21 |
The Quest for the Hydroponic Pepper : Applying Design Research Methodology to Develop Support Tools for Successfully Designing a Post-harvest System for a Plant FactoryAntser, Charlie, Lundvall, Kimmy January 2021 (has links)
The world is facing a food shortage as the world’s population increases and arable land decreases. Despite this, the food industry is wasteful, and 30% - 40% of all produced food is lost before reaching the end consumer. Emerging technologies aim to increase the amount of food that can be grown per m2 or allow the growing of food in climates or on lands previously impossible. Four main farming techniques utilising these emerging technologies are Controlled Environment Agriculture, Hydroponic Farming, Urban Farming and Vertical farming. When used together, these techniques form the basis for what can be called a Plant Factory. Despite the positive effects these technologies have on the production rate, few Plant Factories have managed to achieve profitability. By creating support for developing the post-harvesting system for a plant factory, this thesis aims to aid in the development of profitable plant factories. The thesis uses Design Research Methodology to achieve this aim in three parts. The first part identifies the underlying factors of the post-harvesting system affecting plant factory profitability. The second presents a set of support components that will aid the developers to improve key factors affecting profitability. The third part is a case study where the support components applicability at targeting the key factors are evaluated, and suggestions for further improvements and testing of the support is suggested. Further, using Design Research Methodology, the methods used to develop support in this thesis are presented to easily be replicated by other researchers to aid them in developing support for other industries and circumstances. The suitability of the developed support was tested using the principles of an initial DS-II. The developed support proved very useful for the investigated case, and with its conditions, the application evaluation was considered a partial success. Two key factors were successfully improved and indicated that the intended support is ready for a comprehensive DS-II. A third support component needs more work to provide the intended support fully. Therefore a second PS iteration is recommended before a comprehensive DS-II is done to increase its value.
|
22 |
A vertical greenhouse poweredby waste heat : Making use of industrial low temperature waste heat from the company Cytiva from an environmental aspectLundström, Johanna, Ezra, Johanna, Beck-Norén, Filippa, Heino, Emelie January 2022 (has links)
The industry sector accounts for a vast amount of the world’s total energy use, as much as 37% during 2018. Using energy in a sustainable way is necessary from both an environmental and an economical perspective, and it is therefore relevant to take measurements that result in a more efficient use of energy. One way for industries to become more energy efficient is to recover the waste heat, which is energy that otherwise would go to waste. This report aims to find a method to recover and reuse the low temperature waste heat available at the life science company Cytiva’s production site in Uppsala, Sweden. The proposed solution will be to use the waste heat for heating a vertical greenhouse. The study will examine whether this is feasible, and also how installing photovoltaics affects the energy use. Furthermore, the environmental impact of operating the greenhouse with waste heat is also investigated by calculating the CO2 equivalent. The low temperature waste heat that Cytiva provides relevant for this study is 6683 kW, which will be used to heat up the greenhouse. Simulations in the software IDA ICE will be used to construct and simulate a model of the vertical greenhouse. Results from the simulations show that the chosen size, 25 x 50 x 35.5 meters, gives a good approximation according to the wanted temperature range, 18.3-32.2°C. Furthermore, the results imply that the total energy use, 790 652 kWh, and average power, 90.26 kW is less than the available waste heat and there is a large amount that still is unused. The CO2 equivalent is calculated to be 29 317 kg. A sensitivity analysis is made to evaluate the window-to-wall ratio as well as the size of the entire greenhouse. It showed that both parameters are critical and makes a big difference in the simulations.
