Spelling suggestions: "subject:"navier–stokes equations"" "subject:"navier–vstokes equations""
401 |
Análise e implementação de esquemas de convecção e modelos de turbulência para simulação de escoamentos incompressíveis envolvendo superfícies livres. / Analysis and implementation of convection schemes and turbulence models for simulation of incompressible flows involving free surfaces.Valdemir Garcia Ferreira 26 September 2001 (has links)
Uma parte significativa dos escoamentos encontrados em aplicações tecnológicas é caracterizada por envolver altos números de Reynolds, principalmente aqueles em regime turbulento e com superfície livre. Obter soluções numéricas representativas para essa classe de problemas é extremamente difícil, devido à natureza não-linear das equações diferenciais parciais envolvidas nos modelos. Conseqüentemente, o tema tem sido uma das principais preocupações da comunidade científica moderna em dinâmica de fluidos computacional. Aproximações de primeira ordem para os termos convectivos são as mais adequadas para amortecer oscilações que estão associadas às aproximações de alta ordem não-limitadas. Todavia, elas introduzem dissipação artificial nas representações discretas comprometendo os resultados numéricos. Para minimizar esse efeito não-físico e, ao mesmo tempo, conseguir aproximações incondicionalmente estáveis, é indispensável adotar uma estratégia que combine aproximações de primeira ordem com as de ordem mais alta e que leve em conta a propagação de informações físicas. Os resultados dessa composição são os esquemas "upwind" limitados de alta ordem. Em geral, espera-se que esses esquemas sejam apropriados para a representação das derivadas convectivas nos modelos de turbulência kappa-varepsilon. No contexto de diferenças finitas, a presente tese dedica-se à solução numérica das equações de Navier-Stokes no regime de números de Reynolds elevados. Em particular, ela contém uma análise de algoritmos monotônicos e antidifusivos e modelos de turbulência kappa-varepsilon para a simulação de escoamentos incompressíveis envolvendo superfícies livres. Esquemas de convecção são implementados nos códigos GENSMAC para proporcionar um tratamento robusto dos termos convectivos nas equações de transporte. Duas versões do modelo kappa-varepsilon de turbulência são implementadas nos códigos GENSMAC, para problems bidimensionais e com simetria radial, para descrever os efeitos da turbulência sobre o escoamento médio. Resultados numéricos de escoamentos com simetria radial são comparados com resultados experimentais e analíticos. Simulações numéricas de problemas tridimensionais complexos são apresentadas para avaliar o desempenho de esquemas "upwind". Finalmente, os modelos de turbulência kappa-varepsilon são utilizados para a simulação de escoamentos confinados e com superfícies livres. / A considerable part of fluid flows encountered in technological applications is characterised by involving high-Reynolds numbers, especially those in turbulent regime and with free-surface. It is extremely difficult to obtain representative numerical solutions for this class of problems, due to the non-linear nature of the partial differential equations involved in the models. Consequently, this subject has been one of main concerns in the modern computational fluid dynamics community. First-order approximation to the convective terms is one of the most appropriate to smooth out oscilations/instabilities which are associated with high-order unlimited approximation. However, it introduces numerical dissipation in the discrete representation jeopardizing the numerical results. In order to minimize this non-physical effect and, at the same time, to obtain unconditionally stable approximation, it is essential to adopt a strategy that combines first and high-order approximations and takes into account the propagation of physical information. The results of this composition are the high-order bounded upwind techniques. In general, it is expected that these algorithms are satisfactory for the representation of the convective derivatives in the kappa-varepsilon turbulence model. In the context of finite-difference, the present thesis deals with the numerical solution of the Navier-Stokes equations at high-Reynolds number regimes. In particular, it contains an analysis of monotonic and anti-difusive convection schemes and kappa-varepsilon turbulence models for the simulation of free-surface fluid flows. Upwinding methods are implemented into the GENSMAC codes to provide a robust treatment of the convective terms in the transport equations. Two versions of the K-Epsilon turbulence model are implemented into the two-dimensional and axisymmetric GENSMAC codes, in order to describe the turbulent effects on the average flow. Numerical results of axisymmetric flows are compared with experimental and analytical results. Numerical simulations of complex three-dimensional problems are presented to assess the performance of high-order bounded upwind schemes. Finally, the K-Epsilon turbulence models are employed in the simulation of confined and free-surface flows.
