Spelling suggestions: "subject:"théorie spectral""
51 |
Commutateurs, analyse spectrale et applicationsGolenia, Sylvain 03 December 2012 (has links) (PDF)
On présente tout d'abord la théorie des commutateurs positifs et ses développements récents. On discute ensuite les applications à la théorie spectrale des Laplaciens magnétiques sur les variétés, les opérateurs de Dirac singuliers et des opérateurs de Schroedinger à décroissance lente. On étudie ensuite les propriétés spectrales de divers Laplaciens discrets pour les questions de l'auto-adjonction et l'asymptotique des valeurs propres. Puis on présente des résultats liés au spectre absolument continu pour les opérateurs de Dirac discret en dimension 1. Enfin on caractérise les chemins hamiltonien pour les échiquiers de grande dimension.
|
52 |
Métastabilité dans les systèmes avec lois de conservation / Metastability in systems with conservation lawsDutercq, Sébastien 22 June 2015 (has links)
Cette thèse comporte un résumé avec des formules mathématiques. Vous pouvez le consulter via le texte intégral du document à la dernière page. / This thesis contains an abstract with mathematical formulae. You can consult it via the complete text of the document in the back page.
|
53 |
Forte et fausse libertés asymptotiques de grandes matrices aléatoires / Strong and false asymptotic freeness of large random matricesMale, Camille 05 December 2011 (has links)
Cette thèse s'inscrit dans la théorie des matrices aléatoires, à l'intersection avec la théorie des probabilités libres et des algèbres d'opérateurs. Elle s'insère dans une démarche générale qui a fait ses preuves ces dernières décennies : importer les techniques et les concepts de la théorie des probabilités non commutatives pour l'étude du spectre de grandes matrices aléatoires. On s'intéresse ici à des généralisations du théorème de liberté asymptotique de Voiculescu. Dans les Chapitres 1 et 2, nous montrons des résultats de liberté asymptotique forte pour des matrices gaussiennes, unitaires aléatoires et déterministes. Dans les Chapitres 3 et 4, nous introduisons la notion de fausse liberté asymptotique pour des matrices déterministes et certaines matrices hermitiennes à entrées sous diagonales indépendantes, interpolant les modèles de matrices de Wigner et de Lévy. / The thesis fits into the random matrix theory, in intersection with free probability and operator algebra. It is part of a general approach which is common since the last decades: using tools and concepts of non commutative probability in order to get general results about the spectrum of large random matrices. Where are interested here in generalization of Voiculescu's asymptotic freeness theorem. In Chapter 1 and 2, we show some results of strong asymptotic freeness for gaussian, random unitary and deterministic matrices. In Chapter 3 and 4, we introduce the notion of asymptotic false freeness for deterministic matrices and certain random matrices, Hermitian with independent sub-diagonal entries, interpolating Wigner and Lévy models.
|
54 |
Conditions de quantification de Bohr-Sommerfeld pour des opérateurs semi-classiques non auto-adjoints / Bohr-Sommerfeld quantization conditions for non self-adjoint semi-classical operatorsRouby, Ophélie 29 November 2016 (has links)
On s'intéresse à la théorie spectrale d'opérateurs semi-classiques non auto-adjoints en dimension un et plus précisément aux développements asymptotiques des valeurs propres. Ces derniers font intervenir des objets géométriques issus de la mécanique classique dans l'espace des phases complexifié et correspondent à une généralisation des conditions de quantification de Bohr-Sommerfeld au cadre non auto-adjoint. Plus précisément, dans un premier temps, on étudie le spectre de perturbations non auto-adjointes d'opérateurs pseudo-différentiels auto-adjoints en dimension un à l'aide de techniques d'analyse microlocale analytique et en corollaire, on établit que pour des perturbations PT-symétriques d'opérateurs auto-adjoints, le spectre est réel. Ensuite, on présente des conditions de quantification de Bohr-Sommerfeld pour des perturbations non auto-adjointes d'opérateurs de Berezin-Toeplitz du plan complexe auto-adjoints. Dans un second temps, on s'intéresse aux différentes quantifications du tore et plus précisément à la quantification de Berezin-Toeplitz du tore, à la quantification de Weyl classique du tore et à la quantification de Weyl complexe du tore. On établit des liens entre ces différentes quantifications notamment grâce à la transformée de Bargmann, puis à l'aide de simulations numériques, on met en évidence une conjecture sur des conditions de quantification de Bohr-Sommerfeld pour des perturbations non auto-adjointes d'opérateurs de Berezin-Toeplitz du tore auto-adjoints. / We interest ourselves in the spectral theory of non self-adjoint semi-classical operators in dimension one and in asymptotic expansions of eigenvalues. These expansions are written in terms of geometrical objects in a complex phase space coming from classical mechanics and correspond to a generalization of Bohr-Sommerfeld quantization conditions in the non self-adjoint case. First, we study non self-adjoint perturbations of self-adjoint pseudo-differential operators in dimension one by using techniques of analytic microlocal analysis. As a corollary, we establish for PT-symmetric perturbations of self-adjoint operators, that the spectrum is real. Then we show Bohr-Sommerfeld quantization conditions for non self-adjoint perturbations of self-adjoint Berezin-Toeplitz operators of the complex plane. In the second part, we look into quantizations of the torus, namely the Berezin-Toeplitz, the classical Weyl and the complex Weyl quantizations of the torus. We establish links between these different quantizations using Bargmann transform. We propose a conjecture, supported by numerical simulations, on Bohr-Sommerfeld quantization conditions for non self-adjoint perturbations of self-adjoint Berezin-Toeplitz operators of the torus.
