• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 62
  • 38
  • 17
  • 2
  • Tagged with
  • 119
  • 68
  • 54
  • 48
  • 48
  • 46
  • 33
  • 28
  • 25
  • 25
  • 25
  • 22
  • 19
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Investigation of the supramolecular self-assembly, electronic properties, and on-surface reactions of porphyrin and phthalocyanine molecules

Smykalla, Lars 07 December 2016 (has links)
Das grundlegende Verständnis der Adsorption, der Eigenschaften, und der Wechselwirkungen von komplexen organischen Molekülen auf Festkörperoberflächen ist für die Entwicklung neuer Anwendungen in der Nanotechnologie von entscheidender Bedeutung. Die in dieser Arbeit untersuchten funktionellen Bausteine gehören zu den Porphyrinen und Phthalocyaninen. Deren Adsorption, elektronische Struktur, und Reaktionen der Moleküle auf Edelmetalloberflächen wurden mit mehreren Methoden charakterisiert, insbesondere der Rastertunnelmikroskopie, Rastertunnelspektroskopie, Röntgen-Nahkanten-Absorptions-Spektroskopie und Photoelektronenspektroskopie, welche zudem durch theoretische Simulationen unter Verwendung der Dichtefunktionaltheorie ergänzt wurden. Tetra(p-hydroxyphenyl)porphyrin Moleküle ordnen sich durch Selbstorganisation zu verschiedenen, durch Wasserstoffbrückenbindungen stabilisierten Nanostrukturen an, welche in Abhängigkeit von dem Substratoberflächengitter untersucht wurden um das komplizierte Zusammenspiel von Molekül−Molekül und Molekül−Substrat-Wechselwirkungen bei der Selbstorganisation zu verstehen. Erhitzen der Adsorbatschichten dieses Moleküls führt zu einer schrittweisen Deprotonierung, und außerdem konnte auch ein Schalten der Leitfähigkeit einzelner Porphyrin-Moleküle durch lokale Deprotonierung mittels Spannungspulsen demonstriert werden. Eine Polymerisationsreaktion, welche auf der Ullmann-Reaktion basiert, aber direkt auf einer Oberfläche stattfindet, wurde für Kupfer-octabromotetraphenylporphyrin Moleküle, die auf Au(111) adsorbiert sind, gefunden. Nach einer thermischen Abspaltung der Bromatome von den Molekülen reagieren dabei die Radikalmoleküle bei hohen Temperaturen miteinander und bilden geordnete, kovalent gebundene Netzwerke aus. Die Bromabspaltung und die nachfolgenden Reaktionen und Veränderungen der elektronischen Struktur der Moleküle wurden ausführlich für die Substratoberflächen Au(111) sowie Ag(110) untersucht. Weiterhin, wird die Adsorption und Selbstorganisation von metall-freien Phthalocyanin-Molekülen auf einer Ag(110)-Oberfläche, und deren Selbstmetallierungsreaktion mit Silberatomen des Substrats umfassend und verständlich beschrieben. Zuletzt wurden organische Hybrid-Grenzflächen zwischen verschiedenen Metall-Phthalocyaninen untersucht, wobei ein Ladungstransfer zwischen Kobalt- und Platin-Phthalocyanin-Molekülen gefunden wurde. Dotierung gemischter Metall-Phthalocyanin-Filme durch Einlagerung von Kaliumatomen und deren selektive Adsorption im Molekülgitter führt zu einer deutlichen Veränderung der elektronischen Eigenschaften, aufgrund einer Ladungsübertragung an die Kobalt-Phthalocyanin Moleküle.:List of publications List of abbreviations 1 Introduction 2 Methods 2.1 Scanning tunneling microscopy 