|
402 |
A method of hp-adaptation for Residual Distribution schemes / Construction d’une méthode hp-adaptative pour les schémas aux Résidus DistribuésViville, Quentin 22 November 2016 (has links)
Cette thèse présente la construction d’un schéma aux Résidus Distribués p-adaptatif pour la discrétisation des équations d’Euler ainsi qu’un schéma aux Résidus Distribués hp-adaptatif pour les équations de Navier- Stokes pénalisées. On rappelle tout d’abord les équations d’Euler et de Navier-Stokes ainsi que leurs versions non dimensionnelles. Les définitions et propriétés de base des schémas aux Résidus Distribués sont ensuite présentées. On décrit alors la construction d’un schéma aux Résidus Distribués p-adaptatif pour les équations d’Euler. La construction du schéma p-adaptatif est basée sur la possibilité d’exprimer le résidu total d’un élément K de degré k (au sens où l’élément fini (K; P; Sigma ) est un élément fini de degré k) comme une somme pondérée des résidus totaux de ses sous-éléments de degré 1. La solution discrète ainsi obtenue est en général discontinue à l’interface entre un élément subdivisé et un élément non subdivisé. Ceci contredit l’hypothèse de continuité de la solution qui est utilisée pour démontrer le théorème de Lax-Wendroff discret pour les schémas aux Résidus Distribués. Cependant, on montre que cette hypothèse peut être assouplie. La conséquence pratique est que si l’on emploie des quadratures particulières dans l’implémentation numérique, on peut quand même démontrer le théorème de Lax-Wendroff discret, ce qui garantit la convergence du schéma numérique vers une solution faible des équations d’origine. Les formules qui permettent d’exprimer le résidu total comme une somme pondérée des résidus totaux des sous-éléments sont à la base de la méthode de p-adaptation présentée ici. Dans le cas quadratique, la formule est obtenue avec les classiques fonctions de base de Lagrange en dimension deux et avec des fonctions de base de Bézier en dimension trois. Ces deux formules sont ensuite généralisées à des degrés polynomiaux quelconques en dimension deux et trois avec des fonctions de base de Bézier. Dans la deuxième partie de la thèse, on présente l’application du schéma p-adaptatif aux équations pénalisées de Navier-Stokes avec adaptation de maillage anisotrope. . En pratique, on combine le schéma p-adaptatif avec la méthode IBM-LS-AUM (Immersed Boundary Method with Level Sets and Adapted Unstructured Meshes). La méthode IBM-LS-AUM permet d’imposer les conditions aux bords grâce à la méthode de pénalisation et l’adaptation anisotrope du maillage à la solution numérique et à la level-set augmente la précision de la solution et de la représentation de la surface. Une fois la méthode IBM-LS-AUM combinée avec le schéma p-adaptatif, il est alors possible d’utiliser des éléments d’ordre élevés en-dehors de la zone où la pénalisation est appliquée. La méthode est robuste comme le montrent les diverses expérimentations numériques à des vitesses faibles à élevées et à différents nombres de Reynolds. / This thesis presents the construction of a p-adaptive Residual Distribution scheme for the steady Euler equations and a hp-adaptive Residual Distribution scheme for the steady penalized Navier-Stokes equations in dimension two and three. The Euler and Navier-Stokes equations are recalled along with their non dimensional versions. The basis definitions and properties of the steady Residual Distribution schemes are presented. Then, the construction of a p-adaptive Residual Distribution scheme for the Euler equations is considered. The construction of the p-adaptive scheme is based upon the expression of the total residual of an element of a given degree k (in the Finite Element sense) into the total residuals of its linear sub-elements. The discrete solution obtained with the p-adaptive scheme is then a one degree polynomial in the divided elements and a k-th degree polynomial in the undivided ones. Therefore, the discrete solution is in general discontinuous at the interface between a divided element and an undivided one. This is in apparent contradiction with the continuity assumption used in general to demonstrate the discrete Lax-Wendroff theorem for Residual Distribution schemes. However, as we show in this work, this constrain can be relaxed. The consequence is that if special quadrature formulas are employed in the numerical implementation, the discrete Lax-Wendroff theorem can still be proved, which guaranties the convergence of the p-adaptive scheme to a weak solution of the governing equations. The formulas that express the total residual into the combination of the total residuals of the sub-elements are central to the method. In dimension two, the formula is obtained with the classical Lagrange basis in the quadratic case and with the Bézier basis in dimension three. These two formulas are then generalized to arbitrary polynomial degrees in dimension two and three with a Bézier basis. In the second part of the thesis the application of the p-adaptive scheme to the penalized Navier-Stokes equations with anisotropic mesh adaptation is presented. In practice, the p-adaptive scheme is used with the IBM-LS-AUM (Immersed Boundary Method with Level Sets and Adapted Unstructured Meshes) method. The IBM-LS-AUM allows to impose the boundary conditions with the penalization method and the mesh adaptation to the solution and to the level-set increases the accuracy of the representation of the surface and the solution around walls. When the IBM-LSAUM is combined with the p-adaptive scheme, it is possible to use high-order elements outside the zone where the penalization is applied. The method is robust as shown by the numerical applications at low to large Mach numbers and at different Reynolds in dimension two and three.
