181 |
Méthodes Galerkine discontinues localement implicites en domaine temporel pour la propagation des ondes électromagnétiques dans les tissus biologiques / Locally implicit discontinuous Galerkin time-domain methods for electromagnetic wave propagation in biological tissuesMoya, Ludovic 16 December 2013 (has links)
Cette thèse traite des équations de Maxwell en domaine temporel. Le principal objectif est de proposer des méthodes de type éléments finis d'ordre élevé pour les équations de Maxwell et des schémas d'intégration en temps efficaces sur des maillages localement raffinés. Nous considérons des méthodes GDDT (Galerkine Discontinues en Domaine Temporel) s'appuyant sur une interpolation polynomiale d'ordre arbitrairement élevé des composantes du champ électromagnétique. Les méthodes GDDT pour les équations de Maxwell s'appuient le plus souvent sur des schémas d'intégration en temps explicites dont la condition de stabilité peut être très restrictive pour des maillages raffinés. Pour surmonter cette limitation, nous considérons des schémas en temps qui consistent à appliquer un schéma implicite localement, dans les régions raffinées, tout en préservant un schéma explicite sur le reste du maillage. Nous présentons une étude théorique complète et une comparaison de deux méthodes GDDT localement implicites. Des expériences numériques en 2D et 3D illustrent l'utilité des schémas proposés. Le traitement numérique de milieux de propagation complexes est également l'un des objectifs. Nous considérons l'interaction des ondes électromagnétiques avec les tissus biologiques qui est au cœur de nombreuses applications dans le domaine biomédical. La modélisation numérique nécessite alors de résoudre le système de Maxwell avec des modèles appropriés de dispersion. Nous formulons une méthode GDDT localement implicite pour le modèle de Debye et proposons une analyse théorique et numérique complète du schéma. / This work deals with the time-domain formulation of Maxwell's equations. The main objective is to propose high-order finite element type methods for the discretization of Maxwell's equations and efficient time integration methods on locally refined meshes. We consider Discontinuous Galerkin Time-Domain (DGTD) methods relying on an arbitrary high-order polynomial interpolation of the components of the electromagnetic field. Existing DGTD methods for Maxwell's equations often rely on explicit time integration schemes and are constrained by a stability condition that can be very restrictive on highly refined meshes. To overcome this limitation, we consider time integration schemes that consist in applying an implicit scheme locally i.e. in the refined regions of the mesh, while preserving an explicit scheme in the complementary part. We present a full theoretical study and a comparison of two locally implicit DGTD methods. Numerical experiments for 2D and 3D problems illustrate the usefulness of the proposed time integration schemes. The numerical treatment of complex propagation media is also one of the objectives. We consider the interaction of electromagnetic waves with biological tissues that is of interest to applications in biomedical domain. Numerical modeling then requires to solve the system of Maxwell's equations coupled to appropriate models of physical dispersion. We derive a locally implicit DGTD method for the Debye model and we achieve a full theoretical and numerical analysis of the resulting scheme.