|
55 |
Quelques asymptotiques spectrales pour le Laplacien de Dirichlet : triangles, cônes et couches coniques / A few spectral asymptotics for the Dirichlet Laplacian : triangles, cones and conical layersOurmières-Bonafos, Thomas 01 October 2014 (has links)
Cette thèse est consacrée à l'étude du spectre de l'opérateur de Laplace avec conditions de Dirichlet dans différents domaines du plan ou de l'espace. Dans un premier temps on s'intéresse à des triangles asymptotiquement plats et des cônes de petite ouverture. Ces problèmes admettent une reformulation semi-classique et nous donnons des développements asymptotiques à tout ordre des premières valeurs et fonctions propres. Ce type de résultat est déjà connu pour des domaines minces à profil régulier. Pour les triangles et les cônes, on prouve que le problème admet maintenant deux échelles. Dans un second temps, on étudie une famille de couches coniques indexées par leur ouverture. Là encore, on s'intéresse à la limite semi-classique quand l'ouverture tend vers zéro: on donne un développement asymptotique à deux termes des premières valeurs propres et on démontre un résultat de localisation des fonctions propres associées. Nous donnons également, à ouverture fixée, un équivalent du nombre de valeurs propres sous le seuil du spectre essentiel. / This thesis deals with the spectrum of the Dirichlet Laplacian in various two or three dimensional domains. First, we consider asymptotically flat triangles and cones with small aperture. These problems admit a semi-classical formulation and we provide asymptotic expansions at any order for the first eigenvalues and the associated eigenfunctions. These type of results is already known for thin domains with smooth profiles. For triangles and cones, we show that the problem admits now two different scales. Second, we study a family of conical layers parametrized by their aperture. Again, we consider the semi-classical limit when the aperture tends to zero: We provide a two-term asymptotics of the first eigenvalues and we prove a localization result about the associated eigenfunctions. We also estimate, for each chosen aperture, the number of eigenvalues below the threshold of the essential spectrum.
|
56 |
Selection-mutation dynamics with age structure : long-time behaviour and application to the evolution of life-history traits / Dynamiques de sélection-mutation structurées en âge : comportement en temps long et application à l'évolution des histoires de vieRoget, Tristan 30 November 2018 (has links)
Cette thèse est divisée en deux parties reliées par un même fil conducteur. Elle porte sur l'étude théorique et l'application de modèles mathématiques décrivant des dynamiques de population où les individus se reproduisent et meurent à des taux dépendant de leur âge et d'un trait phénotypique. Le trait est fixé durant la vie de l'individu. Il est modifié au fil des générations par des mutations apparaissant lors de la reproduction. On modélise la sélection naturelle en introduisant un taux de mortalité densité-dépendant décrivant la compétition pour les ressources.Dans une première partie, nous nous intéressons au comportement en temps long d'une équation aux dérivées partielles de sélection-mutation structurée en âge décrivant une grande population d'individus. En étudiant les propriétés spectrales d'une famille d'opérateurs positifs sur un espace de mesures, nous montrons l'existence de mesures stationnaires pouvant admettre des masses de Dirac en les traits maximisant la fitness. Lorsque ces mesures admettent une densité continue, nous montrons la convergence des solutions vers cet (unique) état stationnaire.La seconde partie de cette thèse est motivée par un problème issu de la biologie du vieillissement. Nous voulons comprendre l'apparition et le maintien au cours de l'évolution d'un marqueur de sénescence observé chez l'espèce Drosophila melanogaster. Pour cela, nous introduisons un modèle individu-centré décrivant la dynamique d'une population structurée par l'âge et par le trait d'histoire de vie suivant : l'âge de fin de reproduction et celui où la mortalité devient non-nulle. Nous modélisons également l'effet Lansing, qui est l’effet suivant lequel « la descendance de parent jeune vit plus longtemps que celle de parents vieux » . Nous montrons, sous des hypothèses de grande population et de mutations rares, que l'évolution amène ces deux traits à coïncider. Pour cela, nous sommes amenés à étendre l'équation canonique de la dynamique adaptative à une situation où le gradient de fitness n'admet pas des propriétés de régularité suffisantes. L'évolution du trait n'est plus décrite par la trajectoire (unique) d'une équation différentielle ordinaire mais par un ensemble de trajectoires solutions d'une inclusion différentielle. / This thesis is divided into two parts connected by the same