• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 435
  • 190
  • 43
  • Tagged with
  • 656
  • 249
  • 215
  • 130
  • 106
  • 83
  • 82
  • 78
  • 72
  • 70
  • 69
  • 69
  • 67
  • 66
  • 64
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Méthodes de Monte Carlo stratifiées pour l'intégration numérique et la simulation numériques / Stratified Monte Carlo methods for numerical integration and simulation

Fakhereddine, Rana 26 September 2013 (has links)
Les méthodes de Monte Carlo (MC) sont des méthodes numériques qui utilisent des nombres aléatoires pour résoudre avec des ordinateurs des problèmes des sciences appliquées et des techniques. On estime une quantité par des évaluations répétées utilisant N valeurs et l'erreur de la méthode est approchée par la variance de l'estimateur. Le présent travail analyse des méthodes de réduction de la variance et examine leur efficacité pour l'intégration numérique et la résolution d'équations différentielles et intégrales. Nous présentons d'abord les méthodes MC stratifiées et les méthodes d'échantillonnage par hypercube latin (LHS : Latin Hypercube Sampling). Parmi les méthodes de stratification, nous privilégions la méthode simple (MCS) : l'hypercube unité Is := [0; 1)s est divisé en N sous-cubes d'égale mesure, et un point aléatoire est choisi dans chacun des sous-cubes. Nous analysons la variance de ces méthodes pour le problème de la quadrature numérique. Nous étudions particulièrment le cas de l'estimation de la mesure d'un sous-ensemble de Is. La variance de la méthode MCS peut être majorée par O(1=N1+1=s). Les résultats d'expériences numériques en dimensions 2,3 et 4 montrent que les majorations obtenues sont précises. Nous proposons ensuite une méthode hybride entre MCS et LHS, qui possède les propriétés de ces deux techniques, avec un point aléatoire dans chaque sous-cube et les projections des points sur chacun des axes de coordonnées également réparties de manière régulière : une projection dans chacun des N sousintervalles qui divisent I := [0; 1) uniformément. Cette technique est appelée Stratification Sudoku (SS). Dans le même cadre d'analyse que précédemment, nous montrons que la variance de la méthode SS est majorée par O(1=N1+1=s) ; des expériences numériques en dimensions 2,3 et 4 valident les majorations démontrées. Nous présentons ensuite une approche de la méthode de marche aléatoire utilisant les techniques de réduction de variance précédentes. Nous proposons un algorithme de résolution de l'équation de diffusion, avec un coefficient de diffusion constant ou non-constant en espace. On utilise des particules échantillonnées suivant la distribution initiale, qui effectuent un déplacement gaussien à chaque pas de temps. On ordonne les particules suivant leur position à chaque étape et on remplace les nombres aléatoires qui permettent de calculer les déplacements par les points stratifiés utilisés précédemment. On évalue l'amélioration apportée par cette technique sur des exemples numériques Nous utilisons finalement une approche analogue pour la résolution numérique de l'équation de coagulation, qui modélise l'évolution de la taille de particules pouvant s'agglomérer. Les particules sont d'abord échantillonnées suivant la distribution initiale des tailles. On choisit un pas de temps et, à chaque étape et pour chaque particule, on choisit au hasard un partenaire de coalescence et un nombre aléatoire qui décide de cette coalescence. Si l'on classe les particules suivant leur taille à chaque pas de temps et si l'on remplace les nombres aléatoires par des points stratifiés, on observe une réduction de variance par rapport à l'algorithme MC usuel. / Monte Carlo (MC) methods are numerical methods using random numbers to solve on computers problems from applied sciences and techniques. One estimates a quantity by repeated evaluations using N values ; the error of the method is approximated through the variance of the estimator. In the present work, we analyze variance reduction methods and we test their efficiency for numerical integration and for solving differential or integral equations. First, we present stratified MC methods and Latin Hypercube Sampling (LHS) technique. Among stratification strategies, we focus on the simple approach (MCS) : the unit hypercube Is := [0; 1)s is divided into N subcubes having the same measure, and one random point is chosen in each subcube. We analyze the variance of the method for the problem of numerical quadrature. The case of the evaluation of the measure of a subset of Is is particularly detailed. The variance of the MCS method may be bounded by O(1=N1+1=s). The results of numerical experiments in dimensions 2,3, and 4 show that the upper bounds are tight. We next propose an hybrid method between MCS and LHS, that has properties of both approaches, with one random point in each subcube and such that the projections of the points on each coordinate axis are also evenly distributed : one projection in each of the N subintervals that uniformly divide the unit interval I := [0; 1). We call this technique Sudoku Sampling (SS). Conducting the same analysis as before, we show that the variance of the SS method is bounded by O(1=N1+1=s) ; the order of the bound is validated through the results of numerical experiments in dimensions 2,3, and 4. Next, we present an approach of the random walk method using the variance reduction techniques previously analyzed. We propose an algorithm for solving the diffusion equation with a constant or spatially-varying diffusion coefficient. One uses particles, that are sampled from the initial distribution ; they are subject to a Gaussian move in each time step. The particles are renumbered according to their positions in every step and the random numbers which give the displacements are replaced by the stratified points used above. The improvement brought by this technique is evaluated in numerical experiments. An analogous approach is finally used for numerically solving the coagulation equation ; this equation models the evolution of the sizes of particles that may agglomerate. The particles are first sampled from the initial size distribution. A time step is fixed and, in every step and for each particle, a coalescence partner is chosen and a random number decides if coalescence occurs. If the particles are ordered in every time step by increasing sizes an if the random numbers are replaced by statified points, a variance reduction is observed, when compared to the results of usual MC algorithm.
182

