• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 33
  • 29
  • 18
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 271
  • 54
  • 53
  • 40
  • 39
  • 39
  • 34
  • 25
  • 19
  • 19
  • 18
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Influence of Electric Field on the Global and Local Structure in the Ferroelectric Ceramic Na1/2Bi1/2TiO3 and its Solid Solutions with BaTiO3 and K1/2Bi1/2TiO3

Badari Narayana, A R January 2015 (has links) (PDF)
Ferroelectric ceramics are very promising materials for a variety of piezoelectric applications such as high permittivity dielectrics, piezoelectric sensors, piezoelectric/electrostrictive transducers, actuators, electro-optic devices, etc. Among the commercially viable ferroelectric ceramics, the lead-zircon ate-titivate Pb(Zr1-xTix)O3 (PZT) based ceramics have dominated the market due to their superior piezoelectric and dielectric property along with other advantages like high electromechanical coupling, ease of processing and low cost. However, the toxicity of lead based materials, and its volatility at processing temperatures is a serious health and environmental concern. Several legislations against lead-based products have been passed all over the world in order to encourage identification of alternative lead-free materials for these applications. As a consequence, there has been a remarkable surge in efforts by researchers on identifying lead-free alternatives for piezoelectric applications. A larger emphasis has been placed on perovskite based ceramics since in addition to possessing excellent properties, their relatively simple structure facilitates understanding structure-property relationships which are important for developing novel high performance materials. Na1/2Bi1/2TiO3 (NBT) and its solid solutions are one of the leading classes of perovskite ceramics, which show promising ferroelectric, piezoelectric and dielectric property thereby having the potential to replace PZT based ferroelectrics. The parent compound NBT is ferroelectric with large ferroelectric polarization (~40 C/cm2), promising piezoelectric properties with 0.08% maximum strain and longitudinal piezoelectric coefficient (d33) ~ 80 pC/N. Though NBT was discovered nearly six decades ago, a clear understanding of its structure remained elusive for a long time since different characterization techniques yielded contradicting reports on its structure and nature of phase transformation. However, rapid advances in characterization techniques in recent years have led to uncovering of new results, thereby shedding light on the true structure of NBT. X-ray and neutron diffraction studies in the past have shown that NBT exhibits rhombohedral (R3c) structure at room temperature, which undergoes a gradual transformation into tetragonal (P4bm) structure at ~230oC. However, recent characterization of both single crystal and powder of NBT using high resolution x-ray diffraction showed that the room temperature structure is not purely rhombohedral and the structure can be better modeled with a monoclinic (Cc) structure. In contrast to x-ray and neutron diffraction, electron diffraction studies have shown evidence for the presence of planar disorders, corresponding to in-phase octahedral tilts in the sample which cannot be accounted for by either R3c or Cc structure. In addition, EXAFS, x-ray and neutron total scattering studies, diffuse scattering studies, etc. have shown that the structural parameters obtained from bulk diffraction techniques are significantly different from the local structure of the material. Similar ambiguities have been observed even in NBT based solid solutions like BaTiO3, K1/2Bi1/2TiO3, etc. which show enhanced properties at the morphotropic phase boundary (MPB). A major breakthrough in understanding the structural complexity involved in NBT based solid solutions was achieved when it was found that the structure of the MPB compositions were sensitive to electric field. This led to solving the mystery behind the appearance of cubic-like phase at some of the MPB compositions where the application of electric-field resulted in the transformation of the structure into a co-existence of rhombohedral and tetragonal phases. Observation of an electric-field-induced structural transition at the MPB compositions was expected, because the MPB signifies instability in the system and even a minor external force can significantly influence the system. However, we have found that the structure of even pure NBT is significantly influenced by electric field and the framework of this thesis is based on this particularly important result. The intrinsic tendency of the electric field to affect the structure of NBT is a major factor which needs to be considered when studying similar phase transitions in the MPB compositions of NBT-substituted systems also. This was not taken into account by other research groups, and they assumed that the instability associated with the MPB was the only major factor involved in the electric-field induced transitions. A simple but highly effective strategy of grinding the electrically poled pellet into fine powder and then collecting x-ray diffraction patterns, facilitated elimination of preferred orientation in the sample. Thus, structural analysis by Rietveld refinement was possible even on the poled sample, which has not been carried out by any other groups on any ferroelectric ceramics so far. The initial part of the thesis deals with addressing the structural complexity of pure NBT, wherein the effect of electric field on the bulk structure as well as the local structure was studied in great detail. Later on, similar concepts are used to investigate BaTiO3 and K1/2Bi1/2TiO3 substituted NBT also. The first chapter of the thesis provides a brief introduction to the field of ferroelectrics, perovskite structure and their phase transition. An exposure to concepts like relaxor ferroelectrics, morphotrophic phase boundary, octahedral tilting, etc. has been provided. Then, a detailed overview of the existing literature related to the structure of NBT and its phase transition studies with temperature has been discussed. The details of the experimental procedures, characterization techniques used, and some theory behind these techniques have been provided in chapter 2. The third chapter deals with the room temperature structural characterization of pure NBT using techniques like x-ray diffraction, neutron diffraction, electron diffraction and EXAFS analysis. The results of these structural characterizations are also complemented with first-principles calculation study of the ground state