thread. It concerns the theoretical study and the application of mathematical models describing population dynamics. The individuals reproduce and die at rates which depend on age a and phenotypic trait. The trait is fixed duringthe life of the individual. It is modified over generations by mutations appearing during reproduction. Natural selection is modeled by introducing a density-dependent mortality rate describing competition for resources.In the first part, we study the long-term behavior of a selection-mutation partial differential equation with age structure describing such a large population. By studying the spectral properties of a family of positive operators on a measures space, we show the existence of stationary measures that can admit Dirac masses in traits maximizing fitness. When these measures admit a continuous density, we show the convergence of the solutions towards this (unique) stationary state.The second part of this thesis is motivated by a problem from the biology of aging. We want to understand the appearance and maintenance during evolution of a senescence marker observed in the species Drosophila melanogaster. For this, we introduce an individual-based model describing the dynamics of a population structured by age and by the following life history trait: the age of reproduction ending and the one where the mortality becomes non-zero. We also model the Lansing effect, which is the effect through which the “progeny of old parents do not live as long as those of young parents”. We show, under large population and rare mutation assumptions, that the evolution brings these two traits to coincide. For this, we are led to extend the canonical equation of adaptive dynamics to a situation where the fitness gradient does not admit sufficient regularity properties. The evolution of the trait is no longer described by the (unique) trajectory of an ordinary differential equation but by a set of trajectories solutions of a differential inclusion.
|
57 |
Théorie spectrale pour des applications de Poincaré aléatoires / Spectral theory for random Poincaré mapsBaudel, Manon 01 December 2017 (has links)
Nous nous intéressons à des équations différentielles stochastiques obtenues en perturbant par un bruit blanc des équations différentielles ordinaires admettant N orbites périodiques asymptotiquement stables. Nous construisons une chaîne de Markov à temps discret et espace d’états continu appelée application de Poincaré aléatoire qui hérite du comportement métastable du système. Nous montrons que ce processus admet exactement N valeurs propres qui sont exponentiellement proches de 1 et nous donnons des expressions pour ces valeurs propres et les fonctions propres associées en termes de fonctions committeurs dans les voisinages des orbites périodiques. Nous montrons également que ces valeurs propres sont bien séparées du reste du spectre. Chacune de ces valeurs propres exponentiellement proche de 1 est également reliée à un temps d’atteinte de ces voisinages. De plus, les N valeurs propres exponentiellement proches de 1 et fonctions propres à gauche et à droite associées peuvent être respectivement approchées par des valeurs propres principales, des distributions quasi-stationnaires, et des fonctions propres principales à droite de processus tués quand ils atteignent ces voisinages. Les preuves reposent sur une représentation de type Feynman–Kac pour les fonctions propres, la transformée harmonique de Doob, la théorie spectrale des opérateurs compacts et une propriété de type équilibré détaillé satisfaite par les fonctions committeurs. / We consider stochastic differential equations, obtained by adding weak Gaussian white noise to ordinary differential equations admitting N asymptotically stable periodic orbits. We construct a discrete-time,continuous-space Markov chain, called a random Poincaré map, which encodes the metastable behaviour of the system. We show that this process admits exactly N eigenvalues which are exponentially close to 1,and provide expressions for these eigenvalues and their left and right eigenfunctions in terms of committorfunctions of neighbourhoods of periodic orbits. We also provide a bound for the remaining part of the spectrum. The eigenvalues that are exponentially close to 1 and the right and left eigenfunctions are well-approximated by principal eigenvalues, quasistationary distributions, and principal right eigenfunctions of processes killed upon hitting some of these neighbourhoods. Each eigenvalue that is exponentially close to 1is also related to the mean exit time from some metastable neighborhood of the periodic orbits. The proofsrely on Feynman–Kac-type representation formulas for eigenfunctions, Doob’s h-transform, spectral theory of compact operators, and a recently discovered detailed balance property satisfied by committor functions.
