• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 6
  • 4
  • Tagged with
  • 74
  • 74
  • 37
  • 30
  • 30
  • 25
  • 21
  • 21
  • 21
  • 18
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Analysis of survey data in the presence of non-ignorable missing-data and selection mechanisms

Hammon, Angelina 04 July 2023 (has links)
Diese Dissertation beschäftigt sich mit Methoden zur Behandlung von nicht-ignorierbaren fehlenden Daten und Stichprobenverzerrungen – zwei häufig auftretenden Problemen bei der Analyse von Umfragedaten. Beide Datenprobleme können die Qualität der Analyseergebnisse erheblich beeinträchtigen und zu irreführenden Inferenzen über die Population führen. Daher behandle ich innerhalb von drei verschiedenen Forschungsartikeln, Methoden, die eine Durchführung von sogenannten Sensitivitätsanalysen in Bezug auf Missing- und Selektionsmechanismen ermöglichen und dabei auf typische Survey-Daten angewandt werden können. Im Rahmen des ersten und zweiten Artikels entwickele ich Verfahren zur multiplen Imputation von binären und ordinal Mehrebenen-Daten, welche es zulassen, einen potenziellen Missing Not at Random (MNAR) Mechanismus zu berücksichtigen. In unterschiedlichen Simulationsstudien konnte bestätigt werden, dass die neuen Imputationsmethoden in der Lage sind, in allen betrachteten Szenarien unverzerrte sowie effiziente Schätzungen zuliefern. Zudem konnte ihre Anwendbarkeit auf empirische Daten aufgezeigt werden. Im dritten Artikel untersuche ich ein Maß zur Quantifizierung und Adjustierung von nicht ignorierbaren Stichprobenverzerrungen in Anteilswerten, die auf der Basis von nicht-probabilistischen Daten geschätzt wurden. Es handelt sich hierbei um die erste Anwendung des Index auf eine echte nicht-probabilistische Stichprobe abseits der Forschergruppe, die das Maß entwickelt hat. Zudem leite ich einen allgemeinen Leitfaden für die Verwendung des Index in der Praxis ab und validiere die Fähigkeit des Maßes vorhandene Stichprobenverzerrungen korrekt zu erkennen. Die drei vorgestellten Artikel zeigen, wie wichtig es ist, vorhandene Schätzer auf ihre Robustheit hinsichtlich unterschiedlicher Annahmen über den Missing- und Selektionsmechanismus zu untersuchen, wenn es Hinweise darauf gibt, dass die Ignorierbarkeitsannahme verletzt sein könnte und stellen erste Lösungen zur Umsetzung bereit. / This thesis deals with methods for the appropriate handling of non-ignorable missing data and sample selection, which are two common challenges of survey data analysis. Both issues can dramatically affect the quality of analysis results and lead to misleading inferences about the population. Therefore, in three different research articles, I treat methods for the performance of so-called sensitivity analyses with regards to the missing data and selection mechanism that are usable with typical survey data. In the first and second article, I provide novel procedures for the multiple imputation of binary and ordinal multilevel data that are supposed to be Missing not At Random (MNAR). The methods’ suitability to produce unbiased and efficient estimates could be demonstrated in various simulation studies considering different data scenarios. Moreover, I could show their applicability to empirical data. In the third article, I investigate a measure to quantify and adjust non-ignorable selection bias in proportions estimated based on non-probabilistic data. In doing so, I provide the first application of the suggested index to a real non-probability sample outside its original research group. In addition, I derive general guidelines for its usage in practice, and validate the measure’s performance in properly detecting selection bias. The three presented articles highlight the necessity to assess the sensitivity of estimates towards different assumptions about the missing-data and selection mechanism if it seems realistic that the ignorability assumption might be violated, and provide first solutions to enable such robustness checks for specific data situations.
62