2.1.1 Theoretical description 2.1.2 STM imaging modes 2.1.3 Scanning tunneling spectroscopy 2.1.4 Technical aspect of the STM instrument 2.2 Low energy electron diffraction 2.3 Photoelectron spectroscopy 2.3.1 Principle 2.3.2 Theoretical description 2.3.3 Initial state effects 2.3.4 Final state effects 2.3.5 X-ray source 2.3.6 Technical aspects of PES 2.3.7 Resonant Photoelectron spectroscopy 2.4 Near-edge X-ray absorption fine structure spectroscopy 2.4.1 Principle 2.4.2 Polarization dependence 2.5 Density Functional Theory 2.5.1 Fundamental equations 2.5.2 Exchange-correlation functionals 2.5.3 Dispersion correction 2.5.4 Hubbard U correction 2.5.5 Basis set 2.5.6 Grid-based projector augmented wave (GPAW) method 2.6 Fundamentals of epitaxy and growth of molecular films 3 Experimental and computational details 3.1 Experimental setup 3.2 Sample preparation 3.3 Technical details for measurements 3.3.1 STM 3.3.2 PES 3.3.3 NEXAFS 3.4 Computational details 4 Metal-free tetra(p-hydroxylphenyl)porphyrin (H2THPP) 4.1 Interplay of hydrogen bonding and molecule-substrate interaction in self-assembled supra-molecular structures of H2THPP 4.1.1 Adlayer structures of H2THPP on Au(111) 4.1.2 Adlayer structures of H2THPP on Ag(111) 4.1.3 Adlayer structures of H2THPP on Ag(110) 4.1.4 Calculation of the adsorption energies and discussion 4.2 Manipulation of the electronic structure by local reversible dehydrogenation 4.2.1 STM and STS results 4.2.2 Discussion of the interconversion 4.2.3 Dosing of hydrogen gas on H2THPP 4.3 Photoelectron spectroscopy investigation of the temperature-induced deprotonation and substrate-mediated hydrogen transfer 4.3.1 Protonation and deprotonation at nitrogen atoms 4.3.2 Deprotonation at carbon atoms 4.3.3 Evolution of the valence band 4.4 Summary 5 Copper-octabromotetraphenylporphyrin (CuTPPBr8) 5.1 Introduction to surface-confined polymerization 5.2 Adsorption and polymerisation of CuTPPBr8 on Au(111) 5.2.1 XPS investigations 5.2.2 STM investigations of the molecular adlayer 5.2.3 DFT calculations 5.3 Adsorption and temperature-dependence of CuTPPBr8 on Ag(110) 5.3.1 XPS and NEXAFS investigations of CuTPPBr8 on Ag(110) 5.3.2 Adlayer structure and adsorption geometry of CuTPPBr8 on Ag(110) 5.4 Summary 6 Metal-free phthalocyanine (H2Pc) on Ag(110) 6.1 Adlayer structures of H2Pc on Ag(110) 6.2 Self-metalation of H2Pc on Ag(110) with silver surface atoms 6.2.1 Introduction to self-metalation 6.2.2 XPS investigations of the self-metalation 6.2.3 STM results of the self-metalation 6.2.4 DFT simulations of the metalation reaction path 6.3 Summary 7 Charge transfer in metallophthalocyanine blends and doping with potassium atoms 7.1 Charge transfer in platinum phthalocyanine – cobalt phthalocyanine dimers 7.1.1 XPS of PtPc−CoPc dimer layers 7.1.2 Resonant photoelectron spectroscopy of PtPc−CoPc dimer layers 7.2 Potassium doping of copper phthalocyanine − cobalt phthalocyanine mixed films 7.2.1 XPS of CuPc−CoPc mixed layers 7.2.2 UPS of CuPc−CoPc mixed layers 7.2.3 NEXAFS of CuPc−CoPc mixed layers 7.2.4 DFT calculations of the CuPc−CoPc dimer and K doping 7.3 Summary 8 Conclusion and outlook Bibliography Erklärung Lebenslauf Danksagung
102