structure of NBT, dielectric and ferroelectric characterization, and ageing studies. While x-ray and neutron diffraction clearly established electric-field induced structural transition from a monoclinic (Cc) to rhombohedral (R3c) structural transition, first principles calculation showed that the monoclinic phase is not stable and hence cannot be the ground state structure of NBT. Also, the possibility of the monoclinic features appearing in the x-ray diffraction solely due to micro structural effects by nano-sized domains was discussed. Comparison of electron diffraction of poled and unpoled samples of NBT showed that the in-phase tilted regions were greatly suppressed in the poled samples. Even HRTEM images showed that the unpoled samples had a very high concentration of strain heterogeneity in them, which was absent in the poled samples. This gave a direct evidence of correlation between observation of monoclinic phase and the presence of in-phase tilted regions in the unpoled samples. It was proposed that the strain caused by these in-phase tilted disorders caused distortion in the original rhombohedral lattice thereby making the structure appear monoclinic. Application of electric field causes the in-phase octahedral tilt disorders to vanish, thereby even the monoclinic features observed in the XRD also disappear. The fourth chapter discusses the consequences of poling on the high temperature phase transition behavior of NBT. We have used temperature dependent x-ray and neutron diffraction, Raman spectroscopy and EXAFS analysis whose results were correlated with the anomalies observed in temperature dependent dielectric and polarization studies. We found that the poled sample shows a sharp anomaly at the depolarization temperature (Td) in all the characterization techniques used, in contrast to a diffuse or negligible effect seen in the unpoled sample. The depolarization temperature was found to be associated with introduction of structural disorder in the sample in the form of in-phase octahedral tilts. This also gave rise to a normal to relaxor ferroelectric transition at Td, and this relaxor behavior persisted even after cooling the sample to room temperature. An intermediate cubiclike phase was observed from x-ray diffraction at around 300C wherein the rhombohedral phase vanishes and the tetragonal phase begins to appear. Even single crystal study of NBT in the past showed sudden disappearance of the domains at 300C, even though they were visible at both above and below this temperature. This effect was called isotropization, and was postulated to arise due to extremely small domains which made the system isotropic. However, our neutron diffraction pattern showed that in-phase tilted superlattice reflections persisted at this temperature which meant that the structure was not truly cubic at this temperature. Further, a neutron diffraction study at higher temperatures showed that the in-phase tilted superlattice reflections persisted even above the cubic phase transition temperature, in corroboration with similar reports from high temperature electron diffraction. Chapter five deals with the BaTiO3 substituted NBT system, which has gained tremendous interest in the last decade as a viable piezoelectric ceramic for commercial applications. Though a large number of groups have already carried out exhaustive studies on this system, most of the work concentrated mainly on the MPB compositions which showed enhanced piezoelectric properties. In this chapter, we highlight some important findings in the pre-MPB and post-MPB compositions. Using room-temperature and high temperature x-ray diffraction, we show that there exists a subtle compositional phase boundary at x = 0.03, which disappears upon poling the sample. While the monoclinic phase in pure NBT becomes cubiclike at this composition, the depolarization temperature (Td) also slightly increases up to this composition and then decreases upon further Ba substitution. Similar studies were also carried out with compositions containing slightly excess bismuth in them (0.1 mol %), whose purpose was to negate the effects of Bi-vaporization during sintering. It was found that while the compositional phase boundary remained essentially unchanged, there was a decrease in Td for all the compositions. It was also realized that the addition of excess bismuth improved the overall piezoelectric property of the system. Studies on higher compositions of Ba in the post-MPB regions further revealed two additional compositional phase boundaries. A criticality in the coercive field and spontaneous tetragonal strain was observed at x = 0.2, which was found to be associated with crossover from a long-period modulated tetragonal phase (for x < 0.2) to a no modulated tetragonal phase (for x > 0.2). Near the BT rich end (x ~ 0.7), the system exhibits a crossover from normal to a diffuse/relaxor ferroelectric transition with increasing Na1/2Bi1/2 substitution. The onset of relaxor state by Na1/2Bi1/2 substitution on the Ba-site, was shown to increase the spontaneous tetragonal strain in the system. This was because of the enhancement in the covalent character of the A-O bond by virtue of the Bi+3 6s2 lone pair effect, and it also led to a sudden increase in the tetragonal-to-cubic transition temperature. This was in contrast to other chemical modifications of BT reported in the past (like Zr, Sn, Sr, etc.) where the relaxor state is accompanied by a weakening of the ferroelectric distortion and a decrease in the critical temperature. Finally, chapter six covers the effect of electric field induced phase transition in K1/2Bi1/2TiO3 substituted NBT. Visual observation showed that while the compositions (x < 0.2) behaved similar to pure NBT, wherein the structure became purely rhombohedral upon poling, the effect of electric field was negligible in the post-MPB compositions (x > 0.2). In addition, the peaks in the annealed samples were considerably overlapping which made identifying the structural transitions at the MPB compositions difficult using Rietveld analysis. However, comparison of the FWHM of the {200}pc peaks of compositions x < 0.2 showed that the FWHM began to increase suddenly for x > 0.15 indicating emergence of the tetragonal phase. Also, all the compositions showed an increase in the {200}pc peak FWHM by 0.03 after poling. The depolarization temperature showed only slight variation in the pre-MPB compositions, but showed a minimum at the MPB compositions. Temperature dependent dielectric studies further showed that for the post-MPB compositions, the system remains relaxor even after poling.
252

