de recevoir des messages de signalisation pour acquérir cette information. Sur la base de cette connaissance disponibles au niveau des utilisateurs D2D, une approche d'allocation des ressources est proposée afin d'améliorer l'efficacité énergétique des communications D2D. La version distribuée de cet algorithme s'avère plus performante que celle centralisée. Dans le schéma distribué des collisions peuvent se produire durant la transmission de l'état des canaux D2D ; ainsi un algorithme de réduction des collisions est élaboré. En outre, la mise en œuvre des algorithmes centralisé et distribué dans un réseau cellulaire, type LTE, est décrite en détails. Dans la troisième partie, nous étudions une politique de sélection des relais D2D mobiles. La mobilité des relais représente un des principaux défis que rencontre toute stratégie de sélection de relais. Le problème est modélisé par un processus contraint de décision markovien partiellement observable qui prend en compte le dynamisme des relais et vise à trouver la politique de sélection de relais qui optimise la performance du réseau cellulaire sous des contraintes de coût. / This thesis considers Device-to-Device (D2D) communications as a promising technique for enhancing future cellular networks. Modeling, evaluating and optimizing D2D features are the fundamental goals of this thesis and are mainly achieved using the following mathematical tools: queuing theory, Lyapunov optimization and Partially Observed Markov Decision Process (POMDP). The findings of this study are presented in three parts. In the first part, we investigate a D2D mode selection scheme. We derive the queuing stability regions of both scenarios: pure cellular networks and D2D-enabled cellular networks. Comparing both scenarios leads us to elaborate a D2D vs cellular mode selection design that improves the capacity of the network. In the second part, we develop a D2D resource allocation algorithm. We observe that D2D users are able to estimate their local Channel State Information (CSI), however the base station needs some signaling exchange to acquire this information. Based on the D2D users' knowledge of their local CSI, we provide an energy efficient resource allocation framework that shows how distributed scheduling outperforms centralized one. In the distributed approach, collisions may occur between the different CSI reporting; thus, we propose a collision reduction algorithm. Moreover, we give a detailed description on how both centralized and distributed algorithms can be implemented in practice. In the third part, we propose a mobile relay selection policy in a D2D relay-aided network. Relays' mobility appears as a crucial challenge for defining the strategy of selecting the optimal D2D relays. The problem is formulated as a constrained POMDP which captures the dynamism of the relays and aims to find the optimal relay selection policy that maximizes the performance of the network under cost constraints.

Page generated in 0.2548 seconds