|
58 |
Systèmes quantiques à grand nombre de particules :<br />une perspective mathématique et numériqueLewin, Mathieu 09 June 2009 (has links) (PDF)
Ce mémoire est consacré à l'étude mathématique de divers modèles variationnels permettant la description de systèmes quantiques, en particulier infinis. Les outils mathématiques utilisés sont ceux de l'analyse non linéaire, du calcul des variations, des équations aux dérivées partielles, de la théorie spectrale et du calcul scientifique. <br /><br />Une première partie contient quelques résultats pour des systèmes finis. Nous étudions des approximations de l'équation de Schrödinger pour N électrons dans une molécule ou un atome, puis le modèle de Hartree-Fock-Bogoliubov pour un système de fermions interagissant avec une force de type gravitationnelle.<br /><br />Dans une seconde partie nous proposons une nouvelle méthode pour démontrer l'existence de la limite thermodynamique pour des systèmes quantiques interagissant avec la force de Coulomb.<br /><br />Ensuite, nous construisons deux modèles de type Hartree-Fock pour des systèmes infinis. Le premier est un modèle relativiste, déduit de l'électrodynamique quantique, et qui permet de décrire le comportement d'électrons, couplés avec celui du vide de Dirac qui peut se polariser. Le second modèle décrit l'état d'un cristal non relativiste en présence d'un défaut chargé ; il est complété par une nouvelle approche numérique.<br /><br />La dernière partie du mémoire est consacrée au problème de pollution spectrale, un phénomène observé lorsque l'on cherche à calculer des valeurs propres au milieu du spectre essentiel, par exemple pour des opérateurs de Dirac ou de Schrödinger périodique.
|
59 |
Modélisation de la turbulence par approches URANS et hybride RANS-LES. Prise en compte des effets de paroi par pondération elliptique.Fadai-Ghotbi, Atabak 27 April 2007 (has links) (PDF)
L'objectif de ce travail est de prendre en compte les instationnarités naturelles à grande échelle dans les écoulements décollés et à un coût plus faible que la LES, tout en s'intéressant à la modélisation des effets de paroi par des modèles statistiques au second ordre. S'inspirant des approches de Durbin, le modèle à pondération elliptique EB-RSM reproduit l'effet non-local de blocage, en résolvant une équation différentielle sur le terme de pression. La limite à deux composantes de la turbulence est bien prédite en canal. Ce modèle est appliqué à la marche descendante, dans une approche URANS. Nous avons montré que les erreurs numériques peuvent être suffisantes pour exciter le mode le plus instable de la couche cisaillée, et aboutir à une solution instationnaire. La solution est stationnaire quand on raffine le maillage, rendant l'URANS peu fiable. Récemment, Schiestel \& Dejoan ont proposé le modèle hybride non-zonal PITM. Le coefficient $C_{\e_2}$ de l'équation de la dissipation devient fonction de la coupure dans le spectre, et la valeur $C_{\e_1}=3/2$ est déduite par ces auteurs. Nous avons donné une formulation plus générale où la valeur de $C_{\e_1}$ est quelconque. Pour offrir un formalisme plus cohérent aux modèles hybrides non-zonaux dans les écoulements de paroi, une approche basée sur un filtrage temporel est proposée. Enfin, l'adaptation du modèle EB-RSM dans un cadre hybride a été réalisée. Les résultats en canal sont encourageants : la transition continue d'un modèle RANS en proche paroi à une LES au centre du canal est mise en évidence. Le transfert d'énergie des échelles modélisées vers celles résolues est bien reproduit quand on raffine le maillage.
|
60 |
Histoire du théorème de Jordan de la décomposition matricielle (1870-1930).<br />Formes de représentation et méthodes de décomposition.Brechenmacher, Frederic 09 March 2006 (has links) (PDF)
L'histoire du théorème de Jordan est abordée sous l'angle d'une question d'identité posée sur la période qui sépare la date de 1870 et l'énoncé par Camille Jordan d'une forme canonique des substitutions linéaires des années trente du vingtième siècle au cours desquelles le théorème de Jordan de la décomposition matricielle acquiert une place centrale dans la théorie des matrices canoniques. A partir d'un moment historique de référence, la controverse entre Jordan et Kronecker de 1874, le théorème de Jordan permet de jeter un regard original sur l'histoire de la période 1870-1930 en suivant le rôle joué par des savoirs tacites, des idéaux et des pratiques propres à des réseaux et des communautés. Ce regard permet notamment de mettre en évidence la dynamique d'une tension entre formes canoniques et invariants dans l'évolution de la signification de la notion de forme en mathématiques et contribue à l'histoire de l'algèbre linéaire en décrivant le rôle joué par une méthode de décomposition indissociable d'un mode particulier de représentation : la décomposition matricielle.
|
Page generated in 0.0722 seconds