Étude et mise en œuvre de couplage thermoélectrique en vue de l'intensification d'échange de chaleur par morphing électroactif / Study and implementation of thermoelectric coupling in order to the heat exchange intensification by electroactive morphing

Amokrane, Mounir 03 July 2013 (has links)
Le développement et l’utilisation de nouveaux matériaux, tel que le carbure de silicium (SiC) et le nitrure de gallium (GaN), a permis un accroissement sensible des densités d’énergie traitées par les nouveaux composants de l’électronique de puissance, assortie d’une augmentation de leur compacité. Parallèlement à ces progrès technologiques, la généralisation de l’électricité en tant que vecteur d’énergie primaire au sein de systèmes de plus en plus répartis, incluant des moyens de traitement de l’information au plus près de la fonction réalisée, ouvre la voie à une nouvelle génération de systèmes mécatroniques hautement intégrés. Or, l’émergence de ces nouvelles fonctions soulève une question critique liée au mode de refroidissement de ces éléments. Cette question est intimement couplée aux aspects énergétiques et à leur impact environnemental, imposant une amélioration significative des rendements énergétiques mesurés à l’échelle de la fonction complète. C’est dans ce contexte que l’étude présentée traite tout d’abord de systèmes de récupération de la chaleur résiduelle dissipée au sein de systèmes électroniques de puissance en vue d’alimenter de manière autonome des capteurs, où autres systèmes fonctionnels, via l’énergie « ambiante » ainsi récupérée. Parmi les consommateurs plus particulièrement ciblés, des fonctions innovantes d’intensification par voie électromécanique des échanges de chaleurs au sein d’échangeurs thermique sont étudiées et mises en œuvre. A terme, l’idée serait ainsi d’alimenter les systèmes d’actionnement assurant l’optimisation des échanges de chaleur au sein du système de refroidissement d’une carte électronique au moyen même de la chaleur qu’elle dissipe, récupérée sous forme d’énergie électrique. A cette fin, les différents procédés de conversion de la chaleur en électricité sont examinés, modélisés et mis en œuvre dans la suite de ce travail. Deux types de conversion d’énergie complémentaires sont tour à tour considérés : La conversion par effet thermoélectrique, utilisant l’effet Seebeck qui a lieu en présence d’un gradient de température et l’effet pyroélectrique qui apparait en présence de variation temporelle de la température. Ces deux phénomènes sont analysés et décrits à l’aide de modélisations physiques et comportementales, incluant une approche expérimentale ayant nécessité la mise en place de bancs d’essai spécifiques. L’électricité récupérée par conversion pyroélectrique est par la suite mise en forme grâce à des systèmes de redressement à faible tension de seuil spécialement développés. La faisabilité de systèmes d’alimentation autonomes de capteurs déportés, où de systèmes d’émission (ponctuelle) de mesure, est alors concrètement démontrée en se basant sur les résultats obtenus. Ouvrant la voie à un concept de refroidissement actif des puces électroniques, tirant directement parti de la chaleur dissipée pour son alimentation grâce aux deux procédés préalablement étudiés, la problématique de l’intensification des transferts de chaleur au sein de boucles de refroidissement mécaniquement activées est abordée dans la dernière partie du mémoire. Cette activation est réalisée à l’aide d’un système d’actionnement multicellulaire réparti à base d’actionneurs piézoélectriques. Développée en étroite collaboration avec des équipes de thermodynamiciens, l’idée est de réaliser un pompage de fluide ainsi qu’une modification des échanges de chaleur au sein d’un système de transfert de chaleur en activant les parois de l’échangeur de chaleur par déformation. Le système d’actionnement préconisé est tout d’abord étudié et simulé par un calcul par éléments finis. Un prototype est construit et caractérisé sous conditions réelles dans un deuxième temps. [...] / The development and use of new materials, such as silicon carbide (SiC) and gallium nitride (GaN) has a significant increase in energy densities handled by the new components of power electronics, accompanied by an increase in compactness. Parallel to these technological advances, the widespread use of electricity as a primary energy carrier within systems increasingly distributed, including means for processing information closer to the function carried out, paving the way a new generation of highly integrated mechatronic systems. However, the emergence of these new features raises a critical question related to cooling mode thereof. This question is closely coupled to the energy aspects and their environmental impact, imposing a significant improvement in measured across the full energy function returns. It is in this context that the present study deals firstly recovery systems waste heat dissipated in power electronic systems for autonomous power sensors, where other functional systems via energy "room" and recovered. Particularly among targeted consumers, innovative features intensification electromechanically exchanges heat in heat exchangers are studied and implemented. Eventually, the idea would be to supply the operating systems for the optimization of heat exchange in the cooling system of an electronic card in the same way that heat dissipates, recovered in the form of electrical energy. To this end, various methods of conversion of heat into electricity are considered, modeled and implemented in the course of this work. Two complementary types of energy conversion are considered in turn : The thermoelectric conversion effect by using the Seebeck effect which takes place in the presence of a temperature gradient and the pyroelectric effect that appears in the presence of temporal variation of the temperature. These two phenomena are analyzed and described using physical and behavioral models, including an experimental approach requiring the establishment of specific test benches. The electricity recovered by pyroelectric conversion is then formatted with recovery systems, low voltage specially developed threshold. The feasibility of remote sensors autonomous supply, where emission (point) measuring systems, is then demonstrated concretely based on the results systems. Paving the way to a concept of active cooling computer chips, drawing directly from the heat dissipated for food through two methods previously studied the problem of intensification of heat transfer in cooling loops mechanically activated is discussed in the latter part of the memory. This activation is carried out using a distributed drive system multicellular based piezoelectric actuators. Developed in close collaboration with teams of thermodynamics, the idea is to provide a fluid pump and a change of heat transfer in a heat transfer system by activating the walls of the heat exchanger deformation. The operating system is called first studied and simulated by a finite element calculation. A prototype is built and characterized under actual conditions in a second time. The multicellular actuating system composed of a plurality of actuators and a supply system configurable multipath is then integrated into an exchange of heat testbed specifically developed. This experience is a fundamental first step in the development of electroactive systems, potentially autonomous, allowing the intensification of heat exchange in cooling loops for high-performance power electronics.
253

Electroactive morphing for the aerodynamic performance improvement of next generation airvehicles / Morphing électroactif pour l'optimisation des performances aérodynamiques de la prochaine génération des aéronefs

