• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 34
  • 32
  • 27
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 380
  • 200
  • 189
  • 100
  • 94
  • 91
  • 80
  • 76
  • 76
  • 68
  • 66
  • 58
  • 57
  • 56
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Crisis Impact Prediction: A Data-driven Approach

Paglamidis, Konstantinos January 2024 (has links)
The field of crisis management and humanitarian assistance has been one of the major fields of development for governmental and common best European practices in the last decades. The European Union as a major humanitarian stakeholder has taken great effort to strengthen the response in case of humanitarian disasters. This work addresses the feasibility and possible benefits of using machine learning in the prediction of the impact severity of a disaster as a model-driven data analysis in comparison to data-driven reference models for early response coordination and preparedness. In comparison to classical data analysis systems the feasibility of earthquake impact prediction based on machine learning models is evaluated and further debated.
372

Porovnání klasifikačních metod / Comparison of Classification Methods

Dočekal, Martin January 2019 (has links)
This thesis deals with a comparison of classification methods. At first, these classification methods based on machine learning are described, then a classifier comparison system is designed and implemented. This thesis also describes some classification tasks and datasets on which the designed system will be tested. The evaluation of classification tasks is done according to standard metrics. In this thesis is presented design and implementation of a classifier that is based on the principle of evolutionary algorithms.
373

Rozpoznání hudebního slohu z orchestrální nahrávky za pomoci technik Music Information Retrieval / Recognition of music style from orchestral recording using Music Information Retrieval techniques

Jelínková, Jana January 2020 (has links)
As all genres of popular music, classical music consists of many different subgenres. The aim of this work is to recognize those subgenres from orchestral recordings. It is focused on the time period from the very end of 16th century to the beginning of 20th century, which means that Baroque era, Classical era and Romantic era are researched. The Music Information Retrieval (MIR) method was used to classify chosen subgenres. In the first phase of MIR method, parameters were extracted from musical recordings and were evaluated. Only the best parameters were used as input data for machine learning classifiers, to be specific: kNN (K-Nearest Neighbor), LDA (Linear Discriminant Analysis), GMM (Gaussian Mixture Models) and SVM (Support Vector Machines). In the final chapter, all the best results are summarized. According to the results, there is significant difference between the Baroque era and the other researched eras. This significant difference led to better identification of the Baroque era recordings. On the contrary, Classical era ended up to be relatively similar to Romantic era and therefore all classifiers had less success in identification of recordings from this era. The results are in line with music theory and characteristics of chosen musical eras.
374

Detekce logopedických vad v řeči / Detection of Logopaedic Defects in Speech

Pešek, Milan January 2009 (has links)
The thesis deals with a design and an implementation of software for a detection of logopaedia defects of speech. Due to the need of early logopaedia defects detecting, this software is aimed at a child’s age speaker. The introductory part describes the theory of speech realization, simulation of speech realization for numerical processing, phonetics, logopaedia and basic logopaedia defects of speech. There are also described used methods for feature extraction, for segmentation of words to speech sounds and for features classification into either correct or incorrect pronunciation class. In the next part of the thesis there are results of testing of selected methods presented. For logopaedia speech defects recognition algorithms are used in order to extract the features MFCC and PLP. The segmentation of words to speech sounds is performed on the base of Differential Function method. The extracted features of a sound are classified into either a correct or an incorrect pronunciation class with one of tested methods of pattern recognition. To classify the features, the k-NN, SVN, ANN, and GMM methods are tested.
375

Automatické rozpoznávání logopedických vad v řečovém projevu / Automatic Recognition of Logopaedic Defect in Speech Utterances