Decentralized Algorithms for Wasserstein Barycenters

Dvinskikh, Darina 29 October 2021 (has links)
In dieser Arbeit beschäftigen wir uns mit dem Wasserstein Baryzentrumproblem diskreter Wahrscheinlichkeitsmaße sowie mit dem population Wasserstein Baryzentrumproblem gegeben von a Fréchet Mittelwerts von der rechnerischen und statistischen Seiten. Der statistische Fokus liegt auf der Schätzung der Stichprobengröße von Maßen zur Berechnung einer Annäherung des Fréchet Mittelwerts (Baryzentrum) der Wahrscheinlichkeitsmaße mit einer bestimmten Genauigkeit. Für empirische Risikominimierung (ERM) wird auch die Frage der Regularisierung untersucht zusammen mit dem Vorschlag einer neuen Regularisierung, die zu den besseren Komplexitätsgrenzen im Vergleich zur quadratischen Regularisierung beiträgt. Der Rechenfokus liegt auf der Entwicklung von dezentralen Algorithmen zurBerechnung von Wasserstein Baryzentrum: duale Algorithmen und Sattelpunktalgorithmen. Die Motivation für duale Optimierungsmethoden ist geschlossene Formen für die duale Formulierung von entropie-regulierten Wasserstein Distanz und ihren Derivaten, während, die primale Formulierung nur in einigen Fällen einen Ausdruck in geschlossener Form hat, z.B. für Gaußsches Maß. Außerdem kann das duale Orakel, das den Gradienten der dualen Darstellung für die entropie-regulierte Wasserstein Distanz zurückgibt, zu einem günstigeren Preis berechnet werden als das primale Orakel, das den Gradienten der (entropie-regulierten) Wasserstein Distanz zurückgibt. Die Anzahl der dualen Orakel rufe ist in diesem Fall ebenfalls weniger, nämlich die Quadratwurzel der Anzahl der primalen Orakelrufe. Im Gegensatz zum primalen Zielfunktion, hat das duale Zielfunktion Lipschitz-stetig Gradient aufgrund der starken Konvexität regulierter Wasserstein Distanz. Außerdem untersuchen wir die Sattelpunktformulierung des (nicht regulierten) Wasserstein Baryzentrum, die zum Bilinearsattelpunktproblem führt. Dieser Ansatz ermöglicht es uns auch, optimale Komplexitätsgrenzen zu erhalten, und kann einfach in einer dezentralen Weise präsentiert werden. / In this thesis, we consider the Wasserstein barycenter problem of discrete probability measures as well as the population Wasserstein barycenter problem given by a Fréchet mean from computational and statistical sides. The statistical focus is estimating the sample size of measures needed to calculate an approximation of a Fréchet mean (barycenter) of probability distributions with a given precision. For empirical risk minimization approaches, the question of the regularization is also studied along with proposing a new regularization which contributes to the better complexity bounds in comparison with the quadratic regularization. The computational focus is developing decentralized algorithms for calculating Wasserstein barycenters: dual algorithms and saddle point algorithms. The motivation for dual approaches is closed-forms for the dual formulation of entropy-regularized Wasserstein distances and their derivatives, whereas the primal formulation has a closed-form expression only in some cases, e.g., for Gaussian measures.Moreover, the dual oracle returning the gradient of the dual representation forentropy-regularized Wasserstein distance can be computed for a cheaper price in comparison with the primal oracle returning the gradient of the (entropy-regularized) Wasserstein distance. The number of dual oracle calls in this case will be also less, i.e., the square root of the number of primal oracle calls. Furthermore, in contrast to the primal objective, the dual objective has Lipschitz continuous gradient due to the strong convexity of regularized Wasserstein distances. Moreover, we study saddle-point formulation of the non-regularized Wasserstein barycenter problem which leads to the bilinear saddle-point problem. This approach also allows us to get optimal complexity bounds and it can be easily presented in a decentralized setup.
63