A Tailor-Made Approach for Thin Films and Monolayer Assemblies of bis(oxamato) and bis(oxamidato) Transition Metal Complexes: A Tailor-Made Approach for Thin Films and Monolayer Assembliesof bis(oxamato) and bis(oxamidato) Transition Metal Complexes

Abdulmalic, Mohammad A. 03 July 2013 (has links)
The present work is dealing with the synthesis and characterization of mono- to trinuclear Cu(II)- and Ni(II)-containing bis(oxamato) and bis(oxamidato) complexes, respectively. It will be derived to which extent the spin density distribution of mononuclear complexes, determined by electron paramagnetic resonance studies experimentally and calculated by quantum mechanical calculations, can be regarded as a measure of the magnitude of magnetic superexchange interactions of corresponding trinuclear complexes. The usability of tailor-made trinuclear complexes for their deposition in form of thin film by spin-coating is described as well as the magneto-optical characterization of these thin films. It is shown, that the tailor-made functionalization of mono- to trinuclear bis(oxamidato) complexes with long alkyl chains is suited to allow these complexes to assembly in monolayers on, e.g., HOPG(0001) (highly-oriented pyrolytic graphite), whereas the functionalization of the alkyl chains with S atoms allows the generation of self-assembled monolayers on metallic gold. Furthermore it is shown, that the functionalization of mono- and trinuclear Cu(II)-containing bis(oxamato) complexes with ferrocenediyle fragments allows to modify the magnetic properties by making use of the oxidation process Fe(II)/Fe(III). / Die vorliegende Arbeit befasst sich mit der Darstellung und Charakterisierung ein- bis dreikerniger Cu(II)- bzw. Ni(II)-haltiger bis(oxamato) oder bis(oxamidato) Komplexe. Es wird abgeleitet, inwiefern die aus Elektronenenspinresonanz- Untersuchungen experimentell und die quantenmechanisch berechneten Spindichteverteilungen einkerniger Komplexe ein Maß für die Größe der magnetischen Superaustauschwechselwirkungen korrespondierender dreikerniger Komplexe darstellt. Die Eignung maßgeschneiderter dreikerniger Komplexe zu ihrer Überführung in dünne Filme im nm-Bereich mittels Rotationsbeschichtung auf Si/SiO2-Substraten wird beschrieben sowie die magneto-optische Charakterisierung dieser dünnen Filme. Es wird gezeigt, dass durch gezielte Funktionalisierung mit langkettigen Alkylresten ein- bis dreikernige Cu(II)-haltige bis(oxamidato) Komplexe geeignet sind, auf Substraten wie HOPG(0001) (hochorientiertes pyrolytisches Graphit) zu Monolagen zu assemblieren während die zielgerichtete Funktionalisierung der Alkylketten mit S-Atomen es ermöglicht selbst-assemblierte Monolagen auf metallischem Gold zu generieren. Zusätzlich wird beschrieben, dass durch die Funktionalisierung von ein- und dreikernigen Cu(II)-haltigen bis(oxamato) mit Ferrocendiylresten die magentischen Eigenschaften durch den Oxidationsprozess Fe(II)/Fe(III) gezielt modifiziert werden können.
103

Self-Assembly and Electronic Properties of π-expanded Macrocycles

Cojal Gonzalez, Jose David 06 July 2018 (has links)
In der vorliegenden Dissertation werden das Selbstaggregationsverhalten und die elektronischen Eigenschaften von vier expandierten pi-konjugierten Makrozyklen in geordnete supramolekulare Architekturen mit Hilfe von Rastertunnelmikroskopie (STM) und Tunnelspektroskopie (STS) an Fest-Flüssig-Grenzflächen zwischen organischen Moleküllösungen und der Basalfläche von Graphit untersucht. Zwei Makrozyklen sind die Fotoisomere Z,Z–8T6A und E,E–8T6A, in denen sechs Ethynylengruppen und zwei cis- bzw. trans-Ethylen erhalten sind. STM-Bilder zeigen 2-dimensionale hexagonale Gitter. Strom-Spannungs-Kennlinien bestätigten den erwarteten donor-artigen Charakter der Makrozyklen. Das Schalten von Z,Z–8T6A zu E,E–8T6A wird durch STS zyklische Messungen angezeigt, nachdem die stabilste kationische Spezies ausgebildet wurde. Diese Ergebnisse stellen das erste elektrochemische Schalten unter Standard STM Bedingungen dar. Außerdem wurden die Photoisomerisierungen zwischen Z,Z-8T6A und E,E-8T6A an der Fest-Flüssig-Grenzfläche beobachtet. Eine selbstorganisierte Monoschicht aus Wasserstoffbrücken-gebundenen Trimesinsäuren an der Fest-Flüssig-Grenzfläche bildet Wirtsstellen für die epitaktische Anordnung von Fullerenen mit E,E–8T6A Komplexen in Mono- und Doppelschichten aus. Mit Hilfe der STM-Tomographie wird die Bildung der Templatschicht überprüft. Die Konformationsstabilität und die Adsorptionsstellen der Monoschichten werden mit der Hilfe von Molekulardynamik-Simulation bestätigt. Die STS-Experimente zeigen die Modifikation der gleichrichtenden Eigenschaften der Makrozyklen durch die Bildung von Donor-Akzeptor-Komplexen in einer dicht gepackten, selbstorganisierten supramolekularen Nanostruktur. Die Kombination von Wirt-Gast-Komplexen mit der Schaltfähigkeit und den elektronischen Transporteigenschafte von makrozyklischen Oligothiophenen prädestinieren diese als Kandidaten für Anwendungen in supramolekular konstruierten Systemen mit gewünschten (opto)elektronischen Eigenschaften. / The present thesis concerns to the self-assembly and the electronic properties of four pi-expanded macrocycles into ordered supramolecular architectures, investigated by means of scanning tunneling microscopy (STM) and spectroscopy (STS) at the solid-liquid interface between organic solutions and the basal plane of graphite. Two macrocycles are the photoisomers Z,Z–8T6A and E,E–8T6A, which contain six ethynylenes and two cis- and trans-ethylenes in opposite positions of the ring, respectively. STM images reveal hexagonally ordered 2D-networks. Current–voltage characteristics confirm the expected donor-like character of the macrocycles. Cyclic STS measurements indicate that Z,Z–8T6A switches to E,E–8T6A after formation of a most stable cationic species. This result represents the first reported electrochemical switching experiment under standard STM conditions. Additionally, the reversible photoisomerization between Z,Z-8T6A and E,E-8T6A upon irradiation was recognized at the solid-liquid interface. Moreover, a self-assembled monolayer of hydrogen-bonded trimesic acid at the solid-liquid interface provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with E,E–8T6A macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layer, while molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. STS measurements reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. The combination of host-guest complexation and the switching capabilities and electronics transport characteristics of cyclic oligothiophenes render them candidates for applications in the study of supramolecular engineered systems with desirable (opto)electronic properties.
104