|
182 |
Adaptation des méthodes et outils aéroacoustiques pour les jets en interaction dans le cadre des lanceurs spatiaux. / Adaptation of aeroacoustic methods and tools for interacting jets in the context of space launchersLangenais, Adrien 07 February 2019 (has links)
Lors d’un lancement spatial, le bruit des jets supersoniques chauds, générés par les moteurs-fusées au décollage et en interaction avec le pas de tir, est dommageable pour le lanceur et en particulier sa charge utile. Par conséquent, les acteurs du spatial cherchent à renforcer leur compréhension et leur maîtrise de cette ambiance acoustique, entre autres grâce à des méthodes et outils numériques. Toutefois, ils ne disposent pas d’une approche numérique globale capable de prendre en compte simultanément la génération fidèle du bruit, la propagation acoustique non-linéaire, les effets d’installation complexes et les géométries réalistes, pourtant inhérents aux applications spatiales. Dans cette optique, cette étude consiste à mettre en place et valider une méthodologie de simulation numérique par couplage fort Navier-Stokes − Euler, puis à l’appliquer à des cas réalistes de bruit de jet supersonique. L’objectif est d’affiner les capacités de prévision et de contribuer à la compréhension des mécanismes de génération de bruit dans de tels jets. Le solveur Navier-Stokes repose sur une méthode LES sur maillage non-structuré et le solveur acoustique sur une méthode de Galerkine discontinue d’ordre élevé sur maillage non-structuré. La méthodologie est tout d’abord évaluée sur des cas académiques visant à valider la simulation par couplage fort. Après des calculs préliminaires, la méthodologie est appliquée à la simulation du bruit d’un jet libre supersonique à Mach 3.1. Une méthode de déclenchement géométrique de la turbulence est implémentée sous la forme d’une marche à la paroi de la tuyère. La simulation aboutit à des estimations du bruit très proches des mesures réalisées au banc MARTEL et met en évidence des effets non-linéaires significatifs ainsi qu’un mécanisme singulier de rayonnement des ondes de Mach. Dans une démarche de progression vers des cas toujours plus réalistes, l’ensemble de l’approche numérique est finalement adaptée avec succès à la simulation du bruit d’un jet en présence d’un carneau. À terme, elle pourra être étendue à des configurations multi-jets réactifs, avec injection d’eau, voire à l’échelle 1. / During a space launch, the noise from hot supersonic jets, generated by rocket engines at liftoff and interacting with the launch pad, is harmful to the launcher and in particular its payload. Consequently, space actors are seeking to strengthen their understanding and control of this acoustic environment through numerical methods and tools, among the others. However, they do not dispose of a comprehensive numerical strategy that can simultaneously take into account accurate noise generation, nonlinear acoustic propagation, complex installation effects and realistic geometries, which are inherent to space applications. For this purpose, the present study consists in setting up and validating a numerical simulation methodology using a Navier-Stokes − Euler two-way coupling approach, then applying it to realistic cases of supersonic jet noise in order to improve prediction capabilities and contribute to the understanding of the noise generation mechanisms in such jets. The Navier-Stokes solver is based on an LES method on unstructured mesh and the acoustic solver on a high-order discontinuous Galerkin method on unstructured mesh. The methodology is first assessed on academic cases to validate the use of the two-way coupling. After preliminary computations, the methodology is applied to the simulation of the noise from a supersonic free jet at Mach 3.1. A geometric turbulence tripping method is implemented via a step at the nozzle wall. The computation leads to noise predictions very close to the experimental measurements performed at the MARTEL test bench and highlights significant nonlinear effects as well as a quite particular Mach waves radiation mechanism. Targeting even more realistic cases, the entire numerical approach is finally successfully adapted to the simulation of the noise from a supersonic jet configuration including a flame trench. In the future, it may be extended to configurations with clustered reactive jets, water injection devices or even at full scale.
|
183 |
Motion Planning for the Two-Phase Stefan Problem in Level Set FormulationBernauer, Martin 17 December 2010 (has links)