|
23 |
How Non-Financial Environmental And Social Factors Influence An Impact Investors Decision To InvestKjellberg, Annie, Linssen, Fleur January 2021 (has links)
With a growing risk of food insecurity in the face of extreme population growth, the world is in need of hands-on solutions that could combine a significant increase in food production while decreasing the effects of agriculture on the environment. Such a solution could be provided through cultivating staple crops in Indoor Vertical Farming facilities, however, due to its high expenses, these developments have stagnated, lacking financial support. As this financial support could be provided by Impact Investors, this thesis explores the relevance of non-financial factors and how they relate to the financial returns as well as how much it influences an Impact Investors decision to invest. The primary data was collected through a quantitative survey, including a fictional scenario based upon the cultivation of wheat in an Indoor Vertical Farming. The results were analyzed and interpreted through the lens of the Willingness to Pay concept and the Rational Choice Theory.The results showed that in the case of this study, the respondents were most willing to pay for the factors water, yield, and emissions. However, regardless of the positive impact of these factors, they lacked the influence to get them to commit to the presented scenario as they still prioritized financial returns as the base of decision. Lastly, another prominent driver behind the investors likelihood to invest was found to be age, where younger investors were much more likely to invest than the older respondents. / Med en ökande risk för livsmedelsosäkerhet parallellt med extrem befolkningstillväxt behöver världen praktiska lösningar som kan kombinera en betydande ökning av livsmedelsproduktionen utan ökad belastning på miljön från intensifierat jordbruk. En sådan lösning kan tillhandahållas genom odling av stapelgrödor i vertikala jordbruksanläggningar inomhus, men på grund av dess höga kostnader blir denna utveckling stagnerad på grund av saknat ekonomiskt stöd. I och med att en möjlig väg att säkra ekonomiska stöd kan tillhandahållas av Impact Investors undersöker denna avhandling relevansen av icke-finansiella faktorer och hur de relaterar till den finansiella avkastningen samt hur mycket det påverkar ett Impact Investors beslut att investera. De primära uppgifterna samlades in genom en kvantitativ enkätundersökning, baserat på ett fiktivt scenario om odling av vete i ett vertikalt jordbruk inomhus. Resultaten analyserades och tolkades genom perspektiven 'Willingness to Pay' och 'Rational Choice Theory'. Resultaten visade att respondenterna i den här studien var mest villiga att betala för faktorerna vatten, avkastning och utsläpp. Oavsett de positiva effekterna av dessa faktorer saknade de dock tillräckligt inflytande för att få investerarna att helt engagera sig i det presenterade scenariot eftersom de fortfarande prioriterade ekonomisk avkastning som främsta beslutsunderlag. Slutligen visade sig att en annan framstående drivkraft bakom investerarnas sannolikhet att investera var ålder, där yngre investerare var mycket mer benägna att investera än de äldre respondenterna.
|
24 |
Gestaltningsförlag - Ett hydroponiskt odlingssystem i skola. : Vägen till en hållbar konsumtion genom hydroponisk odling som pedagogiskt verktyg. / Design proposal- A hydroponic farming system in school. : The road to sustainable consumption through hydrponic farming as an educational tool.Nilsson, Linus January 2022 (has links)
Conducting cultivation on areas that were once well-functioning ecosystems is destroying the planet. Reduced area to cultivate, an increasing population and the consequences of transport and import put high pressure on improving the way food production works. For a few years vertical farming has been a popular solution to this problem. Hydroponic is a soilfree cultivation method that is usually managed indoors in a controlled environment. To stop the devastation of nature and ecosystems, create sustainable agriculture and reduce greenhouse gas emissions, knowledge and an interest in wanting to change old habits are required. By implementing vertical farming in school environments, they could actively work towards a relief of traditional agriculture and introduce new forms of cultivation for future generations. The work seeks to clarify what an implementation of a hydroponic system in a school could have looked like and what use the school could have of the cultivation. This work suggests an idea that vertical farming would be easier to establish in combination with other activities. A combination where the cultivation does not only produce vegetables but also can be used in several ways. In the work schools are proposed to be the activities that vertical farming should be combined with and the aspects of using cultivation as a pedagogical tool is used as an argument for this. In order to overcome the current climate crisis it is necessary that education on this takes place, therefore lessons regarding ecosystems, ecosystem services, agriculture and water management are considered extremely important. These important topics can be applied in all subjects in school and hydroponics would be a good tool to use in teaching about this
|
25 |
Industrial Symbiosis of Vertical Hydroponic Farming System at SweGreen / Industriell symbios av vertikala hydroponiska jordbrukssystem på SweGreenFarkhondehmonfared, Narmin January 2022 (has links)