Dimension Flexible and Adaptive Statistical Learning

Khowaja, Kainat 02 March 2023 (has links)
Als interdisziplinäre Forschung verbindet diese Arbeit statistisches Lernen mit aktuellen fortschrittlichen Methoden, um mit hochdimensionalität und Nichtstationarität umzugehen. Kapitel 2 stellt Werkzeuge zur Verfügung, um statistische Schlüsse auf die Parameterfunktionen von Generalized Random Forests zu ziehen, die als Lösung der lokalen Momentenbedingung identifiziert wurden. Dies geschieht entweder durch die hochdimensionale Gaußsche Approximationstheorie oder durch Multiplier-Bootstrap. Die theoretischen Aspekte dieser beiden Ansätze werden neben umfangreichen Simulationen und realen Anwendungen im Detail diskutiert. In Kapitel 3 wird der lokal parametrische Ansatz auf zeitvariable Poisson-Prozesse ausgeweitet, um ein Instrument zur Ermittlung von Homogenitätsintervallen innerhalb der Zeitreihen von Zähldaten in einem nichtstationären Umfeld bereitzustellen. Die Methodik beinhaltet rekursive Likelihood-Ratio-Tests und hat ein Maximum in der Teststatistik mit unbekannter Verteilung. Um sie zu approximieren und den kritischen Wert zu finden, verwenden wir den Multiplier-Bootstrap und demonstrieren den Nutzen dieses Algorithmus für deutsche M\&A Daten. Kapitel 4 befasst sich mit der Erstellung einer niedrigdimensionalen Approximation von hochdimensionalen Daten aus dynamischen Systemen. Mithilfe der Resampling-Methoden, der Hauptkomponentenanalyse und Interpolationstechniken konstruieren wir reduzierte dimensionale Ersatzmodelle, die im Vergleich zu den ursprünglichen hochauflösenden Modellen schnellere Ausgaben liefern. In Kapitel 5 versuchen wir, die Verteilungsmerkmale von Kryptowährungen mit den von ihnen zugrunde liegenden Mechanismen zu verknüpfen. Wir verwenden charakteristikbasiertes spektrales Clustering, um Kryptowährungen mit ähnlichem Verhalten in Bezug auf Preis, Blockzeit und Blockgröße zu clustern, und untersuchen diese Cluster, um gemeinsame Mechanismen zwischen verschiedenen Krypto-Clustern zu finden. / As an interdisciplinary research, this thesis couples statistical learning with current advanced methods to deal with high dimensionality and nonstationarity. Chapter 2 provides tools to make statistical inference (uniformly over covariate space) on the parameter functions from Generalized Random Forests identified as the solution of the local moment condition. This is done by either highdimensional Gaussian approximation theorem or via multiplier bootstrap. The theoretical aspects of both of these approaches are discussed in detail alongside extensive simulations and real life applications. In Chapter 3, we extend the local parametric approach to time varying Poisson processes, providing a tool to find intervals of homogeneity within the time series of count data in a nonstationary setting. The methodology involves recursive likelihood ratio tests and has a maxima in test statistic with unknown distribution. To approximate it and find the critical value, we use multiplier bootstrap and demonstrate the utility of this algorithm on German M\&A data. Chapter 4 is concerned with creating low dimensional approximation of high dimensional data from dynamical systems. Using various resampling methods, Principle Component Analysis, and interpolation techniques, we construct reduced dimensional surrogate models that provide faster responses as compared to the original high fidelity models. In Chapter 5, we aim to link the distributional characteristics of cryptocurrencies to their underlying mechanism. We use characteristic based spectral clustering to cluster cryptos with similar behaviour in terms of price, block time, and block size, and scrutinize these clusters to find common mechanisms between various crypto clusters.
64

Measures of University Research Output

Zharova, Alona 14 February 2018 (has links)
New Public Management unterstützt Universitäten und Forschungseinrichtungen dabei, in einem stark wettbewerbsorientierten Forschungsumfeld zu bestehen. Entscheidungen unter Unsicherheit, z.B. die Verteilung von Mitteln für den Forschungsbedarf und Forschungszwecke, erfordert von Politik und Hochschulmanagement, die Beziehungen zwischen den Dimensionen der Forschungsleistung und den resultierenden oder eingehenden Zuschüssen zu verstehen. Hierfür ist es wichtig, die Variablen der wissenschaftlichen Wissensproduktion auf der Ebene von Individuen, Forschungsgruppen und Universitäten zu untersuchen. Das Kapitel 2 dieser Arbeit analysiert die Ebene der Individuen. Es verwendet die Beobachtungen der Forscherprofile von Handelsblatt (HB), Research Papers in Economics (RePEc, hier RP) und Google Scholar (GS) als meist verbreitete Ranking-Systeme in BWL und VWL im deutschsprachigen Raum. Das Kapitel 3 liefert eine empirische Evidenz für die Ebene von Forschungsgruppen und verwendet die Daten eines Sonderforschungsbereichs (SFB) zu Finanzinputs und Forschungsoutput von 2005 bis 2016. Das Kapitel beginnt mit der Beschreibung passender Performanzindikatoren, gefolgt von einer innovativen visuellen Datenanalyse. Im Hauptteil des Kapitels untersucht die Arbeit mit Hilfe eines Zeit-Fixed-Effects-Panel- Modells und eines Fixed-Effects-Poisson-Modells den Zusammenhang zwischen finanziellen Inputs und Forschungsoutputs. Das Kapitel 4 beschäftigt sich mit dem Niveau der Universitäten und untersucht die Interdependenzstruktur zwischen Drittmittelausgaben, Publikationen, Zitationen und akademischem Alter mit Hilfe eines PVARX-Modells, einer Impulsantwort und einer Zerlegung der Prognosefehlervarianz. Abschließend befasst sich das Kapitel mit den möglichen Implikationen für Politik und Entscheidungsfindung und schlägt Empfehlungen für das universitäre Forschungsmanagement vor. / New Public Management helps universities and research institutions to perform in a highly competitive research environment. Decision making in the face of uncertainty, for example distribution of funds for research needs and purposes, urges research policy makers and university managers to understand the relationships between the dimensions of research performance and the resulting or incoming grants. Thus, it is important to accurately reflect the variables of scientific knowledge production on the level of individuals, research groups and universities. Chapter 2 of this thesis introduces an analysis on the level of individuals. The data are taken from the three widely-used ranking systems in the economic and business sciences among German-speaking countries: Handelsblatt (HB), Research Papers in Economics (RePEc, here RP) and Google Scholar (GS). It proposes a framework for collating ranking data for comparison purposes. Chapter 3 provides empirical evidence on the level of research groups using data from a Collaborative Research Center (CRC) on financial inputs and research output from 2005 to 2016. First, suitable performance indicators are discussed. Second, main properties of the data are described using visualization techniques. Finally, the time fixed effects panel data model and the fixed effects Poisson model are used to analyze an interdependency between financial inputs and research outputs. Chapter 4 examines the interdependence structure between third-party expenses (TPE), publications, citations and academic age using university data on individual performance in different scientific areas. A panel vector autoregressive model with exogenous variables (PVARX), impulse response functions and a forecast error variance decomposition help to capture the relationships in the system. To summarize, the chapter addresses the possible implications for policy and decision making and proposes recommendations for university research management.
65