Étude de modèles en séparation de phase tenant compte d'effets d'anisotropie / Study of models in phase separation which takes into account anisotropic effects

Makki, Ahmad 14 October 2016 (has links)
Cette thèse se situe dans le cadre de l'analyse théorique et numérique de modèles en séparation de phase qui tiennent compte d'effets d'anisotropie. Ceci est pertinent, par exemple, pour l'évolution de cristaux dans leur matrice liquide pour lesquels ces effets d'anisotropie sont très forts. On étudie l'existence, l'unicité et la régularité de la solution des équations de Cahn-Hilliard et d'Allen-Cahn ainsi que son comportement asymptotique en terme d'existence d'un attracteur global de dimension fractale finie. La première partie de la thèse concerne certains modèles de séparation de phase qui, en particulier, décrivent la formation de motifs dendritiques. D'abord, on étudie les équations de Cahn-Hilliard et d'Allen-Cahn qui prennent en compte les effets d'anisotropie forts en dimension un avec des conditions de type Neumann sur le bord et une non linéarité régulière de type polynomial. En particulier, ces modèles contiennent un terme supplémentaire appelé régularisation de Willmore. Ensuite, on étudie ces modèles avec des conditions de type périodique (respectivement, Dirichlet) sur le bord pour l'équation de Cahn-Hilliard (respectivement, d'Allen-Cahn) mais en dimension spatiales plus élevées. Finalement, on étudie la dynamique des équations de Cahn-Hilliard et d'Allen-Cahn visqueux avec des conditions de type Neumann et Dirichlet respectivement sur le bord et une non linéarité régulière et en plus, la présence de simulations numériques qui montrent les effets du terme de viscosité sur l'anisotropie et l'isotropie dans l'équation de Cahn-Hilliard. Dans le dernier chapitre, on étudie le comportement en temps long en termes d'attracteurs de dimension finie, d'une classe d'équations doublement non linéaires de type Allen-Cahn avec des conditions de type Dirichlet sur le bord et une non linéarité singulière. / This thesis is situated in the context of the theoretical and numerical analysis of models in phase separation which take into account the anisotropic effects. This is relevant, for example, for the development of crystals in their liquid matrix for which the effects of anisotropy are very strong. We study the existence, uniqueness and the regularity of the solution of Cahn-Hilliard and Alen-Cahn equations and the asymptotic behavior in terms of the existence of a global attractor with finite fractal dimension. The first part of the thesis concerns some models in phase separation which, in particular, describe the formation of dendritic patterns. We start by study- ing the anisotropic Cahn-Hilliard and Allen-Cahn equations in one space dimension both associated with Neumann boundary conditions and a regular nonlinearity. In particular, these two models contain an additional term called Willmore regularization. Furthermore, we study these two models with Periodic (respectively, Dirichlet) boundary conditions for the Cahn-Hilliard (respectively, Allen-Cahn) equation but in higher space dimensions. Finally, we study the dynamics of the viscous Cahn-Hilliard and Allen-Cahn equations with Neumann and Dirichlet boundary conditions respectively and a regular nonlinearity in the presence of the Willmore regularization term and we also give some numerical simulations which show the effects of the viscosity term on the anisotropic and isotropic Cahn-Hilliard equations. In the last chapter, we study the long time behavior, in terms of finite dimensional attractors, of a class of doubly nonlinear Allen-Cahn equations with Dirichlet boundary conditions and singular potentials.
183

Numerical simulation of shallow water equations and related models / Méthodes numériques pour les équations de Saint-Venant et des modèles associés