The United Nations projects that by the year 2050, there will be as many as 9.7 billion people on earth (UN, 2019). Along with the world population growth, the demand for food production will be increased. On the other side, agriculture plays a crucial role in global warming, increasing food production challenges. Thus, more sustainable methods should be chosen to respond to population demand and decrease the impact of agricultural activities on climate change. One of these alternative methods is Urban farming, specifically hydroponic vertical farming, in which the food is produced indoors under exceptional conditions as using artificial lighting and less water. Hydroponic vertical farming has several benefits, higher production per area, a controlled environment, less land usage, less water consumption, etc. Vertical farms use LEDs as lightning sources to help photosynthesis; LEDs produce a massive amount of excess heat, which will be released to the environment and impact global warming. Therefore, a solution should be found to use the excess heat for other purposes instead of releasing it into the environment. In this study, the environmental performance of SweGreen’s hydroponic vertical farm will be assessed using a Life cycle assessment. The SweGreen hydroponic farm is located in a basement of a host building in Stockholm, Sweden. There is a symbiotic network between the farm and the host building where the farm provides the building with excess heat produced from the LEDs and, in return, gains carbon dioxide from the building. The result of this study shows that symbiotic network can decrease the impact of agriculture and excess produced heat, where the required heat for the building will be replaced from district heating by the produced excess heat. The symbiotic development between the host building and the farm will benefit the farm in various aspects and highlights the importance of urban symbiosis to reduce the impacts. / Enligt prognoser av Förenta Nationerna ska leva 9.7 billion människor på jorden till och med 2050 (FN, 2019). Världens befolkningstillväxt orsakar ökade efterfrågningar på livsmedelsproduktion. Tillsammans med de här ökade efterfrågningarna behov av jordbruk och dess produktioner ska ökas. De ökningarna skaffar seriösa utmaningar och oror Global uppvärmning. Därför behöver världen nya hållbara metoder att kunna hitta bra lösningar som minskas sådana påverkningar på klimatförändringarna. En av de nya hållbara metoderna är Urban Farming och speciellt hydroponiskt vertikalt jordbruk. Med denna metod livsmedel produceras inomhus med hjälpen av konstgjord belysning. Under de kontrollerade situationer ska mötas högre produktion per område och mindre vattenkonsumtion. Lysdioder (LEDs) bidrar behov av belysning för fotosyntesprocess i Vertikal Farms. Dock släpper LEDs ut en enorm mängd överskottsvärme i miljön som har en direkt påverkan på globala uppvärmningen. En bra lösning för detta problem är att hittas ett sätt att använda överskottsvärmen för andra ändamål. I den här studien ska granskas miljöprestandan för SweGreen’s hydroponic vertikal farm med hjälp av en livscykelanalys. Gården ligger i Stockholm, Sverige. Det finns ett symbiotiskt nätverk mellan gården och vårdbyggnaden där levereras LEDs överskottsvärmen för byggnaden och fås koldioxid från den. Resultatet av denna studie provar att symbiotiska nätverken kan minska påverkan av producerad överskottsvärmen på klimatförändringarna och Global uppvärmning.Symbiotiska utvecklingen mellan vårdbyggnaden och gården är intressant från olika aspekter och är viktig att minska påverkningarna på miljön.
|
26 |
Optimizing vertical farming : control and scheduling algorithms for enhanced plant growthVu, Cong Vinh 10 1900 (has links)
L’agriculture verticale permet de contrôler presque totalement les conditions pour croître
des plantes, qu’il s’agisse des conditions météorologiques, des nutriments nécessaires à la
croissance des plantes ou même de la lutte contre les parasites. Il est donc possible de
trouver et de définir des paramètres susceptibles d’augmenter le rendement et la qualité des
récoltes et de minimiser la consommation d’énergie dans la mesure du possible. À cette fin,
ce mémoire présente des algorithmes d’optimisation tels qu’une version améliorée du recuit
simulé qui peut être utilisée pour trouver et donner des lignes directrices pour les paramètres
de l’agriculture verticale. Nous présentons égalementune contribution sur la façon dont les
algorithmes de contrôle, p. ex. l’apprentissage par renforcement profond avec les méthodes
critiques d’acteurs, peuvent être améliorés grâce à une exploration plus efficace en prenant
en compte de l’incertitude épistémique lors de la sélection des actions. cette contribution
peut profiter aux systèmes de contrôle conçus pour l’agriculture verticale. Nous montrons
que notre travail est capable de surpasser certains algorithmes utilisés pour l’optimisation et
le contrôle continu. / Vertical farming provides a way to have almost total control over agriculture, whether it be
controlling weather conditions, nutrients necessary for plant growth, or even pest control. As
such, it is possible to find and set parameters that can increase crop yield, and quality, and
minimize energy consumption where possible. To that end, this thesis presents optimization
algorithms such as an enhanced version of Simulated Annealing that can be used to find and
give guidelines for those parameters. We also present work on how real-time control algorithms such as Actor-Critic methods can be made to perform better through more efficient
exploration by taking into account epistemic uncertainty during action selection which can
also benefit control systems made for vertical farming. We show that our work is able to
outperform some algorithms used for optimization and continuous control.