Strukturelle und elektronische Eigenschaften von Nanographen-Graphen-Systemen sowie Schnitt- und Faltverhalten von Graphen

Eilers, Stefan 11 April 2013 (has links)
Im ersten Teil der Arbeit werden Graphen sowie von Monolagen von auf Nanometer großen Graphenen basierenden Hexa-peri(Dodekyl)-Hexabenzocoronen-Molekülen (HBC-C12), adsorbiert auf Graphen, mit Rastertunnelmikroskopie und –spektroskopie an der Fest-Flüssig-Grenzfläche untersucht. Nanographen-Moleküle selbstaggregieren epitaktisch zu hochgeordneten Monolagen. Die Einheitszellen der Moleküllagen auf Monolage Graphen, Bilage Graphen und auf Graphit sind ununterscheidbar. Die Strukturen der Moleküllagen auf gewellten und flachen Teilen des Graphens stimmen überein. Strom-Spannungs-Kennlinien an Nanographen auf Graphen und auf Graphit weisen auf sehr ähnliche elektronische Eigenschaften hin. Zusammengefasst sind strukturelle sowie elektronische Eigenschaften der Nanographenlage homogen, stabil und definiert. Graphen erweist sich als bestens als Substrat und gleichzeitig als Elektrode für hochgeordnete Lagen von Nanographen-Molekülen geeignet. Im zweiten Teil der Arbeit wird Graphen mit der Sonde eines Rasterkraftmikroskops im Kontaktmodus mechanisch manipuliert. Es wird gezeigt, dass Graphen in nur einem Manipulationsschritt zu Streifen und Spalt geschnitten werden kann. Dieses Verhalten wird mit einem klassischen Modell des Biegens theoretisch erklärt. Das Schnittverhalten liegt in der 2-Dimensionalität des Graphens sowie in dessen Faltbarkeit auf Grund hinreichender Elastizität begründet. Durch mechanische Manipulation mit der Sonde des Rasterkraftmikroskops im Kontaktmodus unter atmosphärischen Bedingungen wird eine Flüssigkeitsschicht zwischen Graphen und dem Siliziumdioxidsubstrat nachgewiesen, welche eine mögliche Erklärung des stark kraftabhängigen Materialkontrasts zwischen Graphen und Siliziumdioxid im Amplitudenmodulationsmodus des Rasterkraftmikroskops darstellt. Weiter wird gezeigt, dass das Falten des Graphens durch mechanische Manipulation eine geeignete Methode zur Herstellung nicht epitaktisch aufeinander gestapelter Graphene darstellt. / In the first part of the thesis graphene as well as monolayers of hexa-peri(dodecyl)-hexabenzocoronene molecules (HBC-C12) based on nanometer sized graphenes adsorbed on graphene is investigated by scanning tunnelling microscopy and tunneling spectroscopy at the solid-liquid interface. The nanographene molecules self-assemble on graphene epitaxially to form highly ordered monolayers. The unit cells of the molecular layers on monolayer graphene, bilayer graphene and on graphite appear identical. The structures of the molecular layers occur equal on corrugated and on flat parts of graphene. Current-voltage-characteristics show that the electronic properties of nanographene on graphene and on graphite are very similar. Summarized, structural as well as electronic properties of the nanographene layer are homogeneous, stable and defined. Graphene proves to be excellently qualified for simultaneously being substrate as well as electrode for highly ordered layers of nanographene based molecules. In the second part of the thesis graphene is mechanically manipulated in air in contact mode of a scanning force microscope. It is shown that a single manipulation process can lead to a stripe cut out of graphene. This behaviour is theoretically explained by a classical bending model. The cutting behavior originates from the 2-dimensionality of graphene and its folding ability because of sufficient elasticity. A liquid layer between graphene and the silicon dioxide substrate is verified by mechanical manipulation in contact mode of a scanning force microscope. Hence a possible explanation could be found for the strongly force dependent material contrast between graphene and silicon dioxide in amplitude modulation mode of the scanning force microscope. Further, it is demonstrated that folding graphene by mechanical manipulation is a proper method for the production of graphene stacked on each other non-epitaxially.
105