This thesis is concerned with motion planning for the classical two-phase Stefan problem in level set formulation. The interface separating the fluid phases from the solid phases is represented as the zero level set of a continuous function whose evolution is described by the level set equation. Heat conduction in the two phases is modeled by the heat equation. A quadratic tracking-type cost functional that incorporates temperature tracking terms and a control cost term that expresses the desire to have the interface follow a prescribed trajectory by adjusting the heat flux through part of the boundary of the computational domain. The formal Lagrange approach is used to establish a first-order optimality system by applying shape calculus tools. For the numerical solution, the level set equation and its adjoint are discretized in space by discontinuous Galerkin methods that are combined with suitable explicit Runge-Kutta time stepping schemes, while the temperature and its adjoint are approximated in space by the extended finite element method (which accounts for the weak discontinuity of the temperature by a dynamic local modification of the underlying finite element spaces) combined with the implicit Euler method for the temporal discretization. The curvature of the interface which arises in the adjoint system is discretized by a finite element method as well. The projected gradient method, and, in the absence of control constraints, the limited memory BFGS method are used to solve the arising optimization problems. Several numerical examples highlight the potential of the proposed optimal control approach. In particular, they show that it inherits the geometric flexibility of the level set method. Thus, in addition to unidirectional solidification, closed interfaces and changes of topology can be tracked. Finally, the Moreau-Yosida regularization is applied to transform a state constraint on the position of the interface into a penalty term that is added to the cost functional. The optimality conditions for this penalized optimal control problem and its numerical solution are discussed. An example confirms the efficacy of the state constraint. / Die vorliegende Arbeit beschäftigt sich mit einem Optimalsteuerungsproblem für das klassische Stefan-Problem in zwei Phasen. Die Phasengrenze wird als Niveaulinie einer stetigen Funktion modelliert, was die Lösung der so genannten Level-Set-Gleichung erfordert. Durch Anpassen des Wärmeflusses am Rand des betrachteten Gebiets soll ein gewünschter Verlauf der Phasengrenze angesteuert werden. Zusammen mit dem Wunsch, ein vorgegebenes Temperaturprofil zu approximieren, wird dieses Ziel in einem quadratischen Zielfunktional formuliert. Die notwendigen Optimalitätsbedingungen erster Ordnung werden formal mit Hilfe der entsprechenden Lagrange-Funktion und unter Benutzung von Techniken aus der Formoptimierung hergeleitet. Für die numerische Lösung müssen die auftretenden partiellen Differentialgleichungen diskretisiert werden. Dies geschieht im Falle der Level-Set-Gleichung und ihrer Adjungierten auf Basis von unstetigen Galerkin-Verfahren und expliziten Runge-Kutta-Methoden. Die Wärmeleitungsgleichung und die entsprechende Gleichung im adjungierten System werden mit einer erweiterten Finite-Elemente-Methode im Ort sowie dem impliziten Euler-Verfahren in der Zeit diskretisiert. Dieser Zugang umgeht die aufwändige Adaption des Gitters, die normalerweise bei der FE-Diskretisierung von Phasenübergangsproblemen unvermeidbar ist. Auch die Krümmung der Phasengrenze wird numerisch mit Hilfe der Methode der finiten Elemente angenähert. Zur Lösung der auftretenden Optimierungsprobleme werden ein Gradienten-Projektionsverfahren und, im Fall dass keine Kontrollschranken vorliegen, die BFGS-Methode mit beschränktem Speicherbedarf eingesetzt. Numerische Beispiele beleuchten die Stärken des vorgeschlagenen Zugangs. Es stellt sich insbesondere heraus, dass sich die geometrische Flexibilität der Level-Set-Methode auf den vorgeschlagenen Zugang zur optimalen Steuerung vererbt. Zusätzlich zur gerichteten Bewegung einer flachen Phasengrenze können somit auch geschlossene Phasengrenzen sowie topologische Veränderungen angesteuert werden. Exemplarisch, und zwar an Hand einer Beschränkung an die Lage der Phasengrenze, wird auch noch die Behandlung von Zustandsbeschränkungen mittels der Moreau-Yosida-Regularisierung diskutiert. Ein numerisches Beispiel demonstriert die Wirkung der Zustandsbeschränkung.