Gunawan, Harry Putu 29 January 2015 (has links)
Cette thèse porte sur l'approximation numérique des équations de Saint-Venant et de quelques problèmes qui leur sont reliés. Dans la première partie, nous analysons les propriétés mathématiques et les applications des schémas numériques sur grilles décalées. La robustesse de ces schémas est prouvée sur des applications telles que les équations de Saint-Venant dans un domaine en rotation, en vue des écoulements géostrophiques, ainsi que l'extension de ces équations au cas visqueux. Dans la seconde partie, nous présentons des modèles basés sur les équations de Saint-Venant. Nous commençons par étudier le couplage avec l'équation d'Exner, qui porte sur le transport des sédiments. Nous observons des propriétés de convergence numérique vers la solution exacte dans un cas de solution analytique, et nous constatons un bon accord avec des données expérimentales dans le cas de la rupture de barrage avec fond érodable. Nous continuons par l'étude d'un schéma numérique, basé sur une méthode de volumes finis colocalisés (HLLC) pour l'approximation du modèle de Richard-Gavrilyuk. Ce modèle étend les équations de Saint-Venant au cas des écoulements avec cisaillement. Des tests numériques montrent la validité du schéma / This thesis is devoted to the numerical approximation of the shallow water equations and of some related models. In the first part, we analyze the mathematical properties and the applications of the staggered grid scheme. The robustness of this scheme is validated on various applications such as the rotating shallow water equations for geostrophic flows model and viscous shallow water equations. In the second part, we consider some related models. Firstly focusing on the coupling between the Exner equation and the shallow water equations, modelling bedload sediment transport, we observe in a particular case the numerical convergence of the scheme to the exact solution, as well as a good agreement with the experimental data in the dam-break with erodible bottom test. Secondly, we present a numerical scheme based on the finite volume collocated scheme (HLLC) in order to approximate the Richard-Gavrilyuk model. This model is an extension of the shallow water model, fit for modelling the shear shallow water flows. Some numerical tests provide a validation of the scheme
184

Méthode du gradient topologique pour la détection de contours et de structures fines en imagerie / Topological gradient method applied to the detection of edges and fine structures in imaging

Drogoul, Audric 08 October 2014 (has links)
Cette thèse porte sur la méthode du gradient topologique appliquée au traitement d'images. Principalement, on s'intéresse à la détection d'objets assimilés, soit à des contours si l'intensité de l'image à travers la structure comporte un saut, soit à une structure fine (filaments et points en 2D) s'il n'y a pas de saut à travers la structure. On commence par généraliser la méthode du gradient topologique déjà utilisée en détection de contours pour des images dégradées par du bruit gaussien, à des modèles non linéaires adaptés à des images contaminées par un processus poissonnien ou du bruit de speckle et par différents types de flous. On présente également un modèle de restauration par diffusion anisotrope utilisant le gradient topologique pour un domaine fissuré. Un autre modèle basé sur une EDP elliptique linéaire utilisant un opérateur anisotrope préservant les contours est proposé. Ensuite, on présente et étudie un modèle de détection de structures fines utilisant la méthode du gradient topologique. Ce modèle repose sur l'étude de la sensibilité topologique d'une fonction coût utilisant les dérivées secondes d'une régularisation de l'image solution d'une EDP d'ordre 4 de type Kirchhoff. En particulier on explicite les gradients topologiques pour des domaines 2D fissurés ou perforés, et des domaines 3D fissurés. Plusieurs applications pour des images 2D et 3D, floutées et contaminées par du bruit gaussien, montrent la robustesse et la rapidité de la méthode. Enfin on généralise notre approche pour la détection de contours et de structures fines par l'étude de la sensibilité topologique d'une fonction coût utilisant les dérivées m−ième d'une régularisation de l'image dégradée, solution d'une EDP d'ordre 2m. / This thesis deals with the topological gradient method applied in imaging. Particularly, we are interested in object detection. Objects can be assimilated either to edges if the intensity across the structure has a jump, or to fine structures (filaments and points in 2D) if there is no jump of intensity across the structure. We generalize the topological gradient method already used in edge detection for images contaminated by Gaussian noise, to quasi-linear models adapted to Poissonian or speckled images possibly blurred. As a by-product, a restoration model based on an anisotropic diffusion using the topological gradient is presented. We also present a model based on an elliptical linear PDE using an anisotropic differential operator preserving edges. After that, we study a variational model based on the topological gradient to detect fine structures. It consists in the study of the topological sensitivity of a cost function involving second order derivatives of a regularized version of the image solution of a PDE of Kirchhoff type. We compute the topological gradients associated to perforated and cracked 2D domains and to cracked 3D domains. Many applications performed on 2D and 3D blurred and Gaussian noisy images, show the robustness and the fastness of the method. An anisotropic restoration model preserving filaments in 2D is also given. Finally, we generalize our approach by the study of the topological sensitivity of a cost function involving the m − th derivatives of a regularization of the image solution of a 2m order PDE.
185

Propagation phenomena of integro-difference equations and bistable reaction-diffusion equations in periodic habitats