Electronic Coupling Effects and Charge Transfer between Organic Molecules and Metal Surfaces / Elektronische Kopplungseffekte und Ladungstransfer zwischen organischen Molekülen und Metalloberflächen

Forker, Roman 28 January 2010 (has links) (PDF)
We employ a variant of optical absorption spectroscopy, namely in situ differential reflectance spectroscopy (DRS), for an analysis of the structure-properties relations of thin epitaxial organic films. Clear correlations between the spectra and the differently intense coupling to the respective substrates are found. While rather broad and almost structureless spectra are obtained for a quaterrylene (QT) monolayer on Au(111), the spectral shape resembles that of isolated molecules when QT is grown on graphite. We even achieve an efficient electronic decoupling from the subjacent Au(111) by inserting an atomically thin organic spacer layer consisting of hexa-peri-hexabenzocoronene (HBC) with a noticeably dissimilar electronic behavior. These observations are further consolidated by a systematic variation of the metal substrate (Au, Ag, and Al), ranging from inert to rather reactive. For this purpose, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) is chosen to ensure comparability of the molecular film structures on the different metals, and also because its electronic alignment on various metal surfaces has previously been studied with great intensity. We present evidence for ionized PTCDA at several interfaces and propose the charge transfer to be related to the electronic level alignment governed by interface dipole formation on the respective metals. / Zur Analyse der Struktur-Eigenschafts-Beziehungen dünner, epitaktischer Molekülfilme wird in situ differentielle Reflexionsspektroskopie (DRS) als Variante der optischen Absorptionsspektroskopie verwendet. Klare Zusammenhänge zwischen den Spektren und der unterschiedlich starken Kopplung zum jeweiligen Substrat werden gefunden. Während man breite und beinahe unstrukturierte Spektren für eine Quaterrylen (QT) Monolage auf Au(111) erhält, ist die spektrale Form von auf Graphit abgeschiedenem QT ähnlich der isolierter Moleküle. Durch Einfügen einer atomar dünnen organischen Zwischenschicht bestehend aus Hexa-peri-hexabenzocoronen (HBC) mit einem deutlich unterschiedlichen elektronischen Verhalten gelingt sogar eine effiziente elektronische Entkopplung vom darunter liegenden Au(111). Diese Ergebnisse werden durch systematische Variation der Metallsubstrate (Au, Ag und Al), welche von inert bis sehr reaktiv reichen, untermauert. Zu diesem Zweck wird 3,4,9,10-Perylentetracarbonsäuredianhydrid (PTCDA) gewählt, um Vergleichbarkeit der molekularen Filmstrukturen zu gewährleisten, und weil dessen elektronische Anordnung auf verschiedenen Metalloberflächen bereits eingehend untersucht worden ist. Wir weisen ionisiertes PTCDA an einigen dieser Grenzflächen nach und schlagen vor, dass der Ladungsübergang mit der elektronischen Niveauanpassung zusammenhängt, welche mit der Ausbildung von Grenzflächendipolen auf den entsprechenden Metallen einhergeht.
106

Atomic Scale Images of Acceptors in III-V Semiconductors / Band Bending, Tunneling Paths and Wave Functions

Loth, Sebastian 26 October 2007 (has links)
No description available.
107

Untersuchung der elektrischen Phasenseparation in dünnen Manganatschichten mit Rastersondenspektroskopie / Intrinsic phase separation in manganite thin films investigated with scanning tunneling spectroscopy

Becker, Thomas 08 June 2004 (has links)
No description available.
108

On-surface synthesis of acenes – / Oberflächensynthese von Acenen – organische nanoelektronische Materialien als Einzelmoleküle untersucht

Krüger, Justus 09 January 2018 (has links) (PDF)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level. In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions. The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein. Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können. Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
109

On-surface synthesis of acenes –: organic nanoelectronic materials explored at a single-molecule level