|
27 |
Livscykelanalys av det vertikala odlingssystemet Freja : En fallstudie i samarbete med Swegreen med fokus på att finna miljöpåverkans- hotspotsBrandel, Andrea, Borgström, Nora January 2024 (has links)
Livsmedelsindustrin är en bidragande faktor till klimatförändringarna, där innovativalösningar, såsom vertikal odling, kan appliceras för att främja en hållbar livsmedelsproduktion. Vertikala odlingssystem möjliggör urban inomhusodling,vertikalt i hyllplan, i kontrollerade miljöer med odlingskammare, belysningssystem samt vanligtvis jordfri odlingsmetod (t.ex. hydroponik), som är essentiella delar avsystemet. Temperatur, relativ fuktighet och artificiellt ljus regleras efter grödornas behov. Vid hydroponisk odling används odlingssubstrat såsom stenull istället för jord och växternas rötter är i konstant kontakt med det återcirkulerande vattnet i systemet, som förser växterna med näring. Tidigare livscykelanalyser av vertikala odlingssystem, om än ett begränsat antal, belyser elförbrukningen som den största bidragande faktorn till miljöpåverkan, samt att utbyte av olika material kan generera en lägre total miljöpåverkan. Examensarbetet syftar till att utföra en livscykelanalys på Swegreens vertikala odlingssystemet Freja, på ICA Maxi i Solna. Vidare syftar livscykelanalysen till att identifiera de faser och flöden som står för betydande miljöpåverkan, samt några förbättringsförslag. Det vertikala odlingssystemet antar perspektivet ‘vagga till användning’ under 30 år, exkluderande monterings- och sluthanteringsfasen. Användningsfasen innefattar sallatens livscykel från ‘vagga till grav’, exkluderande förtäringsfasen. Den funktionella enheten är 1 kg producerad ekbladssallat tillgänglig för konsumenter av klass 1. Data har inhämtats från både Swegreens digitaliserade data och från en tidigare studie utförd på Swegreens odlingssystem Saga. För bearbetning har programvaran SimaPro och databasen Ecoinvent 3.8 använts. Resultaten analyseras utifrån miljöpåverkanskategorierna ekotoxicitet (sötvatten), fossil resursanvändning, försurning, klimatförändringar, markanvändning, resursanvändning (mineraler och metaller), vattenanvändning och övergödning (sötvatten). Odlingsfasen för sallaten (innehållande elanvändning) är systemets främsta hotspot, följt av råmaterialsfasen för sallat, som orsakar störst miljöpåverkan för samtliga miljöpåverkanskategorier, förutom för resursanvändning (mineraler och metaller). Resultaten kan ej generaliseras eftersom de beror på val av funktionell enhet, systemgränser samt typ av data. Resultaten från känslighetsanalysen för energiproduktion och sluthantering tyder på att olika scenarion genererar lägst miljöpåverkan, beroende på vilka miljöpåverkanskategorier som anses mest relevanta. / The food industry is a contributing factor to climate change, where innovative solutions, such as vertical farming, can be applied to promote sustainable food production. Vertical farming systems enable urban indoor farming, vertically on shelves, in controlled environments with cultivation chambers, lighting systems and usually soil-free cultivation methods (e.g. hydroponics), that are essential parts of the system. Temperature, relative humidity and artificial light are regulated to satisfy the crops needs. Hydroponic cultivation utilizes growing mediums such as rock wool instead of soil and the roots of the plants are in constant contact with the recirculating water in the system, which provides the plants with nutrients. Previous life cycle assessments of vertical farming systems, although limited in numbers,highlight the electricity consumption as the largest contributing factor to the environmental impact, as well as replacing different materials for a lower environmental impact. This study aims to assess the environmental impacts and hot spots, through the use of life cycle assessment, on Swegreen's vertical farming system Freja, at ICA Maxi Solna. Furthermore the life cycle assessment aims to identify the phases and flows that accounts for significant environmental impact, as well as some suggestions for improvement. The vertical farming system applies the perspective of ‘cradle to use’for 30 years, not including the assembly or waste disposal phase. The use phase includes the life cycle of lettuce, from ‘cradle to grave’, not including the consumption phase. The functional unit is 1 kg of produced oak leaf lettuce, class 1,available to consumers. Data has been obtained from both Swegreen's digitized data and from a previous study conducted on Swegreen's farming system Saga. To process the data, the software SimaPro and the Ecoinvent 3.8 database was applied. Results are analyzed with regards to the environmental impact categories ecotoxicity (freshwater), fossil resource use, acidification, climate change, land use,resource use (minerals and metals), water use and eutrophication (freshwater).Results indicate that the lettuce cultivation phase (containing electricity use) is the main hotspot of the system, followed by the raw material phase for the lettuce. Aphase that also dominates in all environmental impact categories, except for resource use (minerals and metals). Results cannot be generalized since they dependon the choice of functional unit, system boundaries and type of data. The sensitivity analysis regarding the energy production and waste disposal suggests that different alternatives cause the lowest environmental impact, depending on which environmental impact categories are considered the most important.