|
184 |
A posteriorní odhady chyby pro řešení konvektivně-difusních úloh / A posteriori error estimates for numerical solution of convection-difusion problemsŠebestová, Ivana January 2014 (has links)
This thesis is concerned with several issues of a posteriori error estimates for linear problems. In its first part error estimates for the heat conduction equation discretized by the backward Euler method in time and discontinuous Galerkin method in space are derived. In the second part guaranteed and locally efficient error estimates involving algebraic error for Poisson equation discretized by the discontinuous Galerkin method are derived. The technique is based on the flux reconstruction where meshes with hanging nodes and variable polynomial degree are allowed. An adaptive strategy combining both adaptive mesh refinement and stopping criteria for iterative algebraic solvers is proposed. In the last part a numerical method for computing guaranteed lower and upper bounds of principal eigenvalues of symmetric linear elliptic differential operators is presented. 1
|
185 |
Numerické řešení nelineárních transportních problémů / Numerical solution of nonlinear transport problemsBezchlebová, Eva January 2015 (has links)
Práce je zaměřená na numerickou simulaci dvoufázového proudění. Je studován matematický model a numerická aproximace toku dvou nemísitelných nestlačitelných tekutin. Rozhraní mezi tekutinami je popsáno pomocí pomocí tzv. level set metody. Představena je diskretizace problému v prostoru a v čase. Metoda konečných prvk· se zpětnou Eulerovou metodou je aplikována na Navierovy-Stokesovy rovnice a časoprostorová nespojitá Galerkinova metoda je použita k řešení transportního problému. D·raz je kladen na analýzu chyby nespojité Galerkinovy metody přímek a časoprostorové nespojité Galerkinovy metody pro transportní problém. Jsou prezentovány numerické výsledky. 1
|
186 |
Numerics of photonic and plasmonic nanostructures with advanced material modelsKiel, Thomas 18 May 2022 (has links)
In dieser Arbeit untersuchen wir mehrere Anwendungen von photonischen und plasmonischen Nanostrukturen unter Verwendung zweier verschiedener numerischer Methoden: die Fourier-Moden-Methode (FMM) und ein unstetiges Galerkin-Zeitraumverfahren (discontinuous Galerkin time-domain method, DGTD method). Die Methoden werden für vier verschiedene Anwendungen eingesetzt, die alle eine Materialmodellerweiterung in der Implementierung der Methoden erfordern. Diese Anwendungen beinhalten die Untersuchung von dünnen, freistehenden, periodisch perforierten Goldfilmen. Wir charakterisieren die auftretenden Oberflächenplasmonenpolaritonen durch die Berechnung von Transmissions- und Elektronenenergieverlustspektren, die mit experimentellen Messungen verglichen werden. Dazu stellen wir eine Erweiterung der DGTD-Methode zur Verfügung, die sowohl absorbierende, impedanzangepasste Randschichten als auch Anregung mit geglätteter Ladungsverteilung für materialdurchdringende Elektronenstrahlen beinhaltet. Darüber hinaus wird eine Erweiterung auf nicht-dispersive anisotrope Materialien für eine Formoptimierung einer volldielektrischen magneto-optischen Metaoberfläche verwendet. Diese Optimierung ermöglicht eine verstärkte Faraday-Rotation zusammen mit einer hohen Transmission. Zusätzlich untersuchen wir abstimmbare hyperbolische Metamaterialresonatoren im nahen Infrarot mit Hilfe der FMM. Wir berechnen deren Resonanzen und vergleichen sie mit dem Experiment. Zum Schluss wird die Implementierung eines nichtlinearen Vier-Niveau-System-Materialmodells in der DGTD-Methode verwendet, um die Laserschwellen eines Mikroresonators mit Bragg-Spiegeln zu berechnen. Bei Einführung eines Silbergitters mit variablen Spaltgrößen wird eine defektinduzierte Kontrolle der Laserschwellen ermöglicht. Die Berechnung der vollständigen, zeitaufgelösten Felddynamik innerhalb des Resonator gibt dabei Aufschluss über die beteiligten Lasermoden. / In this thesis, we study several applications of photonic and plasmonic nanostructures by
employing two different numerical methods: the Fourier modal method (FMM) and discontinuous Galerkin time-domain (DGTD) method. The methods are used for four different applications, all of which require a material model extension for the implementation of the methods. These applications include the investigation of thin, free-standing periodically perforated gold films. We characterize the emerging surface plasmon polaritons by computing both transmittance and electron energy loss spectra, which are compared to experimental measurements. To this end, we provide an extension of the DGTD method, including absorbing stretched coordinate perfectly matched layers as well as excitations with smoothed charge distribution for material-penetrating electron beams. Furthermore, an extension to non-dispersive anisotropic materials is used for shape optimization of an all-dielectric magneto-optic metasurface. This optimization enables an enhanced Faraday rotation along with high transmittance. Additionally, we study tuneable near-infrared hyperbolic metamaterial cavities with the help of the FMM. We compute the cavity resonances and compare them to the experiment. Finally, the implementation of a non-linear four-level system material model in the DGTD method is used to compute lasing thresholds of a distributed Bragg reflector microcavity. Introducing a silver grating with variable gap sizes allows for a defect-induced lasing threshold control. The computation of the full time-resolved field dynamics of the cavity provides information on the involved lasing modes.