Non-Smooth Optimization by Abs-Linearization in Reflexive Function Spaces

Weiß, Olga 11 March 2022 (has links)
Nichtglatte Optimierungsprobleme in reflexiven Banachräumen treten in vielen Anwendungen auf. Häufig wird angenommen, dass alle vorkommenden Nichtdifferenzierbarkeiten durch Lipschitz-stetige Operatoren wie abs, min und max gegeben sind. Bei solchen Problemen kann es sich zum Beispiel um optimale Steuerungsprobleme mit möglicherweise nicht glatten Zielfunktionen handeln, welche durch partielle Differentialgleichungen (PDG) eingeschränkt sind, die ebenfalls nicht glatte Terme enthalten können. Eine effiziente und robuste Lösung erfordert eine Kombination numerischer Simulationen und spezifischer Optimierungsalgorithmen. Lokal Lipschitz-stetige, nichtglatte Nemytzkii-Operatoren, welche direkt in der Problemformulierung auftreten, spielen eine wesentliche Rolle in der Untersuchung der zugrundeliegenden Optimierungsprobleme. In dieser Dissertation werden zwei spezifische Methoden und Algorithmen zur Lösung solcher nichtglatter Optimierungsprobleme in reflexiven Banachräumen vorgestellt und diskutiert. Als erste Lösungsmethode wird in dieser Dissertation die Minimierung von nichtglatten Operatoren in reflexiven Banachräumen mittels sukzessiver quadratischer Überschätzung vorgestellt, SALMIN. Ein neuartiger Optimierungsansatz für Optimierungsprobleme mit nichtglatten elliptischen PDG-Beschränkungen, welcher auf expliziter Strukturausnutzung beruht, stellt die zweite Lösungsmethode dar, SCALi. Das zentrale Merkmal dieser Methoden ist ein geeigneter Umgang mit Nichtglattheiten. Besonderes Augenmerk liegt dabei auf der zugrundeliegenden nichtglatten Struktur des Problems und der effektiven Ausnutzung dieser, um das Optimierungsproblem auf angemessene und effiziente Weise zu lösen. / Non-smooth optimization problems in reflexive Banach spaces arise in many applications. Frequently, all non-differentiabilities involved are assumed to be given by Lipschitz-continuous operators such as abs, min and max. For example, such problems can refer to optimal control problems with possibly non-smooth objective functionals constrained by partial differential equations (PDEs) which can also include non-smooth terms. Their efficient as well as robust solution requires numerical simulations combined with specific optimization algorithms. Locally Lipschitz-continuous non-smooth non-linearities described by appropriate Nemytzkii operators which arise directly in the problem formulation play an essential role in the study of the underlying optimization problems. In this dissertation, two specific solution methods and algorithms to solve such non-smooth optimization problems in reflexive Banach spaces are proposed and discussed. The minimization of non-smooth operators in reflexive Banach spaces by means of successive quadratic overestimation is presented as the first solution method, SALMIN. A novel structure exploiting optimization approach for optimization problems with non-smooth elliptic PDE constraints constitutes the second solution method, SCALi. The central feature of these methods is the appropriate handling of non-differentiabilities. Special focus lies on the underlying structure of the problem stemming from the non-smoothness and how it can be effectively exploited to solve the optimization problem in an appropriate and efficient way.
66