Scheller, Johannes 20 October 2015 (has links)
La nécessité d’améliorer la performance aérodynamique des véhicules aériens est à l’origine d’intenses recherches sur l’optimisation en temps réel de la forme de la voilure. Cette optimisation en temps réel ne peut être atteinte que par le morphing de la surface portante en utilisant des matériaux et des actionneurs appropriés. L’objet de cette thèse est d’étudier des actionneurs basés sur des matériaux intelligents pour l’optimisation de la performance aérodynamique sur différentes échelles de temps (d’actionnement basse fréquence et haute fréquence). Premièrement, différents types d’actionnement , qu’ils soient basse fréquence et grand déplacement grâce aux AMF ou qu’ils soient haute fréquence et faible déplacement utilisant des matériaux piézoélectrique sont considérés. Leurs effets sur l’écoulement environnant ont été analysés séparément en utilisant des mesures PIV dédiées. Les expériences ont montré la capacité de déformation de la technologie AMF sous des charges aérodynamiques réalistes. Il a été souligné que malgré la fréquence d’actionnement limitée l’hypothèse "quasi-statique" doit être soigneusement adaptée à la gamme de nombres de Reynolds de 200.000. Les mesures PIV menées derrière le bord de fuite à actionnement piézoélectrique ont montré la capacité de l’actionneur à réduire les modes d’instabilité de la couche de cisaillement. Une fréquence optimale d’actionnement de 60 Hz a été identifiée à l’aide d’une analyse en boucle ouverte. Dans un deuxième temps, une hybridation des deux technologies précédemment étudiés a été proposée. Les actionneurs utilisés, AMFs et MFCs, ont été modélisés et la capacité d’action combinée a été démontrée. Le prototype conçu, suivant le profil aérodynamique NACA4412 a été testé en la soufflerie et il a été montré que la combinaison de ces deux technologies permet d’agir sur les tourbillons de la zone de cisaillement ainsi que de contrôler la portance. / The need to improve the aerodynamic performance of air vehicles is the origin of intense research on the real-time optimization of the airfoil shape. This real-time optimization can only be achieved by morphing the airfoil using adequate materials and actuators. The object of this thesis is to study smart-material actuators for aerodynamic performance optimization on different time scales (low-frequent and high-frequent actuation). First, the effects of the distinct actuation types, low-frequency large-displacement shape-memory alloy (SMA) and high-frequency low-displacement piezoelectric, on the surrounding flow are analyzed separately using dedicated time-resolved particle image velocimetry (TR-PIV) measurements. The experiments showed the deformation capacity of the SMA technology under realistic aerodynamic loads. Furthermore, it was highlighted that despite the limited actuation frequency the “quasi-static” hypothesis has to be carefully adapted for the Reynolds number range of 200.000. The PIV measurements conducted behind the piezoelectrically actuated trailing edge showed the capacity of the actuator to reduce the shear-layer instability modes. An open-loop optimum actuation frequency of 60 Hz has been identified. Secondly, a hybridization of the two previously studied technologies has been proposed. The implied actuators, SMAs and macro fiber composites (MFCs), have been modelled and the combined actuation capacity has been demonstrated. The designed prototype NACA4412 airfoil has been tested in the S4 wind-tunnel of IMFT and it was shown that the combination of the two technologies allows acting on the shear-layer vortices as well as control the lift.
254

Correlation Between Structure, Microstructure and Enhanced Piezoresponse Around the Morphotropic Phase Boundary of Bismuth Scandate-Lead Titanate Piezoceramic