|
28 |
[en] SOFTWARE OF PLACES: TOWARD A SELF-LEARNING CLOSED PLANT PRODUCTION SYSTEM / [pt] SOFTWARE DOS LUGARES: EM DIREÇÃO A UM SISTEMA FECHADIO PARA PRODUÇÃO DE PLANTAS COM AUTO-APRENDIZADOMARCIO LUIZ COELHO CUNHA 11 February 2019 (has links)
[pt] À medida que a população cresce, mais alimentos precisarão ser produzidos nas próximas quatro décadas do que nos últimos 10.000 anos. No entanto, o mundo moderno ainda depende da produção de monoculturas de alto rendimento, cada vez mais ameaçada por condições climáticas incomuns, escassez de água e terra insuficiente. A fim de superar esses problemas e alimentar o mundo, é necessário um caminho prático para fornecer alimentos frescos, com qualidade e em escala, com mínima dependência do clima e com uso de água e pegada de carbono reduzidos. Uma abordagem razoável é construir fazendas verticais dentro das cidades em um ambiente fechado repleto de sensores e iluminação artificial controlada por software para uma produção e gestão eficiente do plantio de alimentos. Esta tese propõe a instanciação de um modelo, chamado Ciclo do Software dos Lugares (SoPC), que é capaz de responder a estímulos ambientais em um sistema fechado de produção de plantas com iluminação artificial que possibilite a criação de ambientes com auto-aprendizagem. Esta tese descreve o SoPC, as abordagens e processos de implementação de uma mini fábrica de plantas com iluminação artificial com base na discussão em cinco ciclos de pesquisa-ação. / [en] As the population grows, more food will need to be produced in the next four decades than has been in the past 10,000 years. However, the modern world still depends on high yield monoculture production which is increasingly threatened by unusual weather, water shortages, and insufficient land. In order to overcome these problems and feed the world, a practical path to provide quality fresh healthy food at scale with minimal weather dependency, water usage and reduced carbon footprint is necessary. One reasonable approach is to build vertical farms inside the cities in a close environment full of sensors and artificial lighting controlled by software for efficient production of food crops. This thesis proposes a model, entitled Software of Places Cycle (SoPC), that should be able to answer to environmental stimuli in a closed plant production system using artificial lighting in order to create a self-learning environment. This thesis describes the SoPC, the approaches and processes of implementing a mini Plant Factory using Artificial Lighting based on the discussion on five action-research cycles. The thesis main contribution is a conceptual model to guide the development and maintenance of a mini-PFAL (m-PFAL), a minor contribution is the deployment of the SoP, i.e., the very notion of having software dedicated to a specific place.
|
29 |
Analyzing the environmental sustainability of an urban vertical hydroponic system / Utvärdering av den miljömässiga hållbarheten av en urban vertikal hydroponisk odlingBarge, Unni January 2020 (has links)
Food systems are considered one of the most important anthropogenic activities contributing to climate change. On the other hand, climate change influences the conditions for growth with more frequent droughts and heatwaves. This contradiction poses a significant challenge to future food systems, which need not only become more sustainable, but also increase its production to feed a growing population, as stated in both the United Nations Sustainable Development Goals, and the Swedish action plan on food. This has given rise to alternative ways of producing food, such as urban farming and, in particular vertical hydroponic farming, where food is grown indoors in a controlled environment with artificial lighting and with a minimum use of water and without pesticides. In this study, a vertical hydroponic farm located in Stockholm, Sweden, is examined using life cycle assessment in terms of environmental sustainability. The farm, located in a basement space, works together with the building in a symbiotic network, where the farm provides the building with excess heat from the lighting, and in turn obtains carbon dioxide from an office floor. The findings from the study show that electricity is a major contributor to the environmental performance of the farm, along with the infrastructure employed. The impacts of water use in the farm, is very low, along with the impacts associated with the delivery of the crops; illustrating the advantages of producing food locally. By substituting the synthetic fertilizers employed to biofertilizers, and by substituting the plastic bag material to renewable material, reductions in greenhouse gases are possible. The symbiotic development between the farm and the building is shown very beneficial to the farm, highlighting the importance of synergies between actors in urban areas. / Livsmedelsindustrin anses vara en av de största antropogena drivkrafterna bakom klimatförändringarna. Å andra sidan så förändrar klimatförändringar i