Tail Risk Protection via reproducible data-adaptive strategies

Spilak, Bruno 15 February 2024 (has links)
Die Dissertation untersucht das Potenzial von Machine-Learning-Methoden zur Verwaltung von Schwanzrisiken in nicht-stationären und hochdimensionalen Umgebungen. Dazu vergleichen wir auf robuste Weise datenabhängige Ansätze aus parametrischer oder nicht-parametrischer Statistik mit datenadaptiven Methoden. Da datengetriebene Methoden reproduzierbar sein müssen, um Vertrauen und Transparenz zu gewährleisten, schlagen wir zunächst eine neue Plattform namens Quantinar vor, die einen neuen Standard für wissenschaftliche Veröffentlichungen setzen soll. Im zweiten Kapitel werden parametrische, lokale parametrische und nicht-parametrische Methoden verglichen, um eine dynamische Handelsstrategie für den Schutz vor Schwanzrisiken in Bitcoin zu entwickeln. Das dritte Kapitel präsentiert die Portfolio-Allokationsmethode NMFRB, die durch eine Dimensionsreduktionstechnik hohe Dimensionen bewältigt. Im Vergleich zu klassischen Machine-Learning-Methoden zeigt NMFRB in zwei Universen überlegene risikobereinigte Renditen. Das letzte Kapitel kombiniert bisherige Ansätze zu einer Schwanzrisikoschutzstrategie für Portfolios. Die erweiterte NMFRB berücksichtigt Schwanzrisikomaße, behandelt nicht-lineare Beziehungen zwischen Vermögenswerten während Schwanzereignissen und entwickelt eine dynamische Schwanzrisikoschutzstrategie unter Berücksichtigung der Nicht-Stationarität der Vermögensrenditen. Die vorgestellte Strategie reduziert erfolgreich große Drawdowns und übertrifft andere moderne Schwanzrisikoschutzstrategien wie die Value-at-Risk-Spread-Strategie. Die Ergebnisse werden durch verschiedene Data-Snooping-Tests überprüft. / This dissertation shows the potential of machine learning methods for managing tail risk in a non-stationary and high-dimensional setting. For this, we compare in a robust manner data-dependent approaches from parametric or non-parametric statistics with data-adaptive methods. As these methods need to be reproducible to ensure trust and transparency, we start by proposing a new platform called Quantinar, which aims to set a new standard for academic publications. In the second chapter, we dive into the core subject of this thesis which compares various parametric, local parametric, and non-parametric methods to create a dynamic trading strategy that protects against tail risk in Bitcoin cryptocurrency. In the third chapter, we propose a new portfolio allocation method, called NMFRB, that deals with high dimensions thanks to a dimension reduction technique, convex Non-negative Matrix Factorization. This technique allows us to find latent interpretable portfolios that are diversified out-of-sample. We show in two universes that the proposed method outperforms other classical machine learning-based methods such as Hierarchical Risk Parity (HRP) concerning risk-adjusted returns. We also test the robustness of our results via Monte Carlo simulation. Finally, the last chapter combines our previous approaches to develop a tail-risk protection strategy for portfolios: we extend the NMFRB to tail-risk measures, we address the non-linear relationships between assets during tail events by developing a specific non-linear latent factor model, finally, we develop a dynamic tail risk protection strategy that deals with the non-stationarity of asset returns using classical econometrics models. We show that our strategy is successful at reducing large drawdowns and outperforms other modern tail-risk protection strategies such as the Value-at-Risk-spread strategy. We verify our findings by performing various data snooping tests.
67

Modelling and Quantification of scRNA-seq Experiments and the Transcriptome Dynamics of the Cell Cycle