Dušil, Lubomír January 2009 (has links)
The thesis is aimed at an analysis and automatic detection of logopaedic defects in speech utterance. Its objective is to facilitate and accelerate the work of logopaedists and to increase percentage of detected logopaedic defects in children of the youngest possible age followed by the most successful treatment. It presents methods of speech work, classification of the defects within individual stages of child development and appropriate words for identification of the speech defects and their subsequent remedy. After that there are analyses of methods of calculating coefficients which reflect human speech best. Also classifiers which are used to discern and determine whether it is a speech defect or not. Classifiers exploit coefficients for their work. Coefficients and classifiers are being tested and their best combination is being looked for in order to achieve the highest possible success rate of the automatic detection of the speech defects. All the programming and testing jobs has been conducted in the Matlab programme.
376

Moderní řečové příznaky používané při diagnóze chorob / State of the art speech features used during the Parkinson disease diagnosis

Bílý, Ondřej January 2011 (has links)
This work deals with the diagnosis of Parkinson's disease by analyzing the speech signal. At the beginning of this work there is described speech signal production. The following is a description of the speech signal analysis, its preparation and subsequent feature extraction. Next there is described Parkinson's disease and change of the speech signal by this disability. The following describes the symptoms, which are used for the diagnosis of Parkinson's disease (FCR, VSA, VOT, etc.). Another part of the work deals with the selection and reduction symptoms using the learning algorithms (SVM, ANN, k-NN) and their subsequent evaluation. In the last part of the thesis is described a program to count symptoms. Further is described selection and the end evaluated all the result.
377

Contribution à la statistique spatiale et l'analyse de données fonctionnelles / Contribution to spatial statistics and functional data analysis