|
187 |
A high order Discontinuous Galerkin - Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes for simulating cross-flow turbinesFerrer, Esteban January 2012 (has links)
This thesis details the development, verification and validation of an unsteady unstructured high order (≥ 3) h/p Discontinuous Galerkin - Fourier solver for the incompressible Navier-Stokes equations on static and rotating meshes in two and three dimensions. This general purpose solver is used to provide insight into cross-flow (wind or tidal) turbine physical phenomena. Simulation of this type of turbine for renewable energy generation needs to account for the rotational motion of the blades with respect to the fixed environment. This rotational motion implies azimuthal changes in blade aero/hydro-dynamics that result in complex flow phenomena such as stalled flows, vortex shedding and blade-vortex interactions. Simulation of these flow features necessitates the use of a high order code exhibiting low numerical errors. This thesis presents the development of such a high order solver, which has been conceived and implemented from scratch by the author during his doctoral work. To account for the relative mesh motion, the incompressible Navier-Stokes equations are written in arbitrary Lagrangian-Eulerian form and a non-conformal Discontinuous Galerkin (DG) formulation (i.e. Symmetric Interior Penalty Galerkin) is used for spatial discretisation. The DG method, together with a novel sliding mesh technique, allows direct linking of rotating and static meshes through the numerical fluxes. This technique shows spectral accuracy and no degradation of temporal convergence rates if rotational motion is applied to a region of the mesh. In addition, analytical mappings are introduced to account for curved external boundaries representing circular shapes and NACA foils. To simulate 3D flows, the 2D DG solver is parallelised and extended using Fourier series. This extension allows for laminar and turbulent regimes to be simulated through Direct Numerical Simulation and Large Eddy Simulation (LES) type approaches. Two LES methodologies are proposed. Various 2D and 3D cases are presented for laminar and turbulent regimes. Among others, solutions for: Stokes flows, the Taylor vortex problem, flows around square and circular cylinders, flows around static and rotating NACA foils and flows through rotating cross-flow turbines, are presented.
|
188 |
Discontinuous Galerkin Finite Element Method for the Nonlinear Hyperbolic Problems with Entropy-Based Artificial Viscosity StabilizationZingan, Valentin Nikolaevich 2012 May 1900 (has links)
This work develops a discontinuous Galerkin finite element discretization of non- linear hyperbolic conservation equations with efficient and robust high order stabilization built on an entropy-based artificial viscosity approximation.
The solutions of equations are represented by elementwise polynomials of an arbitrary degree p > 0 which are continuous within each element but discontinuous on the boundaries. The discretization of equations in time is done by means of high order explicit Runge-Kutta methods identified with respective Butcher tableaux.
To stabilize a numerical solution in the vicinity of shock waves and simultaneously preserve the smooth parts from smearing, we add some reasonable amount of artificial viscosity in accordance with the physical principle of entropy production in the interior of shock waves. The viscosity coefficient is proportional to the local size of the residual of an entropy equation and is bounded from above by the first-order artificial viscosity defined by a local wave speed. Since the residual of an entropy equation is supposed to be vanishingly small in smooth regions (of the order of the Local Truncation Error) and arbitrarily large in shocks, the entropy viscosity is almost zero everywhere except the shocks, where it reaches the first-order upper bound.
One- and two-dimensional benchmark test cases are presented for nonlinear hyperbolic scalar conservation laws and the system of compressible Euler equations. These tests demonstrate the satisfactory stability properties of the method and optimal convergence rates as well. All numerical solutions to the test problems agree well with the reference solutions found in the literature.