Laurentino Schwabe, Daniel 26 October 2022 (has links)
In dieser Dissertation modellieren und analysieren wir scRNA-Seq-Daten, um Mechanismen, die biologischen Prozessen zugrunde liegen, zu verstehen In scRNA-Seq-Experimenten wird biologisches Rauschen mit technischem Rauschen vermischt. Mittels eines vereinfachten scRNA-Seq-Modells leiten wir eine analytische Verteilungsfunktion für die beobachtete Verteilung unter Kenntnis einer Ausgangsverteilung her. Charakteristiken und sogar ein allgemeines Moment der Ausgangsverteilung können aus der beobachteten Verteilung berechnet werden. Unsere Formeln stellen den Ausgangspunkt zur Quantifizierung von Zellvariabilität dar. Wir haben eine vollständig lineare Analyse von Transkriptomdaten entwickelt, die zeigt, dass sich Zellen während des Zellzyklus auf einer ebenen zirkulären Trajektorie im Transkriptomraum bewegen. In immortalisierten Zelllinien stellen wir fest, dass die Transkriptomdynamiken des Zellzyklus hauptsächlich unabhängig von den Dynamiken anderer Zellprozesse stattfinden. Unser Algorithmus (“Revelio”) bringt eine einfache Methode mit sich, um unsynchronisierte Zellen nach der Zeit zu ordnen und ermöglicht das exakte Entfernen von Zellzykluseffekten. Die Form der Zellzyklus-Trajektorie zeigt, dass der Zellzyklus sich dazu entwickelt hat, Änderungen der transkriptionellen Aktivitäten und der damit verbundenen regulativen Anstrengungen zu minimieren. Dieses Konstruktionsprinzip könnte auch für andere Prozesse relevant sein. Durch die Verwendung von metabolischer Molekülmarkierung erweitern wir Modelle zur mRNA-Kinetik, um dynamische mRNA-Ratenparameter für Transkription, Splicing und Degradation zu erhalten und die Lösungen auf den Zellzyklus anzuwenden. Wir zeigen, dass unser Modell zwischen Genen mit ähnlicher Genexpression aber unterschiedlicher Genregulation unterscheiden kann. Zwar enthalten scRNA-Seq-Daten aktuell noch zu viel technisches Rauschen, unser Modell wird jedoch für das zukünftige Errechnen von dynamischen mRNA-Ratenparametern von großem Nutzen sein. / In this dissertation, we model and analyse scRNA-seq data to understand mechanisms underlying biological processes. In scRNA-seq experiments, biological noise gets convoluted with various sources of technical noise. With the help of a simplified scRNA-seq model, we derive an analytical probability distribution function for the observed output distribution given a true input distribution. We find that characteristics and even general moments of the input distribution can be calculated from the output distribution. Our formulas are a starting point for the quantification of cell-to-cell variability. We developed a fully linear analysis of transcriptome data which reveals that cells move along a planar circular trajectory in transcriptome space during the cell cycle. Additionally, we find in immortalized cell lines that cell cycle transcriptome dynamics occur largely independently from other cellular processes. Our algorithm (“Revelio”) offers a simple method to order unsynchronized cells in time and enables the precise removal of cell cycle effects from the data. The shape of the cell cycle trajectory indicates that the cell cycle has evolved to minimize changes of transcriptional activity and their related regulatory efforts. This design principle may be of relevance to other cellular processes. By considering metabolic labelling, we extend existing mRNA kinetic models to obtain dynamic mRNA rate parameters for transcription, splicing and degradation and apply our solutions to the cell cycle. We can distinguish genes with similar expression values but different gene regulation strategies. While current scRNA-seq data contains too much technical noise, the model will be of great value for inferring dynamic mRNA rate parameters in future research.
68

Numerical Analysis and Simulation of Coupled Systems of Stochastic Partial Differential Equations with Algebraic Constraints