sig förutsättningarna för hållbar odling, med mer frekventa torrperioder, extrem värme och extrem nederbörd. Denna konträra situation ställer stora krav på framtidens livsmedelsindustri, som dessutom måste producera mer mat för att mätta en ökande befolkning; ett åtagande som står angivet både i FN:s globala mål och i den svenska Livsmedelsstrategin. Många forskare menar att dagens livsmedelsindustri inte kommer klara denna omställning, och att alternativa metoder för att producera mat behövs. Urban odling har föreslagits som en del av lösningen, och i synnerhet vertikal hydroponisk odling där grödor växer inomhus i en kontrollerad miljö med artificiell belysning, låg vattenanvändning och utan bekämpningsmedel. Den här studien undersökte en vertikal hydroponisk odling i Stockholm, och bedömde dess miljömässiga hållbarhet med hjälp av en livscykelanalys. Odlingen, som sker i en källarlokal, samarbetar med den omslutande byggnaden i en urban symbios, där odlingen förser byggnaden med spillvärme från belysningen, och får i sin tur koldioxid från en kontorslokal. Enligt resultat från studien bidrar elektriciteten till den största miljöpåverkan, men även infrastruktur har stor påverkan. Vattenanvändningen i odlingen är däremot väldigt låg, och miljöpåverkan från leveransen av varorna är mycket låg, vilket belyser fördelarna med att odla mat lokalt. Odlingen kan bland annat minska sin miljöpåverkan genom att byta ut det nuvarande konstgödslet till biogödsel och genom att byta ut plastpåsarnas material till förnybar plast. Symbiosen mellan odlingen och byggnaden visade sig vara väldigt gynnsam, vilket vidare belyser vikten av samspel mellan olika aktörer i den urbana miljön.
|
30 |
Simulation as an Enabler for ProductionSystem Development within the Indoor Vertical Farming IndustryAbbas, Anwar, Faruk Acar, Ömer January 2023 (has links)
With the increase in food consumption, new ideas, and technologies began to be developed. Inaddition, the developments generated by Industry 4.0 technologies have started to be applied tothe entire manufacturing sector and the indoor farming industry, which is currently trending.Many studies and articles have been prepared on this subject, and the main goal of each study isto produce quality products and to ensure continuity in production to cover the nonendingincrease in demand. This paper discusses how simulation technology, which is one of the industry 4.0 technologies,can be used in the production system development of the indoor farming industry. According tomany researchers, the biggest obstacle for the vertical farming industry is start-up cost, andsimulation technologies can be the solution for this since it allows future production systems tobe analyzed without any investment. To have a clear vision of how these technologies can beadapted in the indoor farming industry, this paper will find the answers to these questions, RQ1:How can simulation facilitate production system development and Industry 4.0 projects withinthe indoor farming industry? RQ2: What are the benefits and challenges when using simulationas a tool for production system development within the indoor farming industry? To reach thegoal of this paper, the case study method was used, and an indoor farming company was selectedto get more realistic data about the vertical farming system. BlueRedGold AB is a start-upcompany in the indoor farming industry, and it has a huge growth potential since they aim totransform its current production lines to be fully automated. Many articles and studies were usedto approach the solution of the research questions from a more technical and academic point ofview, and the analysis of these articles was carried out with the structured literature review method. After conducting this research, answers have been obtained for the research questions. Theauthors' solution to the layout issue, one of the case company's main challenges as indicated inthis study, was developed after extensive simulation model testing. As highlighted in this paper,it has been stated by many researchers, there are several simulation approaches to follow.However, the authors have developed a simulation modeling approach to be followed in theindoor vertical farming industry to overcome the complexity of these systems as well as thesimulation program complexity. In addition, several challenges and benefits have beenhighlighted in this paper such as the lack of ready models of the equipment used in indoorfarming which requires a knowledge of a programing language to overcome. Finally, despitechallenges, simulation technology can provide an applicable solution for production systemproblems of vertical farming companies/organizations to obtain continuous improvementphilosophy which is the main principle of Lean thinking. The generated simulation model in thisthesis project was successfully implemented, demonstrating how this technology might be aneffective solution for complex production systems as in the indoor farming sector.
|
Page generated in 0.0344 seconds