Ahmed, Mohamed Salem 12 December 2017 (has links)
Ce mémoire de thèse porte sur la statistique inférentielle des données spatiales et/ou fonctionnelles. En effet, nous nous sommes intéressés à l’estimation de paramètres inconnus de certains modèles à partir d’échantillons obtenus par un processus d’échantillonnage aléatoire ou non (stratifié), composés de variables indépendantes ou spatialement dépendantes.La spécificité des méthodes proposées réside dans le fait qu’elles tiennent compte de la nature de l’échantillon étudié (échantillon stratifié ou composé de données spatiales dépendantes).Tout d’abord, nous étudions des données à valeurs dans un espace de dimension infinie ou dites ”données fonctionnelles”. Dans un premier temps, nous étudions les modèles de choix binaires fonctionnels dans un contexte d’échantillonnage par stratification endogène (échantillonnage Cas-Témoin ou échantillonnage basé sur le choix). La spécificité de cette étude réside sur le fait que la méthode proposée prend en considération le schéma d’échantillonnage. Nous décrivons une fonction de vraisemblance conditionnelle sous l’échantillonnage considérée et une stratégie de réduction de dimension afin d’introduire une estimation du modèle par vraisemblance conditionnelle. Nous étudions les propriétés asymptotiques des estimateurs proposées ainsi que leurs applications à des données simulées et réelles. Nous nous sommes ensuite intéressés à un modèle linéaire fonctionnel spatial auto-régressif. La particularité du modèle réside dans la nature fonctionnelle de la variable explicative et la structure de la dépendance spatiale des variables de l’échantillon considéré. La procédure d’estimation que nous proposons consiste à réduire la dimension infinie de la variable explicative fonctionnelle et à maximiser une quasi-vraisemblance associée au modèle. Nous établissons la consistance, la normalité asymptotique et les performances numériques des estimateurs proposés.Dans la deuxième partie du mémoire, nous abordons des problèmes de régression et prédiction de variables dépendantes à valeurs réelles. Nous commençons par généraliser la méthode de k-plus proches voisins (k-nearest neighbors; k-NN) afin de prédire un processus spatial en des sites non-observés, en présence de co-variables spatiaux. La spécificité du prédicteur proposé est qu’il tient compte d’une hétérogénéité au niveau de la co-variable utilisée. Nous établissons la convergence presque complète avec vitesse du prédicteur et donnons des résultats numériques à l’aide de données simulées et environnementales.Nous généralisons ensuite le modèle probit partiellement linéaire pour données indépendantes à des données spatiales. Nous utilisons un processus spatial linéaire pour modéliser les perturbations du processus considéré, permettant ainsi plus de flexibilité et d’englober plusieurs types de dépendances spatiales. Nous proposons une approche d’estimation semi paramétrique basée sur une vraisemblance pondérée et la méthode des moments généralisées et en étudions les propriétés asymptotiques et performances numériques. Une étude sur la détection des facteurs de risque de cancer VADS (voies aéro-digestives supérieures)dans la région Nord de France à l’aide de modèles spatiaux à choix binaire termine notre contribution. / This thesis is about statistical inference for spatial and/or functional data. Indeed, weare interested in estimation of unknown parameters of some models from random or nonrandom(stratified) samples composed of independent or spatially dependent variables.The specificity of the proposed methods lies in the fact that they take into considerationthe considered sample nature (stratified or spatial sample).We begin by studying data valued in a space of infinite dimension or so-called ”functionaldata”. First, we study a functional binary choice model explored in a case-controlor choice-based sample design context. The specificity of this study is that the proposedmethod takes into account the sampling scheme. We describe a conditional likelihoodfunction under the sampling distribution and a reduction of dimension strategy to definea feasible conditional maximum likelihood estimator of the model. Asymptotic propertiesof the proposed estimates as well as their application to simulated and real data are given.Secondly, we explore a functional linear autoregressive spatial model whose particularityis on the functional nature of the explanatory variable and the structure of the spatialdependence. The estimation procedure consists of reducing the infinite dimension of thefunctional variable and maximizing a quasi-likelihood function. We establish the consistencyand asymptotic normality of the estimator. The usefulness of the methodology isillustrated via simulations and an application to some real data.In the second part of the thesis, we address some estimation and prediction problemsof real random spatial variables. We start by generalizing the k-nearest neighbors method,namely k-NN, to predict a spatial process at non-observed locations using some covariates.The specificity of the proposed k-NN predictor lies in the fact that it is flexible and allowsa number of heterogeneity in the covariate. We establish the almost complete convergencewith rates of the spatial predictor whose performance is ensured by an application oversimulated and environmental data. In addition, we generalize the partially linear probitmodel of independent data to the spatial case. We use a linear process for disturbancesallowing various spatial dependencies and propose a semiparametric estimation approachbased on weighted likelihood and generalized method of moments methods. We establishthe consistency and asymptotic distribution of the proposed estimators and investigate thefinite sample performance of the estimators on simulated data. We end by an applicationof spatial binary choice models to identify UADT (Upper aerodigestive tract) cancer riskfactors in the north region of France which displays the highest rates of such cancerincidence and mortality of the country.
378

Machine Learning for Speech Forensics and Hypersonic Vehicle Applications

Emily R Bartusiak (6630773) 06 December 2022 (has links)
<p>Synthesized speech may be used for nefarious purposes, such as fraud, spoofing, and misinformation campaigns. We present several speech forensics methods based on deep learning to protect against such attacks. First, we use a convolutional neural network (CNN) and transformers to detect synthesized speech. Then, we investigate closed set and open set speech synthesizer attribution. We use a transformer to attribute a speech signal to its source (i.e., to identify the speech synthesizer that created it). Additionally, we show that our approach separates different known and unknown speech synthesizers in its latent space, even though it has not seen any of the unknown speech synthesizers during training. Next, we explore machine learning for an objective in the aerospace domain.</p> <p><br></p> <p>Compared to conventional ballistic vehicles and cruise vehicles, hypersonic glide vehicles (HGVs) exhibit unprecedented abilities. They travel faster than Mach 5 and maneuver to evade defense systems and hinder prediction of their final destinations. We investigate machine learning for identifying different HGVs and a conic reentry vehicle (CRV) based on their aerodynamic state estimates. We also propose a HGV flight phase prediction method. Inspired by natural language processing (NLP), we model flight phases as “words” and HGV trajectories as “sentences.” Next, we learn a “grammar” from the HGV trajectories that describes their flight phase transition patterns. Given “words” from the initial part of a HGV trajectory and the “grammar”, we predict future “words” in the “sentence” (i.e., future HGV flight phases in the trajectory). We demonstrate that this approach successfully predicts future flight phases for HGV trajectories, especially in scenarios with limited training data. We also show that it can be used in a transfer learning scenario to predict flight phases of HGV trajectories that exhibit new maneuvers and behaviors never seen before during training.</p>
379