We conclude that the new method developed in the present work is a valuable alternative to currently existing techniques of viscous stabilization.
|
189 |
Contribution à l'analyse mathématique et à la résolution numérique d'un problème inverse de scattering élasto-acoustique / Contribution to the mathematical analysis and to the numerical solution of an inverse elasto-acoustic scattering problemEstecahandy, Elodie 19 September 2013 (has links)
La détermination de la forme d'un obstacle élastique immergé dans un milieu fluide à partir de mesures du champ d'onde diffracté est un problème d'un vif intérêt dans de nombreux domaines tels que le sonar, l'exploration géophysique et l'imagerie médicale. A cause de son caractère non-linéaire et mal posé, ce problème inverse de l'obstacle (IOP) est très difficile à résoudre, particulièrement d'un point de vue numérique. De plus, son étude requiert la compréhension de la théorie du problème de diffraction direct (DP) associé, et la maîtrise des méthodes de résolution correspondantes. Le travail accompli ici se rapporte à l'analyse mathématique et numérique du DP élasto-acoustique et de l'IOP. En particulier, nous avons développé un code de simulation numérique performant pour la propagation des ondes associée à ce type de milieux, basé sur une méthode de type DG qui emploie des éléments finis d'ordre supérieur et des éléments courbes à l'interface afin de mieux représenter l'interaction fluide-structure, et nous l'appliquons à la reconstruction d'objets par la mise en oeuvre d'une méthode de Newton régularisée. / The determination of the shape of an elastic obstacle immersed in water from some measurements of the scattered field is an important problem in many technologies such as sonar, geophysical exploration, and medical imaging. This inverse obstacle problem (IOP) is very difficult to solve, especially from a numerical viewpoint, because of its nonlinear and ill-posed character. Moreover, its investigation requires the understanding of the theory for the associated direct scattering problem (DP), and the mastery of the corresponding numerical solution methods. The work accomplished here pertains to the mathematical and numerical analysis of the elasto-acoustic DP and of the IOP. More specifically, we have developed an efficient numerical simulation code for wave propagation associated to this type of media, based on a DG-type method using higher-order finite elements and curved edges at the interface to better represent the fluid-structure interaction, and we apply it to the reconstruction of objects with the implementation of a regularized Newton method.
|
190 |
High order numerical methods for a unified theory of fluid and solid mechanicsChiocchetti, Simone 10 June 2022 (has links)
This dissertation is a contribution to the development of a unified model of
continuum mechanics, describing both fluids and elastic solids as a general
continua, with a simple material parameter choice being the distinction
between inviscid or viscous fluid, or elastic solids or visco-elasto-plastic
media. Additional physical effects such as surface tension, rate-dependent
material failure and fatigue can be, and have been, included in the same
formalism.
The model extends a hyperelastic formulation of solid mechanics in
Eulerian coordinates to fluid flows by means of stiff algebraic relaxation
source terms. The governing equations are then solved by means of high
order ADER Discontinuous Galerkin and Finite Volume schemes on fixed
Cartesian meshes and on moving unstructured polygonal meshes with
adaptive connectivity, the latter constructed and moved by means of a in-
house Fortran library for the generation of high quality Delaunay and Voronoi
meshes.
Further, the thesis introduces a new family of exponential-type and semi-
analytical time-integration methods for the stiff source terms governing
friction and pressure relaxation in Baer-Nunziato compressible multiphase
flows, as well as for relaxation in the unified model of continuum mechanics,
associated with viscosity and plasticity, and heat conduction effects.
Theoretical consideration about the model are also given, from the
solution of weak hyperbolicity issues affecting some special cases of the
governing equations, to the computation of accurate eigenvalue estimates, to
the discussion of the geometrical structure of the equations and involution
constraints of curl type, then enforced both via a GLM curl cleaning method,
and by means of special involution-preserving discrete differential operators,
implemented in a semi-implicit framework.
Concerning applications to real-world problems, this thesis includes
simulation ranging from low-Mach viscous two-phase flow, to shockwaves in
compressible viscous flow on unstructured moving grids, to diffuse interface
crack formation in solids.
|
Page generated in 0.0693 seconds