Schade, Maximilian 20 September 2023 (has links)
Diese Dissertation befasst sich mit der Analyse von semi-expliziten Systemen aus stochastischen Differentialgleichungen (SDEs) gekoppelt mit stochastischen partiellen Differentialgleichungen (SPDEs) und algebraischen Gleichungen (AEs) mit möglicherweise stochastischen Anteilen in den Operatoren. Diese Systeme spielen eine entscheidende Rolle bei der Modellierung von realen Anwendungen, wie zum Beispiel elektrischen Schaltkreisen und Gasnetzwerken. Der Hauptbeitrag dieser Arbeit besteht darin, einen Rahmen bereitzustellen, in dem diese semiexpliziten Systeme auch bei stochastischen Einflüssen in den algebraischen Randbedingungen eine eindeutige Lösung haben. Wir führen einen numerischen Ansatz für solche Systeme ein und schlagen eine neue Möglichkeit vor, um Konvergenzergebnisse von driftimpliziten Methoden für SDEs auf stochastische Differential-Algebraische Gleichungen (SDAEs) zu erweitern. Dies ist wichtig, da viele Methoden für SDEs gut entwickelt sind, aber im Allgemeinen nicht für SDAEs in Betracht gezogen werden. Darüber hinaus untersuchen wir praktische Anwendungen in der Schaltkreis- und Gasnetzwerksimulation und diskutieren die dabei auftretenden Herausforderungen und Einschränkungen. Insbesondere stellen wir dabei auch einen Modellierungsansatz für Gasnetzwerke bestehend aus Rohren und algebraischen Komponenten vor. Abschließend testen wir in beiden Anwendungsfeldern die numerische Konvergenz anhand konkreter Beispiele mit verschiedenen Arten von stochastischer Modellierung. / This dissertation delves into the analysis of semi-explicit systems of stochastic differential equations (SDEs) coupled with stochastic partial differential equations (SPDEs) and algebraic equations (AEs) with possibly noise-driven operators. These systems play a crucial role in modeling real-world applications, such as electrical circuits and gas networks. The main contribution of this work is to provide a setting in which these semi-explicit systems have a unique solution even with stochastic influences in the algebraic constraints. We introduce a numerical approach for such systems and propose a new approach for extending convergence results of drift-implicit methods for SDEs to stochastic differential-algebraic equations (SDAEs). This is important, as many methods are well-developed for SDEs but generally not considered for SDAEs. Furthermore, we examine practical applications in circuit and gas network simulation, discussing the challenges and limitations encountered. In particular, we provide a modeling approach for gas networks consisting of pipes and algebraic components. To conclude, we test numerical convergence in both application settings on concrete examples with different types of stochastic modeling.
69

A Class of Elliptic Obstacle-Type Quasi-Variational Inequalities: Theory and Solution Methods

Brüggemann, Jo Andrea 24 November 2023 (has links)
Quasi-Variationsungleichungen (QVIs) treten in einer Vielzahl mathematischer Modelle auf, welche komplexe Equilibrium-artige Phänomene aus den Natur- oder Sozialwissenschaften beschreiben. Obgleich ihrer vielfältigen Anwendungsmöglichkeiten in Bereichen wie der Biologie, Kontinuumsmechanik, Physik, Geologie und Ökonomie sind Ergebnisse zur allgemeinen theoretischen und algorithmischen Lösung von QVIs in der Literatur eher rar gesät – insbesondere im unendlich-dimensionalen Kontext. Zentraler Gegenstand dieser Dissertation sind elliptische QVIs vom Hindernis-Typ mit einer zusätzlichen Volumen-Nebenbedingung, die durch ein vereinfachtes Modell eines nachgiebigen Hindernisses aus der Biomedizin motiviert werden. Aussagen zur Existenz von Lösungen werden durch die Charakterisierung der QVI als eine Fixpunkt Gleichung ermöglicht. Zur Lösung der betrachteten QVI selbst wird im Allgemeinen auf eine sequentielle Minimierungsmethode zurückgegriffen und eine Folge von Minimierungs- oder Variationsproblemen vom Hindernis-Typ betrachtet. In diesem Sinne ist für die numerische Behandlung der QVI die effiziente Lösung der auftretenden sequentiellen Probleme maßgeblich. Bei der Entwicklung geeigneter Lösungsmethoden wird insbesondere den Aspekten gitterunabhängige Verfahren sowie adaptive Diskretisierung des kontinuierlichen Problems mittels Finiter Elemente Rechnung getragen: Nach Anwendung der sequentiellen Minimierungsmethode auf die QVI werden die Hindernisprobleme durch eine Folge von Moreau–Yosida-regularisierten Problemen approximiert und anschliessend mit der nichtglatten (semismooth) Newton Methode und einer Pfadverfolgungsstrategie hinsichtlich des Yosida-Parameters gelöst. Die numerische Lösung erfolgt mittels einer adaptiver Finite Elemente Methode (AFEM), wobei die lokale Gitterverfeinerung auf a posteriori Residuen-basierten Schätzern des Approximierungsfehlers beruht. Numerische Experimente schließen die Arbeit ab. / Quasi-variational inequalities (QVIs) are used to describe complex equilibrium-type phenomena in many models in the natural and social sciences. Despite the abundance of different applications of QVIs—e.g., in biology, continuum mechanics, physics, geology, economics—there is only scarce literature on general theoretical and algorithmic approaches to solve problems involving QVIs particularly in infinite dimensions. This thesis focuses on elliptic obstacle-type QVIs with an additional volume constraint that are motivated by the simplified model of a compliant obstacle-type situation stemming from biomedicine. The first part of the thesis establishes existence of solutions to this type of QVIs under different sets of assumptions upon converting the problem to a fixed point equation. Unless the compliant obstacle map exhibits differentiability properties—in which case the problem can be regularised and solved directly in function space—the QVI can only be solved using a sequential variational or minimisation technique that leads to a sequence of obstacle-type problems. The ensuing parts of the thesis cover the efficient (numerical) solution of the emerging sequential problems where a major focus is on the aspects of mesh-independent performance of the solution method and the adaptive discretisation of the continuous problem based on finite elements. The obstacle-type problems resulting from using the sequential minimisation technique on the QVI are solved resorting to Moreau–Yosida-based approximation along with a semismooth Newton solver and a path-following regime for the sake of mesh-independence, which is subject of the second part. The corresponding discretised problems are solved with an adaptive finite element method (AFEM) that uses a posteriori residual-based error estimation techniques for Moreau–Yosida-based approximations of obstacle-type problems, the latter which are explored in the third part. The thesis concludes with numerical experiments.
70