|
403 |
Intégrateurs temporels basés sur la resommation des séries divergentes : applications en mécanique / Time integrators based on divergent series resummation : applications in mechanicsDeeb, Ahmad 17 December 2015 (has links)
Les systèmes dynamiques qui évoluent sur un grand intervalle de temps (dynamique moléculaire, prédiction astronomique, turbulence...) occupent une place importante dans le domaine de la science de l'ingénieur. Leur résolution numérique constitue, jusqu'à l'heure actuelle, un défi. En effet, la simulation de la solution nécessite un solveur non seulement rapide mais aussi qui respecte les propriétés physiques du problème, pour garantir la stabilité. Dans cette thèse, on se propose d'étudier, vis-à-vis de cette problématique, un schéma d'intégration temporelle basée sur la décomposition de la solution en série temporelle, suivie de la technique de resommation de Borel des séries divergentes. On analyse alors la rapidité du schéma sur des problèmes modèles. Ensuite, on montre sa capacité à préserver la structure des équations (symplecticité, iso-spectralité, conservation de l'énergie...) à un ordre arbitrairement élevé. Par la suite, on applique le schéma à la résolution d'équations aux dérivées partielles issues de la mécanique, dont les équations de la chaleur, de Burgers et de Navier-Stokes bidimensionnelles. Pour cela, on associe le schéma à une méthode de discrétisation par éléments finis en espace. Enfin, dans le but de rendre l'algorithme plus robuste, on s'intéresse à la représentation de la somme de Borel par une série de factorielle généralisée. / Dynamical systems which evolve in a large time interval (molecular dynamic, astronomical prediction, turbulence…) take an important place in engineering science. Their numerical resolution has so far constituted a challenge. Indeed, the simulation of the solution requires a solver which is not only fast but also respects the physical properties of the problem, to ensure the stability. In this thesis, we propose to study, regarding this issue, a time integration scheme based on the decomposition of the solution into time series, followed by Borel's resummation technique of divergent series. We analyse the speed of scheme on model problems. Next, we show its capability to preserve the structure of the equation (symplecticity, iso-spectrality, conservation of energy…) up to an arbitrary high order. Thereafter, we use the scheme to resolve partial differential equations coming from mechanics, including the two-dimensional heat equation, Burger’s equation and the Navier-Stokes equation. To this aim, we choose a finite element method for space discretisation. Finally, and in order to make the algorithm more robust, we are interested in the representation of the Borel sum by a generalized factorials series.
