• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 315
  • 182
  • 34
  • 29
  • 13
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 5
  • 5
  • 5
  • 4
  • Tagged with
  • 712
  • 142
  • 68
  • 62
  • 59
  • 55
  • 50
  • 49
  • 48
  • 46
  • 45
  • 44
  • 43
  • 40
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Dynamic Speed Adaptation for Curves using Machine Learning / Dynamisk hastighetsanpassning för kurvor med maskininlärning

Narmack, Kirilll January 2018 (has links)
The vehicles of tomorrow will be more sophisticated, intelligent and safe than the vehicles of today. The future is leaning towards fully autonomous vehicles. This degree project provides a data driven solution for a speed adaptation system that can be used to compute a vehicle speed for curves, suitable for the underlying driving style of the driver, road properties and weather conditions. A speed adaptation system for curves aims to compute a vehicle speed suitable for curves that can be used in Advanced Driver Assistance Systems (ADAS) or in Autonomous Driving (AD) applications. This degree project was carried out at Volvo Car Corporation. Literature in the field of speed adaptation systems and factors affecting the vehicle speed in curves was reviewed. Naturalistic driving data was both collected by driving and extracted from Volvo's data base and further processed. A novel speed adaptation system for curves was invented, implemented and evaluated. This speed adaptation system is able to compute a vehicle speed suitable for the underlying driving style of the driver, road properties and weather conditions. Two different artificial neural networks and two mathematical models were used to compute the desired vehicle speed in curves. These methods were compared and evaluated. / Morgondagens fordon kommer att vara mer sofistikerade, intelligenta och säkra än dagens fordon. Framtiden lutar mot fullständigt autonoma fordon. Detta examensarbete tillhandahåller en datadriven lösning för ett hastighetsanpassningssystem som kan beräkna ett fordons hastighet i kurvor som är lämpligt för förarens körstil, vägens egenskaper och rådande väder. Ett hastighetsanpassningssystem för kurvor har som mål att beräkna en fordonshastighet för kurvor som kan användas i Advanced Driver Assistance Systems (ADAS) eller Autonomous Driving (AD) applikationer. Detta examensarbete utfördes på Volvo Car Corporation. Litteratur kring hastighetsanpassningssystem samt faktorer som påverkar ett fordons hastighet i kurvor studerades. Naturalistisk bilkörningsdata samlades genom att köra bil samt extraherades från Volvos databas och bearbetades. Ett nytt hastighetsanpassningssystem uppfanns, implementerades samt utvärderades. Hastighetsanpassningssystemet visade sig vara kapabelt till att beräkna en lämplig fordonshastighet för förarens körstil under rådande väderförhållanden och vägens egenskaper. Två olika artificiella neuronnätverk samt två matematiska modeller användes för att beräkna fordonets hastighet. Dessa metoder jämfördes och utvärderades.
712

ON-MACHINE MEASUREMENT OF WORKPIECE FORM ERRORS IN ULTRAPRECISION MACHINING

Gomersall, Fiona January 2016 (has links)
Ultraprecision single point diamond turning is required to produce parts with sub-nanometer surface roughness and sub-micrometer surface profiles tolerances. These parts have applications in the optics industry, where tight form accuracy is required while achieving high surface finish quality. Generally, parts can be polished to achieve the desired finish, but then the form accuracy can easily be lost in the process rendering the part unusable. Currently, most mid to low spatial frequency surface finish errors are inspected offline. This is done by physically removing the workpiece from the machining fixture and mounting the part in a laser interferometer. This action introduces errors in itself through minute differences in the support conditions of the over constrained part on a machine as compared to the mounting conditions used for part measurement. Once removed, the fixture induced stresses and the part’s internal residual stresses relax and change the shape of the generally thin parts machined in these applications. Thereby, the offline inspection provides an erroneous description of the performance of the machine. This research explores the use of a single, high resolution, capacitance sensor to quickly and qualitatively measure the low to mid spatial frequencies on the workpiece surface, while it is mounted in a fixture on a standard ultraprecision single point diamond turning machine after a standard facing operation. Following initial testing, a strong qualitative correlation exists between the surface profiling on a standard offline system and this online measuring system. Despite environmental effects and the effects of the machine on the measurement system, the capacitive system with some modifications and awareness of its measurement method is a viable option for measuring mid to low spatial frequencies on a workpiece surface mounted on an ultraprecision machine with a resolution of 1nm with an error band of ±5nm with a 20kHz bandwidth. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0387 seconds