Lalitha, K V January 2015 (has links) (PDF)
Piezoelectric materials find use as actuators and sensors in automotive, aerospace and other related industries. Automotive applications such as fuel injection nozzles and engine health monitoring systems require operating temperatures as high as 300-500 oC. The commercially used piezoelectric material PbZr1-xTixO3 (PZT) is limited to operating temperatures as low as 200 oC due to the temperature induced depolarization effects. PZT, in the undoped state exhibits a piezoelectric coefficient (d33) of 223 pC/N and ferroelectric-paraelectric transition temperature (Tc) of 386 oC. The enhanced properties of PZT occur at a region between the tetragonal and rhombohedral phases, called the Morphotropic Phase Boundary (MPB). Therefore, search for new materials with higher thermal stability and better sensing capabilities were focused on systems that exhibit a PZT-like MPB. This led to the discovery of (x)BiScO3-(1-x)PbTiO3 (BSPT), which exhibits an MPB with enhanced Tc (450 oC) and exceptionally high piezoelectric response (d33 = 460 pC/N). Theoretical studies have shown that the mechanism of enhanced piezoresponse in ferroelectric systems is related to the anisotropic flattening of the free energy profiles. An alternative view point attributes the anomalous piezoelectric response to the presence of high density of low energy domain walls near an inter-ferroelectric transition. Diffraction is a versatile tool to study the structural and microstructural changes of ferroelectric systems upon application of electric field. However, characterization of electric field induced structural and microstructural changes is not a trivial task, since in situ electric field dependent diffraction studies almost invariably give diffraction patterns laden with strong preferred orientation effects, due to the tendency of the ferroelectric/ferroelastic domains to align along the field direction. Additionally, diffraction profiles of MPB compositions exhibit severe overlap of Bragg peaks of the coexisting phases, and hence, it is difficult to ascertain with certainty, if the alteration in the intensity profiles upon application of electric field is due to change in phase fraction of the coexisting phases or due to preferred orientation induced in the different phases by the electric field. The characterization of electric field induced phase transformation in MPB systems, has therefore eluded researchers and has been considered of secondary importance, presumably due to the difficulties in unambiguously establishing the structural changes upon application of electric field. In fact, majority of the in situ electric field dependent diffraction studies have been carried out on compositions just outside the MPB range, i.e. on single phase compositions. In such studies, the focus has been mainly on explaining the piezoelectric response in terms of motions of the non-180° domain walls and field induced lattice strains. In this dissertation, the BSPT system has been systematically investigated with the view to understand the role of different contributing factors to the anomalous piezoelectric response of compositions close to the MPB. Using a comparative in situ electric field dependent diffraction study on a core MPB composition exhibiting highest piezoelectric response and a single phase monoclinic (pseudo-rhombohedral) composition just outside the MPB, it is demonstrated that, inspite of the significantly large domain switching and lattice strain (obtained from peak shifts) in the single phase composition, as compared to the MPB composition, the single phase composition shows considerably low piezoelectric response. This result clearly revealed that the anomalous piezoelectric response of the MPB composition is primarily associated with field induced inter-ferroelectric transformation and the corresponding field induced interphase boundary motion. A simple strategy has been employed to establish the field induced structural transformation for the MPB compositions, by overcoming the experimental limitation of in situ electric field dependent diffraction studies. The idea stemmed from the fact that, if the specimens for diffraction study can be used in powder form instead of pellet, the problems associated with preferred orientation effects can be eliminated, and the nature of field induced structural changes can be accurately determined. A comparative study of the diffraction profiles from poled (after subjecting the specimen to electric field) and unpoled (before subjecting the specimen to electric field) powders could precisely establish the nature of electric field induced phase transformation for the MPB compositions of BSPT and provided a direct correlation between the electric field induced structural changes and the enhanced piezoelectric response. A new ‘powder poling’ technique was devised, which involves application of electric field to powder form of the specimen. Using this technique, it was possible to study separately, the effect of stress and electric field on the nature of structural transformation. A unique outcome of this study was, it could demonstrate for the first time, analogous nature of the stress and electric field induced structural transformation. A comparative study of the dielectric response of poled and unpoled samples was used to show a counterintuitive phenomenon of field induced decrease in polarization coherence for the MPB compositions. This approach was used to suggest that the criticality associated with the MPB extends beyond the composition boundary conventionally reported in literature based on bulk diffraction techniques (x-ray and neutron powder diffraction). The layout of the dissertation is as follows: Chapter 1 gives a brief introduction of the fundamental concepts related to ferroelectric materials. The theories that explain the enhanced piezoresponse of MPB based ferroelectric systems have been outlined. Detailed information of the existing literature is presented in the relevant chapters. Chapter 2 presents the details of the solid state synthesis of BSPT compositions and structural analysis using diffraction studies. The dielectric measurements were used to establish the Tc for the different compositions. The enhanced ferroelectric and piezoelectric properties were observed for the MPB compositions, which were shown to exhibit coexistence of tetragonal and monoclinic phases from structural studies. The critical MPB composition exhibiting highest piezoelectric and ferroelectric properties was established to be x = 0.3725. The thermal stability of the critical MPB composition was established to be 400 oC using ex situ thermal depolarization studies. The common approach of structural analysis in the unpoled state failed to provide a unique relationship between the anomalous piezoelectric response and the structural factors at the MPB, emphasizing the need to characterize these system using electric field dependent structural studies. Chapter 3 presents the results of in situ electric field dependent diffraction measurements carried out at Argonne National Laboratory, USA. The quasi-static field measurements could successfully quantify the non-180o domain switching fractions and the field induced lattice strains. The changes in the integrated intensities were used to obtain the non-180o domain switching fraction and the shift in peak positions were used to quantify the field induced lattice strains. The in situ studies could successfully explain the macroscopic strain response for the single phase pseudo-rhombohedral (monoclinic) composition on the basis of domain switching mechanisms and field induced lattice strains. The MPB compositions were shown to have additional contributions from interphase boundary motion, resulting from change in phase fraction of the coexisting phases. The results emphasized the need to investigate the electric field induced transformation for MPB compositions, in order to give a comprehensive picture of the various contributions to the macroscopic piezoreponse. While Rietveld analysis could be used to investigate the phase transformation behaviour upon application of electric field, textured diffraction profiles obtained using in situ studies, in addition to the severely overlapping Bragg reflections of the coexisting phases for the MPB compositions hindered reliable estimation of the structural parameters. An alternate approach to investigate the field induced phase transformation is presented in Chapter 4. The stroboscopic measurements on the MPB composition showed evidence of non-180o domain wall motion even at sub-coercive field amplitudes as low as 0.1 kV/mm. Chapter 4 presents the results of the ex situ electric field dependent structural study, wherein the diffraction profiles collected from poled powders is compared to that of unpoled powders. The diffraction profiles from the poled powders did not exhibit any field induced crystallographic texture and could successfully be analyzed using Rietveld analysis. High resolution synchrotron diffraction studies (ESRF, France) carried out on closely spaced compositions revealed that, the composition exhibiting the highest piezoelectric response is the one, which exhibits significantly enhanced lattice polarizability of both the coexisting (monoclinic and tetragonal) phases. The enhanced lattice polarizability manifests as significant fraction of the monoclinic phase transforming irreversibly to the tetragonal phase after electric poling. The monoclinic to tetragonal transformation suggested the existence of a low energy polarization rotation pathway towards the [001]pc direction in the (1 1 0)pc pseudocubic plane of the monoclinic phase. The results are discussed on the basis of the existing theories that explain piezoresponse in MPB systems and are in support of the Polarization rotation model, in favor of a genuine monoclinic phase. Chapter 5 discusses the ferroelectric-ferroelectric stability of the MPB compositions in response to externally applied stress and electric field independently. Using the newly developed ‘powder poling’ technique, which is based on the concept of exploiting the irreversible structural changes that occur after application of electric field and stress independently, it was possible to ascertain that, both moderate stress and electric field induce identical structural transformation - a fraction of the monoclinic phase transforms irreversibly to the tetragonal phase. The powder poling technique was also used to demonstrate field induced inter-ferroelectric transformation at sub-coercive field amplitudes. In addition, the analysis of the dielectric response before and after poling revealed a counterintuitive phenomenon of poling induced decrease in the spatial coherence of polarization for compositions around the MPB and not so for compositions far away from the MPB range. Exploiting the greater sensitivity of this technique, it was demonstrated that, the criticality associated with the inter-ferroelectric transition spans a wider composition range than what is conventionally reported in the literature based on bulk x-ray/neutron powder diffraction techniques. Chapter 6 presents the closure and important conclusions from the present work and summarizes the key results, highlighting the proposed mechanism of enhanced piezoresponse in BSPT. The last part of the chapter deals with suggestions for future work from the ideas evolved in the present study. vi
255