Krüger, Justus 05 December 2017 (has links)
Acenes are a class of polycyclic aromatic hydrocarbons (PAH) with linearly fused benzene rings. They are widely considered as promising materials for organic and molecular electronics. However, larger molecules of this class possessing more than five rings are chemically extremely reactive and show a very low solubility. Hence, large acenes are difficult to handle, and the experimental data available to date is limited. The aim of this work is to show a very promising protocol of how acenes with different lengths can be stabilized and investigated on metallic surfaces. The experimental approach of on-surface synthesis is explored to generate the respective acenes directly on the metallic substrate via the reduction of suitable precursor molecules. High-resolution scanning probe microscopy (SPM) is employed at a temperature of 5 K to verify the chemical conversion at a single-molecule level. In the first part of this work, the on-surface synthesis of acenes is introduced via the example of tetracene (4-acene) formation on Cu(111). Precursors with 1,4-epoxy moieties preferably adsorb with their oxygen-rich site facing the substrate. Subsequently, they can be deoxygenated via annealing of the substrate or by single-molecule manipulation with the tip of the scanning probe microscope. In both cases, atomic force microscopy (AFM) measurements resolve the planar adsorption geometry of tetracene on the surface with atomic resolution. Based on these findings, scanning tunneling microscopy (STM) is employed to investigate the self-assembly patterns of on-surface generated anthracene (3-acene) and tetracene molecules after synthesis on Au(111). These measurements show intriguing organic nanostructures and supramolecular networks that can form at the metallic interface upon thermally-induced surface reactions. The second part of this thesis focuses on the electronic structure of acenes adsorbed on a metallic substrate. By applying the novel method of on-surface reduction, single and isolated hexacene (6-acene) molecules are investigated on Au(111). Scanning tunneling spectroscopy (STS) measurements indicate a weak interaction with the substrate and reveal five accessible molecular resonances at the organic-metal interface. The differential conductance maps with high spatial resolution at the respective resonant bias values compare well to elastic scattering quantum chemistry-based calculations. Finally, the experimental investigations of Br-substituted precursors show the stabilization of genuine unsubstituted heptacene (7-acene), as confirmed by imaging of the molecular structure via atomic-resolution STM. Accordingly, the precise characterization of this molecule via STS allows more insight into the electronic structure of adsorbed acenes with respect to their length. / Acene sind eine Klasse von polyzyklischen aromatischen Kohlenwasserstoffen mit linear kondensierten Benzolringen. Sie gelten weithin als vielversprechende Materialien für die organische und molekulare Elektronik. Jedoch sind die größeren Moleküle dieser Klasse mit mehr als fünf Ringen chemisch extrem reaktiv und zeigen eine sehr geringe Löslichkeit, daher gibt es bisher nur wenige experimentelle Untersuchungen ihrer Eigenschaften. Das Ziel dieser Arbeit ist es, Acene mit unterschiedlichen Längen auf einer metallischen Oberfläche stabilisieren und untersuchen zu können. Dabei wird der experimentelle Ansatz der Oberflächensynthese verfolgt und die jeweiligen Acene durch Reduktion von geeigneten Präkursoren direkt an einer metallischen Grenzfläche hergestellt. Hochauflösende Rastersondenmikroskopie an einzelnen Molekülen bei einer Temperatur von 5K nimmt dabei eine Schlüsselrolle im Nachweis der chemischen Umwandlung auf der Oberfläche ein. Im ersten Teil dieser Arbeit wird die Oberflächensynthese von Acenen am Beispiel von Tetracen (4-Acen) auf Cu(111) eingeführt. Die Ausgangsmoleküle mit funktionellen Gruppen adsorbieren bevorzugt mit ihrer sauerstoffreichen Seite auf dem Substrat und können dort sowohl thermisch als auch mithilfe der Spitze des Rastersondenmikroskops umgewandelt werden. In beiden Fällen wird die planare Adsorptionsgeometrie von Tetracen auf der Oberfläche mittels Rasterkraftmikroskopie mit atomarer Auflösung abgebildet. Darauf aufbauend wird Rastertunnelmikroskopie genutzt, um die Selbstassemblierung von Anthracen (3-Acen) und Tetracen nach der jeweiligen Synthese auf Au(111) zu untersuchen. Die Messungen zeigen unerwartete organische Nanostrukturen und supramolekulare Netzwerke, welche sich an der metallischen Grenzfläche durch die induzierte Oberflächenreduktion bilden können. Der zweite Teil dieser Arbeit beschäftigt sich mit den elektronischen Eigenschaften von adsorbierten Acenen. Durch die neuartige Methode der Oberflächenreduktion können einzelne Hexacene (6-Acen) auf Au(111) untersucht werden. Messungen basierend auf Rastertunnelspektroskopie geben Hinweise auf die schwache Wechselwirkung mit dem Substrat und zeigen fünf molekulare Eigenzustände, die im Experiment zugänglich sind. Die entsprechenden Abbildungen der differentiellen Leitfähigkeiten mit hoher Ortsauflösung sind in guter Übereinstimmung mit einer quantenmechanischen Modellierung. Schließlich wird die Stabilisierung von Heptacen (7-Acen) von Br-substituierten Präkursoren mittels Rastertunnelmikroskopie mit atomarer Auflösung gezeigt. Dadurch kann die elektronische Struktur von adsorbierten Acenen anhand ihrer Länge verglichen werden.
110