GIS-based Episode Reconstruction Using GPS Data for Activity Analysis and Route Choice Modeling / GIS-based Episode Reconstruction Using GPS Data

Dalumpines, Ron 26 September 2014 (has links)
Most transportation problems arise from individual travel decisions. In response, transportation researchers had been studying individual travel behavior – a growing trend that requires activity data at individual level. Global positioning systems (GPS) and geographical information systems (GIS) have been used to capture and process individual activity data, from determining activity locations to mapping routes to these locations. Potential applications of GPS data seem limitless but our tools and methods to make these data usable lags behind. In response to this need, this dissertation presents a GIS-based toolkit to automatically extract activity episodes from GPS data and derive information related to these episodes from additional data (e.g., road network, land use). The major emphasis of this dissertation is the development of a toolkit for extracting information associated with movements of individuals from GPS data. To be effective, the toolkit has been developed around three design principles: transferability, modularity, and scalability. Two substantive chapters focus on selected components of the toolkit (map-matching, mode detection); another for the entire toolkit. Final substantive chapter demonstrates the toolkit’s potential by comparing route choice models of work and shop trips using inputs generated by the toolkit. There are several tools and methods that capitalize on GPS data, developed within different problem domains. This dissertation contributes to that repository of tools and methods by presenting a suite of tools that can extract all possible information that can be derived from GPS data. Unlike existing tools cited in the transportation literature, the toolkit has been designed to be complete (covers preprocessing up to extracting route attributes), and can work with GPS data alone or in combination with additional data. Moreover, this dissertation contributes to our understanding of route choice decisions for work and shop trips by looking into the combined effects of route attributes and individual characteristics. / Dissertation / Doctor of Philosophy (PhD)
380

Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms

Vestin, Albin, Strandberg, Gustav January 2019 (has links)
Today, the main research field for the automotive industry is to find solutions for active safety. In order to perceive the surrounding environment, tracking nearby traffic objects plays an important role. Validation of the tracking performance is often done in staged traffic scenarios, where additional sensors, mounted on the vehicles, are used to obtain their true positions and velocities. The difficulty of evaluating the tracking performance complicates its development. An alternative approach studied in this thesis, is to record sequences and use non-causal algorithms, such as smoothing, instead of filtering to estimate the true target states. With this method, validation data for online, causal, target tracking algorithms can be obtained for all traffic scenarios without the need of extra sensors. We investigate how non-causal algorithms affects the target tracking performance using multiple sensors and dynamic models of different complexity. This is done to evaluate real-time methods against estimates obtained from non-causal filtering. Two different measurement units, a monocular camera and a LIDAR sensor, and two dynamic models are evaluated and compared using both causal and non-causal methods. The system is tested in two single object scenarios where ground truth is available and in three multi object scenarios without ground truth. Results from the two single object scenarios shows that tracking using only a monocular camera performs poorly since it is unable to measure the distance to objects. Here, a complementary LIDAR sensor improves the tracking performance significantly. The dynamic models are shown to have a small impact on the tracking performance, while the non-causal application gives a distinct improvement when tracking objects at large distances. Since the sequence can be reversed, the non-causal estimates are propagated from more certain states when the target is closer to the ego vehicle. For multiple object tracking, we find that correct associations between measurements and tracks are crucial for improving the tracking performance with non-causal algorithms.

Page generated in 0.0591 seconds