Evaluation de condensateurs enterrés à base de composites céramique/polymère pour des applications à hautes fréquences / Evaluation of embedded capacitors based on ceramic/polymer materials for high frequency applications

Wade, Massar 21 September 2015 (has links)
La miniaturisation croissante des systèmes électroniques implique de réduire la taille des composants électroniques, en particulier des composants passifs (condensateurs, résistances et inductances), notamment les condensateurs, volumineux et de surcroît nombreux. Pour répondre à cette attente, une des options est d’intégrer « enterrer » les couches capacitives dans le circuit imprimé à base de matériaux composites céramique/polymère. Dans un premier temps, plusieurs types de matériaux composites à base de nanoparticules de céramique (BaTiO3 et BaSrTiO3) et de polyester pour des condensateurs enterrés sont développés. Ensuite, la permittivité ε’ et les pertes diélectriques des composites sont évaluées dans les gammes de fréquences entre [10 kHz – 10 MHz] et [1 GHz – 5 GHz]. En vue d’intégrer ces composants à l’intérieur du circuit imprimé parfois souple et flexible, le comportement piézoélectrique des composites est évalué. La mesure du courant de fuite permettant d’effectuer une analyse qualitative des matériaux composites a été également effectuée.Au niveau de l’étude des condensateurs enterrés dans le circuit imprimé, deux structures de tests ont été réalisées : l’une montée en parallèle et l’autre en série. L’étude est réalisée sur deux gammes de condensateurs. La première est à base de matériau composite stable en fréquence et la seconde varie avec la fréquence. Pour cela, une méthode originale qui permet d’extraire la variation de la permittivité εr (f) à haute fréquence a été développée. La méthode se repose principalement sur l’utilisation des résultats de mesure de la permittivité relative du condensateur en basse fréquence, et les résultats de la valeur de la fréquence de résonance obtenue en simulation électromagnétique.Enfin, pour améliorer la fréquence de fonctionnement des condensateurs enterrés, des règles de conception permettant de comprendre l’influence des vias de connexions et de la géométrie des électrodes sur la fréquence de résonance du dispositif de test sont étudiées. / The increasing miniaturization of electronic systems involves reducing the size of electronic components, in particular passive components (capacitors, resistors and inductors), including capacitors, large and many more. To meet this expectation, one of the options is to integrate "bury" the capacitive layers based on ceramic / polymer composites in the PCB. In a first step, several types of composite materials based on nanoparticle ceramic (BaTiO3 and BaSrTiO3) and polyester for buried capacitors are developed. Then, the permittivity ε' and the dielectric losses of the composites are measured in the ranges of frequencies between [10 kHz - 10 MHz] and [1 GHz - 5 GHz]. To integrate these components within the PCBs sometimes soft and flexible, the piezoelectric behavior of composites is evaluated. The measurement of leakage current to perform a qualitative analysis of composite materials was also made.At the level of the study of buried capacitors in the circuit board, two test structures were carried out: one mounted in parallel and the other in serial. The study is produced in two ranges of capacitors. The study is conducted on two capacitors ranges. The first case, the relative permittivity does not depend on the frequency while in the second case the frequency dependence is taken into account. For this, an original method which allows to extract the permittivity εr(f) variation in high-frequency was developed. The method is mainly based on the use of measurement results of the relative permittivity of low-frequency capacitor, and the results of resonance frequency value obtained by 3D HFSS electromagnetic simulation. Finally, to improve the operating frequency of the buried capacitors, design rules allowing understand the influence of the vias and geometry of electrodes on the resonant frequency of the structures are studied.
256

Enhanced self-powered vibration damping of smart structures by modal energy transfer / Amélioration du contrôle vibratoire autonome de smart structures par échange modal d’énergie

Wang, Zhen 20 July 2015 (has links)
Le travail de cette thèse propose une nouvelle méthode de contrôle appelée SSDH (Synchronized Switch Damping and Harvesting) basée sur l’idée de redistribution de l’énergie récupérée pour réduire l’énergie vibratoire d’une structure. De nombreuses recherches ont concerné le contrôle de vibration des structures souples. L’utilisation de l’approche modale pour ce genre de structure présente de nombreux intérêts. Dans le cadre de cette thèse l’idée est de récupérer l’énergie des modes qui ne sont pas contrôlés de façon à améliorer l’effet d’amortissement des modes ciblés par le contrôle sur une même structure. Pour cela, sur la base de la technique semi-active de contrôle, un circuit de contrôle modal a été conçu pour être compatible, via un convertisseur, avec des techniques semi-active de récupération d’énergie qui ont elles même été adaptées en modal. Plusieurs variantes de la méthode SSDH ont été testées en simulation. De façon à estimer l’efficacité du concept, une application sur un modèle expérimental d’une smart structure simple est proposée. Actionneurs et capteurs utilisent des matériaux piézoélectriques qui présentent les effets directs et inverses utiles pour la récupération d’énergie et le contrôle vibratoire. Après optimisation des différents paramètres électromécaniques et électriques, les résultats des simulations menées sous excitations bisinusoidale ou en bruit blanc, montrent que la nouvelle méthode de contrôle autoalimentée SSDH est efficace et robuste. Elle améliore sensiblement l’amortissement produit par les techniques semi-actives modales de base (SSDI) grâce à l’utilisation de l’énergie modale récupérée. / In a context of embedded structures, the next challenge is to develop an efficient, energetically autonomous vibration control technique. Synchronized Switch Damping techniques (SSD) have been demonstrated interesting properties in vibration control with a low power consumption. For compliant or soft smart structures, modal control is a promising way as specific modes can be targetted. This Ph-D work examines a novel energy transfer concept and design of simultaneous energy harvesting and vibration control on the same host structure. The basic idea is that the structure is able to extract modal energy from the chosen modes, and utilize this harvested energy to suppress the target modes via modal control method. We propose here a new technique to enhance the classic SSD circuit due to energy harvesting and energy transfer. Our architecture called Modal Synchronized Switching Damping and Harvesting (Modal SSDH) is composed of a harvesting circuit (Synchronized Switch Harvesting on Inductor SSHI), a Buck-Boost converter and a vibration modal control circuit (SSD). Various alternatives of our SSDH techniques were proposed and simulated. A real smart structure is modeled and used as specific case to test the efficiency of our concept. Piezoelectric sensors and actuators are taken as active transducers, as they develop the direct and inverse effects useful for the energy harvesting and the vibration damping. Optimization are running out and the basic design factors are discussed in terms of energy transfer. Simulations, carried out under bi-harmonic and noise excitation, underline that our new SSDH concept is efficient and robust. Our technique improve the damping effect of semi-active method compared to classic SSD method thanks to the use of harvested modal energy.
257