STM investigation of model systems for atomic and molecular scale electronics

Eisenhut, Frank 09 August 2019 (has links)
In this thesis, I explore model systems for planar atomic and molecular scale electronics on surfaces. The nanoscale systems are experimentally investigated by combining scanning tunneling microscopy (STM) with atomic and molecular manipulation. Furthermore, the on-surface chemical synthesis of molecules, as well as the construction of atomic wires on selected surfaces is applied. Polycyclic aromatic hydrocarbon (PAH) molecules play a key role in this work, as they can provide the functionality of the molecular scale devices. In the first part of this work, I investigate different PAH´s on the Au(111) surface. The precursor molecules form supramolecular assemblies and the on-surface synthesis approach to obtain the desired molecular products is used. In particular, bisanthene molecules via a cyclodehydrogenation reaction and the non-alternant polyaromatic hydrocarbon diindenopyrene after a thermally induced debromination followed by selective ring-closure to form a five-membered ring are obtained. An interesting surface for future applications is the passivated silicon Si(001)-(2x1):H. I prepare this surface and characterize the substrate. The surface has a band gap and molecules are electronically decoupled from the semiconducting substrate due to the passivation layer. Furthermore, atomic defects on this substrate, so called dangling bonds (DB´s), have defined electronic states. I show that it is possible to produce DB defects controllably by applying voltage pulses using the tip of the STM and achieve with this method atomic wires with DB´s. The third part of this thesis deals with the investigation of molecular structures on Si(001)-(2x1):H. I present the generation of hexacene by a surface assisted reduction. This result can be generalized for the generation of PAH´s after deoxygenation on passivated silicon and can open new routes to design functional molecules on this substrate. Secondly, one-dimensional chains of acetylbiphenyl (ABP) molecules are explored. They interact via its pi-stacked phenyl rings that are considered as conducting channel. Finally, I demonstrate that a single ABP molecule acts as a switch, as one can reversibly passivate and depassivate a single DB by a hydrogen transfer. In the last part of this work, I test the new low-temperature four-probe STM located at CEMES-CNRS in Toulouse. This machine is constructed for the development of molecular scale devices. For this purposes an atomic precision is needed for all the different tips at the same time and a high stability of this scanning probe microscope must be achieved. I perform a manipulation experiment of molecules to test the necessary submolecular precision. For that reason, supramolecular assemblies of ABP molecules on Au(111) are imaged and manipulated by any of the four tips using the lateral manipulation mode as well as by voltage pulses. The stability of the system is shown, as all tips of the four-probe STM work independently in parallel.:1 Introduction 2 Fundamentals of scanning tunneling microscopy 2.1 The working principle 2.2 Scanning tunneling spectroscopy 2.3 Manipulation modes 2.4 Modeling 3 Experimental setup, materials and methods 3.1 The scanning tunneling microscope 3.2 The Au(111) surface 3.3 Further experimental details 4 On-surface synthesis of molecules 4.1 Introduction 4.2 Generation of a periacene 4.3 Investigating a non-alternant PAH 4.4 Conclusion 5 The passivated silicon surface 5.1 Introduction 5.2 Preparation of passivated silicon 5.3 Characterization of Si(001)-(2x1):H 5.4 Tip-induced formation of dangling bonds 5.5 Conclusion 6 Organic molecules on passivated silicon 6.1 Introduction 6.2 Hexacene generated on passivated silicon 6.3 Acetylbiphenyl on passivated silicon 6.4 Conclusion 7 Testing a low temperature four-probe STM 7.1 Introduction 7.2 The four-probe STM 7.3 Performance test of the four-probe STM on Au(111) 7.4 Manipulation of ABP assemblies 7.5 Conclusion 8 Summary and outlook 9 Appendix 9.1 Dibromo-dimethyl-naphtalene on Au(111) 9.2 Epiminotetracene on Au(111) Bibliography Curriculum vitae Scientific contributions Acknowledgement Statement of authorship / In dieser Arbeit untersuche ich Modellsysteme für planare atomare und molekulare Elektronik auf Oberflächen. Die Systeme auf der Nanoskala