|
404 |
Simulation de la nage anguilliformeLapierre, David 05 1900 (has links)
Ce document traite premièrement des diverses tentatives de modélisation et de simulation de la nage anguilliforme puis élabore une nouvelle technique, basée sur la méthode de la frontière immergée généralisée et la théorie des poutres de Reissner-Simo. Cette dernière, comme les équations des fluides polaires, est dérivée de la mécanique des milieux continus puis les équations obtenues sont discrétisées afin de les amener à une résolution numérique. Pour la première fois, la théorie des schémas de Runge-Kutta additifs est combinée à celle des schémas de Runge-Kutta-Munthe-Kaas pour engendrer une méthode d’ordre de convergence formel arbitraire. De plus, les opérations d’interpolation et d’étalement sont traitées d’un nouveau point de vue qui suggère l’usage des splines interpolatoires nodales en lieu et place des fonctions d’étalement traditionnelles. Enfin, de nombreuses vérifications numériques sont faites avant de considérer les simulations de la nage. / This paper first discusses various attempts at modeling and simulating anguilliform swimming, then we develop a new technique, based on a method of generalized immersed boundary and the beam theory of Reissner-Simo. Subsequent to the derivation of the equations of polar fluids, the beam theory is derived from continuum mechanics and the resulting equations are then discretized, allowing a numerical solution. For the first time, the theory of additive Runge-Kutta schemes are combined with the Runge-Kutta-Munthe-Kaas method to generate schemes of arbitrarily high formal order of convergence. Moreover, the interpolation and spreading operations are handled from a new point of view that suggests the use of interpolatory nodal splines instead of spreading traditional functions. Finally, many numerical verifications are done before considering simulations of swimming.
|
405 |
Numerical approach by kinetic methods of transport phenomena in heterogeneous media / Approche numérique, par des méthodes cinétiques, des phénomènes de transport dans les milieux hétérogènesJobic, Yann 30 September 2016 (has links)
Les phénomènes de transport en milieux poreux sont étudiés depuis près de deux siècles, cependant les travaux concernant les milieux fortement poreux sont encore relativement peu nombreux. Les modèles couramment utilisés pour les poreux classiques (lits de grains par exemple) sont peu applicables pour les milieux fortement poreux (les mousses par exemple), un certain nombre d’études ont été entreprises pour combler ce manque. Néanmoins, les résultats expérimentaux et numériques caractérisant les pertes de charge dans les mousses sont fortement dispersés. Du fait des progrès de l’imagerie 3D, une tendance émergente est la détermination des paramètres des lois d’écoulement à partir de simulations directes sur des géométries reconstruites. Nous présentons ici l’utilisation d’une nouvelle approche cinétique pour résoudre localement les équations de Navier-Stokes et déterminer les propriétés d’écoulement (perméabilité, dispersion, ...). / A novel kinetic scheme satisfying an entropy condition is developed, tested and implemented for the simulation of practical problems. The construction of this new entropic scheme is presented. A classical hyperbolic system is approximated by a discrete velocity vector kinetic scheme (with the simplified BGK collisional operator), but applied to an inviscid compressible gas dynamics system with a small Mach number parameter, according to the approach of Carfora and Natalini (2008). The numerical viscosity is controlled, and tends to the physical viscosity of the Navier-Stokes system. The proposed numerical scheme is analyzed and formulated as an explicit finite volume flux vector splitting (FVS) scheme that is very easy to implement. It is close in spirit to Lattice Boltzmann schemes, but it has the advantage to satisfy a discrete entropy inequality under a CFL condition and a subcharacteristic stability condition involving a cell Reynolds number. The new scheme is proved to be second-order accurate in space. We show the efficiency of the method in terms of accuracy and robustness on a variety of classical benchmark tests. Some physical problems have been studied in order to show the usefulness of both schemes. The LB code was successfully used to determine the longitudinal dispersion of metallic foams, with the use of a novel indicator. The entropic code was used to determine the permeability tensor of various porous media, from the Fontainebleau sandstone (low porosity) to a redwood tree sample (high porosity). These results are pretty accurate. Finally, the entropic framework is applied to the advection-diffusion equation as a passive scalar.