Solving Constrained Piecewise Linear Optimization Problems by Exploiting the Abs-linear Approach

Kreimeier, Timo 06 December 2023 (has links)
In dieser Arbeit wird ein Algorithmus zur Lösung von endlichdimensionalen Optimierungsproblemen mit stückweise linearer Zielfunktion und stückweise linearen Nebenbedingungen vorgestellt. Dabei wird angenommen, dass die Funktionen in der sogenannten Abs-Linear Form, einer Matrix-Vektor-Darstellung, vorliegen. Mit Hilfe dieser Form lässt sich der Urbildraum in Polyeder zerlegen, so dass die Nichtglattheiten der stückweise linearen Funktionen mit den Kanten der Polyeder zusammenfallen können. Für die Klasse der abs-linearen Funktionen werden sowohl für den unbeschränkten als auch für den beschränkten Fall notwendige und hinreichende Optimalitätsbedingungen bewiesen, die in polynomialer Zeit verifiziert werden können. Für unbeschränkte stückweise lineare Optimierungsprobleme haben Andrea Walther und Andreas Griewank bereits 2019 mit der Active Signature Method (ASM) einen Lösungsalgorithmus vorgestellt. Aufbauend auf dieser Methode und in Kombination mit der Idee der aktiven Mengen Strategie zur Behandlung von Ungleichungsnebenbedingungen entsteht ein neuer Algorithmus mit dem Namen Constrained Active Signature Method (CASM) für beschränkte Probleme. Beide Algorithmen nutzen die stückweise lineare Struktur der Funktionen explizit aus, indem sie die Abs-Linear Form verwenden. Teil der Analyse der Algorithmen ist der Nachweis der endlichen Konvergenz zu lokalen Minima der jeweiligen Probleme sowie die Betrachtung effizienter Berechnung von Lösungen der in jeder Iteration der Algorithmen auftretenden Sattelpunktsysteme. Die numerische Performanz von CASM wird anhand verschiedener Beispiele demonstriert. Dazu gehören akademische Probleme, einschließlich bi-level und lineare Komplementaritätsprobleme, sowie Anwendungsprobleme aus der Gasnetzwerkoptimierung und dem Einzelhandel. / This thesis presents an algorithm for solving finite-dimensional optimization problems with a piecewise linear objective function and piecewise linear constraints. For this purpose, it is assumed that the functions are in the so-called Abs-Linear Form, a matrix-vector representation. Using this form, the domain space can be decomposed into polyhedra, so that the nonsmoothness of the piecewise linear functions can coincide with the edges of the polyhedra. For the class of abs-linear functions, necessary and sufficient optimality conditions that can be verified in polynomial time are given for both the unconstrained and the constrained case. For unconstrained piecewise linear optimization problems, Andrea Walther and Andreas Griewank already presented a solution algorithm called the Active Signature Method (ASM) in 2019. Building on this method and combining it with the idea of the Active Set Method to handle inequality constraints, a new algorithm called the Constrained Active Signature Method (CASM) for constrained problems emerges. Both algorithms explicitly exploit the piecewise linear structure of the functions by using the Abs-Linear Form. Part of the analysis of the algorithms is to show finite convergence to local minima of the respective problems as well as an efficient solution of the saddle point systems occurring in each iteration of the algorithms. The numerical performance of CASM is illustrated by several examples. The test problems cover academic problems, including bi-level and linear complementarity problems, as well as application problems from gas network optimization and inventory problems.

Page generated in 0.019 seconds