werden experimentell durch die Kombination aus Rastertunnelmikroskopie (RTM) und atomarer sowie molekularer Manipulation untersucht. Moleküle werden durch die oberflächenchemische Synthese generiert und atomare Drähte auf ausgewählten Oberflächen hergestellt. Polyzyklisch aromatische Kohlenwasserstoff (PAK) Moleküle spielen bei dieser Arbeit eine Schlüsselrolle, da sie die passiven und aktiven Elemente auf molekularem Maßstab darstellen können. Im ersten Teil dieser Arbeit untersuche ich verschiedene PAK´s auf der Au(111)-Oberfläche. Die Präkursoren bilden dabei supramolekulare Anordnungen und ich nutze die Oberflächensynthese, um die gewünschten molekulare Produkte zu erhalten. Im Speziellen habe ich Bisanthen-Moleküle über eine Zyklodehydrogenationsreaktion und das nicht-alternierende PAK Diindenopyren erzeugt. Dieses entsteht nach einer thermisch-induzierten Debromierung gefolgt von selektivem Ringschluss, sodass ein fünfgliedriger Ring gebildet wird. Eine interessante Oberfläche für zukünftige Anwendungen ist das passivierte Silizium Si(001)-(2x1):H. Ich habe diese Oberfläche erfolgreich präpariert und das Substrat charakterisiert. Die Oberfläche hat eine Bandlücke und Moleküle sind elektronisch von dem halbleitenden Substrat durch die Passivierungsschicht entkoppelt. Desweiteren haben atomare Defekte dieser Oberfläche, sogenannte Dangling-Bond´s (DB’s), definierte elektronische Zustände innerhalb der Bandlücke. Ich habe DB´s kontrolliert durch Spannungspulse mithilfe der Spitze des RTM erzeugt und stelle so atomare Drähte mit DB Defekten her. Der dritte Teil dieser Arbeit befasst sich mit der Untersuchung molekularer Strukturen auf Si(001)-(2x1):H. Die Erzeugung von Hexacen auf passivierten Silizium durch eine oberflächenunterstützte Reduktion wird gezeigt. Dieses Ergebnis ist eine neue Strategie für die Herstellung von PAK´s nach der Deoxygenierung und eröffnet neue Wege um funktionelle Moleküle auf diesem Substrat zu entwerfen. Zweitens zeige ich, dass Acetylbiphenyl (ABP) Moleküle eindimensionale Ketten auf dieser Oberfläche bilden. Diese interagieren über ihre Phenylringe, welche als leitender Kanal gesehen werden können. Zudem kann ein einzelnes ABP Molekül wie ein Schalter genutzt werden, da es reversibel einzelne DB´s durch Wasserstoffübertragung passivieren und depassivieren kann. Im letzten Teil dieser Arbeit wird das neue Tieftemperatur Vier-Sonden RTM, welches sich in CEMES-CNRS in Toulouse befindet, getestet. Diese Maschine ist für die Herstellung und Untersuchung von Geräten im molekularem Maßstab konstruiert worden. Zu diesem Zweck ist eine atomare Präzision für die verschiedenen Spitzen zur gleichen Zeit erforderlich und eine hohe Stabilität des Rastersondenmikroskops muss gewährleistet sein. Ich führe ein Manipulationsversuch an Molekülen durch, um die notwendige submolekulare Präzision zu testen. Dafür werden supramolekulare Anordnungen von ABP-Molekülen auf Au(111) abgebildet und die Strukturen mit jeder der vier Spitzen im lateralen Manipulationsmodus und durch Spannungpulse bewegt. Damit habe ich die Stabilität des Systems getestet und konnte zeigen, dass alle Spitzen des Systems unabhängig voneinander parallel arbeiten.:1 Introduction 2 Fundamentals of scanning tunneling microscopy 2.1 The working principle 2.2 Scanning tunneling spectroscopy 2.3 Manipulation modes 2.4 Modeling 3 Experimental setup, materials and methods 3.1 The scanning tunneling microscope 3.2 The Au(111) surface 3.3 Further experimental details 4 On-surface synthesis of molecules 4.1 Introduction 4.2 Generation of a periacene 4.3 Investigating a non-alternant PAH 4.4 Conclusion 5 The passivated silicon surface 5.1 Introduction 5.2 Preparation of passivated silicon 5.3 Characterization of Si(001)-(2x1):H 5.4 Tip-induced formation of dangling bonds 5.5 Conclusion 6 Organic molecules on passivated silicon 6.1 Introduction 6.2 Hexacene generated on passivated silicon 6.3 Acetylbiphenyl on passivated silicon 6.4 Conclusion 7 Testing a low temperature four-probe STM 7.1 Introduction 7.2 The four-probe STM 7.3 Performance test of the four-probe STM on Au(111) 7.4 Manipulation of ABP assemblies 7.5 Conclusion 8 Summary and outlook 9 Appendix 9.1 Dibromo-dimethyl-naphtalene on Au(111) 9.2 Epiminotetracene on Au(111) Bibliography Curriculum vitae Scientific contributions Acknowledgement Statement of authorship

Page generated in 0.0855 seconds