|
406 |
Desenvolvimento e teste de esquemas \"upwind\" de alta resolução e suas aplicações em escoamentos incompressíveis com superfícies livres / Development and testing of high-resolution upwind schemes and their applications in incompressible free surface flowsRafael Alves Bonfim de Queiroz 18 March 2009 (has links)
Neste trabalho são apresentados os resultados do desenvolvimento e teste de esquemas upwind de alta resolução para o controle da difusão numérica em leis de conservação gerais e problemas em dinâmica dos fluidos. Em particular, são derivados dois novos esquemas: o ALUS (Adaptive Linear Upwind Scheme) e o TOPUS (Third-Order Polynomial Upwind Scheme). Esses esquemas são testados no transporte de escalares, em equações 1D tipo convecção-difusão, em sistemas hiperbólicos 1D, nas equações de Euler 2D da dinâmica dos gases e nas equações de Navier-Stokes incompressíveis 2D/3D. Os esquemas são então associados a uma modelagem algébrica não linear para a simulação de problemas de escoamentos incompressíveis turbulentos 2D com/sem superfícies livres / In this work, results of the development and testing of high-resolution upwind schemes for controlling of the numerical diffusion for general conservation laws and fluid dynamics problems are presented. In particular, two new high-resolution upwind schemes are derived, namely, the ALUS (Adaptive Linear Upwind Scheme) and the TOPUS (Third-Order Polynomial Upwind Scheme). These schemes are tested in scalar transport, 1D convection-diffusion equations, 1D hyperbolic systems, 2D Euler equations of the gas dynamics, and in 2D/3D incompressible Navier-Stokes equations. The schemes are then combined with a nonlinear Reynolds stress algebraic equation model for the simulation of 2D incompressible turbulent flows with/without free surfaces
|
407 |
Volumetrické efekty akcelerované na GPU / Volumetric Efects Accelerated on GPUKubovčík, Tomáš January 2017 (has links)
This thesis deals with simulation and rendering of fluid based volumetric effects, especially effect of fire and smoke. Computations are accelerated on graphics card using modern graphics API with motivation to achieve realistic visual results as well as physically correct calculations. Implemented volumetric effects are distributed as dynamic library which allows addition of these effects to existing applications.
|
408 |
Simulace vlnění vody v reálném čase / Simulation of Water Waves in Real-TimePilch, Martin January 2011 (has links)
Task of this thesis is creation of real-time simulation of the water waves. It is implemented on Mac OS X platform using OpenGL. This thesis is based on height map surface. Heigh map is computed by suming of sinusoids with complex, time-based amplitudes. Fast Fourier transformation, Phillips spectrum and gauss random generator are used to solve this problem. The thesis is also implemented on iOS platform and optimized to run on mobile devices thanks to using programmable graphic pipeline and other drawing and computing optimizations.
|
409 |
Modélisation et Simulation des Ecoulements Compressibles par la Méthode des Eléments Finis Galerkin Discontinus / Modeling and Simulation of Compressible Flows with Galerkin Finite Elements MethodsGokpi, Kossivi 28 February 2013 (has links)
L’objectif de ce travail de thèse est de proposer la Méthodes des éléments finis de Galerkin discontinus (DGFEM) à la discrétisation des équations compressibles de Navier-Stokes. Plusieurs challenges font l’objet de ce travail. Le premier aspect a consisté à montrer l’ordre de convergence optimal de la méthode DGFEM en utilisant les polynômes d’interpolation d’ordre élevé. Le deuxième aspect concerne l’implémentation de méthodes de ‘‘shock-catpuring’’ comme les limiteurs de pentes et les méthodes de viscosité artificielle pour supprimer les oscillations numériques engendrées par l’ordre élevé (lorsque des polynômes d’interpolation de degré p>0 sont utilisés) dans les écoulements transsoniques et supersoniques. Ensuite nous avons implémenté des estimateurs d’erreur a posteriori et des procédures d ’adaptation de maillages qui permettent d’augmenter la précision de la solution et la vitesse de convergence afin d’obtenir un gain de temps considérable. Finalement, nous avons montré la capacité de la méthode DG à donner des résultats corrects à faibles nombres de Mach. Lorsque le nombre de Mach est petit pour les écoulements compressibles à la limite de l’incompressible, la solution souffre généralement de convergence et de précision. Pour pallier ce problème généralement on procède au préconditionnement qui modifie les équations d’Euler. Dans notre cas, les équations ne sont pas modifiées. Dans ce travail, nous montrons la précision et la robustesse de méthode DG proposée avec un schéma en temps implicite de second ordre et des conditions de bords adéquats. / The aim of this thesis is to deal with compressible Navier-Stokes flows discretized by Discontinuous Galerkin Finite Elements Methods. Several aspects has been considered. One is to show the optimal convergence of the DGFEM method when using high order polynomial. Second is to design shock-capturing methods such as slope limiters and artificial viscosity to suppress numerical oscillation occurring when p>0 schemes are used. Third aspect is to design an a posteriori error estimator for adaptive mesh refinement in order to optimize the mesh in the computational domain. And finally, we want to show the accuracy and the robustness of the DG method implemented when we reach very low mach numbers. Usually when simulating compressible flows at very low mach numbers at the limit of incompressible flows, there occurs many kind of problems such as accuracy and convergence of the solution. To be able to run low Mach number problems, there exists solution like preconditioning. This method usually modifies the Euler. Here the Euler equations are not modified and with a robust time scheme and good boundary conditions imposed one can have efficient and accurate results.