Výpočtové modelování piezoelektrických vrstevnatých kompozitů a analýza jejich elektro-mechanické odezvy při harmonickém kmitání / Computational modelling of the layered piezoelectric composites and analysis of their electro-mechanical response upon harmonic vibrations

Machů, Zdeněk January 2019 (has links)
V současnosti je velmi aktuálním tématem generování elektrické energie z alternativních zdrojů, zejména z vibrací. Zařízení, která přeměňují mechanickou energii na elektrickou, využívají často ke své činnosti piezoelektrický jev. Pro optimální nastavení takového elektromechanického měniče pro danou aplikaci je třeba mít k dispozici výpočtový model, který bude schopný postihnout všechny klíčové aspekty jeho provozu. Tato práce se tedy zabývá vytvořením takovéhoto nástroje, který je schopen komplexně popsat elektromechanickou odezvu studovaného piezoelektrického měniče energie v podobě vetknutého, vícevrstvého keramického nosníku s piezoelektrickými vrstvami. Uvažovaná vícevrstvá konstrukce je během své činnosti vystavena kinematickému buzení a je rovněž zatížena tepelnou zbytkovou napjatostí vznikající při její výrobě. Vytvořený výpočtový model využívá klasickou laminátovou teorii k určení statické elektromechanické odezvy dané konstrukce. Elektromechanická odezva při kmitání uvažované konstrukce v ustáleném stavu je získána s využitím Hamiltonova variačního principu a teorie kmitání prutů. Vytvořený výpočtový model je dále schopen odhadnout zdánlivou lomovou houževnatost dané vícevrstvé konstrukce pomocí metody váhových funkcí. Výstupy vytvořeného výpočtového modelu jsou ověřeny s využitím numerických simulací na bázi MKP a dostupných experimentálních výsledků. V diplomové práci je následně vytvořený výpočtový model aplikován při hledání optimálního rozložení jednotlivých vrstev konkrétního vícevrstvého nosníku s cílem maximalizovat jeho elektrický výkon a odolnost vůči šíření povrchových trhlin, resp. vzniku křehkého lomu. Tohoto cíle je dosaženo pomocí vhodného rozložení tepelných zbytkových napětí v jednotlivých vrstvách uvažované konstrukce (řízeného použitými materiály a tloušťkami jednotlivých vrstev).
258

Field Assisted Roll-to-Roll Manufacturing of Novel Multifunctional Piezoelectric Composites

Armen Yildirim (9148748) 10 September 2022 (has links)
<p>The recent advances in flexible piezoelectric technologies have sparked a great interest in developing multifunctional next-generation transducers and actuators that are increasingly becoming high demand for a range of challenging applications, including self-powered structural and personal health monitoring systems to flexible loudspeaker devices. </p><p>In this research, novel <i>quasi </i>1–3 piezoelectric nanocomposites are introduced with record-high piezoelectric voltage coefficients (g<sub>33</sub>), reaching up to 0.709 Vm N<sup>−1</sup> (approximately 20 percent greater than the recently reported highest g<sub>33</sub> value in the literature). These materials are produced via dielectrophoretic process where both piezoelectric lead zirconate titanate (PZT) nanoparticles and graphene nanoplatelets (GNPs) are simultaneously aligned in a silicone-based polymer matrix (polydimethylsiloxane—PDMS) at a range of concentrations up to 13 vol%, leading to densely structured cone-shaped "nanocolumn forests" in the thickness direction. It is shown that the electric field induced alignment of particles not only improves the overall piezoelectric properties of the composite at relatively low filler concentrations, but also increases the transparency of the system by enabling the light to travel with little scattering or absorption in the “Z” direction through the particle depleted zones created between micro- and nano-sized columns. The details of these unique column morphologies are investigated by various off-line and on-line characterization techniques such as microcomputed tomography—microCT and real-time light transmission measurements to better understand the effect of both material (i.e., concentration) and process-based parameters (e.g., electric field, frequency) on pearl-chain formation. </p><p>To show its versatility and high-performance, the applications comprising both direct (e.g., force sensing, energy harvesting, structural and personal health monitoring) and inverse (e.g., loudspeaker) piezoelectric effect are also demonstrated and extensively characterized. </p><p>Additionally, to demonstrate the scalability of the process, large-area samples are also produced via the continuous dielectrophoretic process (utilizing a novel 44 ft long custom designed multifunctional roll-to-roll (R2R) manufacturing line), resulting in the largest single piece piezoelectric films ever reported in the literature. </p>
259

Modeling and Optimization of Electrode Configurations for Piezoelectric Material

Schulze, Veronika 30 October 2023 (has links)
Piezoelektrika haben ein breit gefächertes Anwendungsspektrum in Industrie, Alltag und Forschung. Dies erfordert ein genaues Wissen über das Materialverhalten der betrachteten piezoelektrischen Elemente, was mit dem Lösen von simulationsgestützten inversen Parameteridentifikationsproblemen einhergeht. Die vorliegende Arbeit befasst sich mit der optimalen Versuchsplanung (OED) für dieses Problem. Piezoelektrische Materialien weisen die Eigenschaft auf, sich als Reaktion auf angelegte Potentiale oder Kräfte mechanisch oder elektrisch zu verändern (direkter und indirekter piezoelektrischer Effekt). Um eine Spannung anzulegen und den indirekten piezoelektrischen Effekt auszunutzen, werden Elektroden aufgebracht, deren Konfiguration einen erheblichen Einfluss auf mögliche Systemantworten hat. Daher werden das Potential, die Anzahl und die Größe der Elektroden zunächst im zweidimensionalen Fall optimiert. Das piezoelektrische Verhalten basiert im betrachteten Kleinsignalbereich auf zeitabhängigen, linearen partiellen Differentialgleichungen. Die Herleitung sowie Existenz und Eindeutigkeit der Lösungen werden gezeigt. Zur Berechnung der elektrischen Ladung und der Impedanz, die für das Materialidentifikationsproblem und damit für die Versuchsplanung relevant sind, werden zeit- und frequenzabhängige Simulationen auf Basis der Finite Elemente Methode (FEM) mit dem FEM Simulationstool FEniCS durchgeführt. Es wird auf Nachteile bei der Berechnung der Ableitungen eingegangen und erste adjungierte Gleichungen formuliert. Die Modellierung des Problems der optimalen Versuchsplanung erfolgt hauptsächlich durch die Kontrolle des Potentials der Dirichlet Randbedingungen des Randwertproblems. Anhand mehrerer numerischer Beispiele werden die resultierenden Konfigurationen gezeigt. Weitere Ansätze zur Elektrodenmodellierung, z.B. durch Kontrolle der Materialeigenschaften, werden ebenfalls vorgestellt. Schließlich wird auf mögliche Erweiterungen des vorgestellten OED Problems hingewiesen. / Piezoelectrics have a wide range of applications in industry, everyday life and research. This requires an accurate knowledge of the material behavior, which implies the solution of simulation-based inverse identification problems. This thesis focuses on the optimal design of experiments addressing this problem. Piezoelectric materials exhibit the property of mechanical or electrical changes in response to applied potentials or forces (direct and indirect piezoelectric effect). To apply voltage and to exploit the indirect piezoelectric effect, electrodes are attached whose configura- tion have a significant influence on possible system responses. Therefore, the potential, the number and the size of the electrodes are initially optimized in the two-dimensional case. The piezoelectric behavior in the considered small signal range is based on a time dependent linear partial differential equation system. The derivation as well as the exis- tence, uniqueness and regularity of the solutions of the equations are shown. Time- and frequency-dependent simulations based on the finite element method (FEM) with the FEM simulation tool FEniCS are performed to calculate the electric charge and the impedance, which are relevant for the material identification problem and thus for the experimental design. Drawbacks in the derivative calculations are pointed out and a first set of adjoint equations is formulated. The modeling of the optimal experimental design (OED) prob- lem is done mainly by controlling the potential of the Dirichlet boundary conditions of the boundary value problem. Several numerical examples are used to show the resulting configurations and to address the difficulties encountered. Further electrode modeling ap- proaches for example by controlling the material properties are then discussed. Finally, possible extensions of the presented OED problem are pointed out.
260

A Novel Micro Fluid Kinetic Energy Harvester Based on the Vortex-Induced Vibration Principle and the Piezo Effect

Wen, Quan 21 December 2015 (has links) (PDF)
In this thesis, a miniaturized energy harvester system is developed. The energy harvester converts fluid kinetic energy into electrical energy without using any rotating components. The working principle of the energy harvester is based on the so called vortex-induced vibration. Such systems have the potential to provide energy for wireless sensor networks in the field of inline measurements for gas, oil or water transportation systems. The theoretical background of the vortex-induced vibration (VIV) is studied. Based on the studies, a fluid-structure interaction simulation is carried out to optimize the structure of the energy harvester. As result, the conversion efficiency is significantly improved, which is experimentally confirmed. A series of demonstrators are manufactured according to the simulation and optimization results. It is tested on a self-constructed test bench. To further improve the performance, an electromagnetic generator is proposed, and therefore, a multimethod demonstrator realized. The demonstrators are working in air flow already at a velocity of 2 m/s, and reach the maximum efficiency at 3.6 m/s. This performance ranks among the best published results and is discussed in detail. / In der vorliegenden Arbeit wird ein miniaturisiertes Energiegewinnungssystem entwickelt, das unter Verzicht auf rotierende Komponenten kinetische Strömungsenergie in elektrische Energie umwandelt. Die Funktion dieses Wandlers basiert auf der sogenannten wirbelinduzierten Vibration. Derartige Systeme besitzen unter anderem das Potenzial, drahtlose Sensornetzwerke zur Erfassung von Messdaten in Gas-, Öl- oder Wassertransportsystemen mit Energie zu versorgen zu können. In der Arbeit wird der theoretische Hintergrund der wirbelinduzierten Vibration untersucht und darauf basierend werden Fluid-Struktur-Wechselwirkungssimulationen zur Strukturoptimierung durchgeführt in deren Ergebnis eine theoretische Verbesserung der Effizienz des Wandlers um ein Mehrfaches erreicht wird, die auch praktisch bestätigt wird. Unter Berücksichtigung der Simulations- und Optimierungsergebnisse wurden eine Reihe von Demonstratoren gefertigt, die auf einem selbst konstruierten Prüfstand getestet wurden. Zur weiteren Erhöhung der Leistungsfähigkeit des Wandlers wird ein zusätzlicher elektromagnetischer Generator vorgeschlagen und damit ein Multi-Methoden-Demonstrator technisch realisiert. Die Demonstratoren arbeiten in strömender Luft bereits bei Geschwindigkeiten von 2 m/s und erreichen bei 3,6 m/s ihre maximale Effizienz. Die erreichten Ergebnisse ordnen sich im Vergleich mit denen aus entsprechenden Publikationen vorn ein und werden ausführlich diskutiert.

Page generated in 0.0934 seconds