|
410 |
Hydrodynamic Diffuse Interface Models for Cell Morphology and MotilityMarth, Wieland 05 July 2016 (has links) (PDF)
In this thesis, we study mathematical models that describe the morphology of a generalized biological cell in equilibrium or under the influence of external forces. Within these models, the cell is considered as a thermodynamic system, where streaming effects in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell membrane. The governing evolution equations for the cell given in a continuum formulation are derived using an energy variation approach. Such two-phase flow problems that combine streaming effects with a free boundary problem that accounts for bending and surface tension can be described effectively by a diffuse interface approach. An advantage of the diffuse interface approach is that models for e.g. different biophysical processes can easily be combined. That makes this method suitable to describe complex phenomena such as cell motility and multi-cell dynamics. Within the first model for cell motility, we combine a biological network for GTPases with the hydrodynamic Helfrich-type model. This model allows to account for cell motility driven by membrane protrusion as a result of actin polymerization. Within the second model, we moreover extend the Helfrich-type model by an active gel theory to account for the actin filaments in the cell bulk. Caused by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking event occurs that lead to cell motility. In this thesis, we further study the dynamics of multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply the diffuse interface framework, we introduce several phase field variables to account for several cells that are coupled by a local interaction potential. In a first application, we study white blood cell margination, a biological phenomenon that results from the complex relation between collisions, different mechanical properties and lift forces of red blood cells and white blood cells within the vascular system. Here, it is shown that inertial effects, which can become of relevance in various parts of the cardiovascular system, lead to a decreasing tendency for margination with increasing Reynolds number. Finally, we combine the active polar gel theory and the multi-cell approach that is capable of studying collective migration of cells. This hydrodynamic approach predicts that collective migration emerges spontaneously forming coherently-moving clusters as a result of the mutual alignment of the velocity vectors during inelastic collisions. We further observe that hydrodynamics heavily influence those systems. However, a complete suppression of the onset of collective migration cannot be confirmed. Moreover, we give a brief insight how such highly coupled systems can be treated numerically using finite elements and how the numerical costs can be limited using operator splitting approaches and problem parallelization with OPENMP. / Diese Dissertation beschäftigt sich mit mathematischen Modellen zur Beschreibung von Gleichgewichts- und dynamischen Zuständen von verallgemeinerten biologischen Zellen. Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungseffekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell für Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-Ansatz die Evolutionsgleichungen für die Zelle hergeleitet. Es ergeben sie dabei Mehrphasen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusätzlich physikalischen Einflüssen wie Biegung und Oberflächenspannung unterliegt, vereinen. Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe biologische Phänomene, wie zum Beispiel Zellmotilität oder auch die kollektive Bewegung von Zellen, zu beschreiben. In den Modellen für Zellmotilität wird ein biologisches Netzwerk-Modell für GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfilamente im Inneren der Zellen als Flüssigkristall auffasst, mit dem Multi-Phasen-Modell kombiniert. Beide Modelle erlauben es, komplexe Vorgänge bei der selbst hervorgerufenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpolymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollektive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare Phänomene zeigen. Um das Diffuse-Interface-Modell für eine Zelle auf die Beschreibung mehrerer Zellen zu übertragen, werden mehrere Phasenfelder eingeführt, die die Zellen jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspotential gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die Annäherung von Leukozyten an die Blutgefäßwand bezeichnet, zu verstehen. Dieser Prozess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen, den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft innerhalb der Adern. Die Simulationen zeigen, dass diese Annäherung sich in bestimmten Gebieten des kardiovaskulären Systems stark vermindert, in denen die Blutströmung das Stokes-Regime verlässt. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell für die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu untersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisionen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat, deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung vollständig unterdrückt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppelten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP.
|
Page generated in 0.1216 seconds