Ding, Weiwei 03 November 2014 (has links)
Cette thèse concerne les phénomènes de propagation de certaines équations d'évolution dans des habitats périodiques. Dans la première partie, nous étudions les phénomènes d'expansion de certaines équations d'intégro-différence spatialement périodiques. Tout d'abord, nous établissons une théorie générale sur l'existence des vitesses de propagation pour des systèmes d'évolution noncompacts, sous l'hypothèse que les systèmes linéarisés ont des valeurs propres principales. Ensuite, nous introduisons la notion d'irréductibilité uniforme des mesures de Radon finies sur le cercle. On démontre que tout opérateur de convolution généré par une telle mesure admet une valeur propre principale. Enfin, nous prouvons l'existence de vitesses de propagation pour certains équations d'intégro-différence avec des noyaux de dispersion uniformément irréductibles. Dans la deuxième partie, nous étudions les phénomènes de propagation de front pour des équations de réaction-diffusion spatialement périodiques avec des non-linéarités bistables. Nous nous concentrons d'abord sur les solutions de type fronts pulsatoires. Sous diverses hypothèses, il est prouvé que les fronts pulsatoires existent lorsque la période spatiale est petite ou grande. Nous caractérisons aussi le signe des vitesses et nous montrons la stabilité exponentielle globale des fronts pulsatoires de vitesse non nulle. Nous étudions ensuite les solutions de type fronts de transition. Sous des hypothèses convenables, on prouve que les fronts de transition se ramènent aux fronts pulsatoires avec une vitesse non nulle. Mais nous montrons aussi l'existence de nouveaux types de fronts de transition qui ne sont pas des fronts pulsatoires. / This dissertation is concerned with propagation phenomena of some evolution equations in periodic habitats. The main results consist of the following two parts. In the first part, we investigate the spatial spreading phenomena of some spatially periodic integro-difference equations. Firstly, we establish a general theory on the existence of spreading speeds for noncompact evolution systems, under the hypothesis that the linearized systems have principal eigenvalues. Secondly, we introduce the notion of uniform irreducibility for finite Radon measures on the circle. It is shown that, any generalized convolution operator generated by such a measure admits a principal eigenvalue. Finally, applying the above general theories, we prove the existence of spreading speeds for some integro-difference equations with uniformly irreducible dispersal kernels. In the second part, we study the front propagation phenomena of spatially periodic reaction-diffusion equations with bistable nonlinearities. Firstly, we focus on the propagation solutions in the class of pulsating fronts. It is proved that, under various assumptions on the reaction terms, pulsating fronts exist when the spatial period is small or large. We also characterize the sign of the front speeds and we show the global exponential stability of the pulsating fronts with nonzero speed. Secondly, we investigate the propagation solutions in the larger class of transition fronts. It is shown that, under suitable assumptions, transition fronts are reduced to pulsating fronts with nonzero speed. But we also prove the existence of new types of transition fronts which are not pulsating fronts.
186

Étude de méthodes précises d'approximation d'équations différentielles stochastiques ou d'équations aux dérivées partielles déterministes en Finance / Study of precise methods of approximation of stochastic differential equations or deterministic partial differential equations in Finance

Youmbi Tchuenkam, Lord Bienvenu 12 December 2016 (has links)
Les travaux exposés dans cette thèse sont consacrés à l’étude de méthodesprécises pour approcher des équations différentielles stochastiques ou deséquations aux dérivées partielles (EDP) déterministes. La première parties’inscrit dans le cadre du développement de méthodes visant à corriger le biaisdans les processus de diffusion paramétrique. Trois modèles sont étudiés enparticulier : Ornstein-Uhlenbeck, Auto-régressif et Moyenne mobile. A l’issuede ce travail, plusieurs approximations de biais ont été proposées suivant deuxapproches : la première consiste en un développement de Taylor del’estimateur obtenu alors que la seconde s'appuie sur une expansionstochastique de celui-ci.La deuxième partie de cette thèse porte sur l’approximation de l’équation de lachaleur obtenue après changement de variables à partir du modèle de Black etScholes. En général, on préfère utiliser des méthodes implicites pour résoudredes EDP paraboliques mais depuis quelques années, les méthodes dites deRunge-Kutta explicites stabilisées, sont de plus en plus utilisées. Nousmontrons que l’utilisation de ce type de méthodes explicites et notamment lesschémas ROCK donnent de très bons résultats même si les conditions initialessont peu régulières, ce qui est le cas dans les modèles financiers / The work presented in this thesis is devoted to the study of precise methods forapproximating stochastic differential equations (SDE) or deterministic partialdifferential equations (PDE). The first part is devoted to the development ofbias correction methods in parametric diffusion processes. Three models arestudied in particular : Ornstein-Uhlenbeck, auto-regressive and Movingaverage. At the end of this work, several approximations of bias have beenproposed following two approaches : the first consists in a Taylor developmentof the obtained estimator while the second one relies on a stochastic expansionof the latter.The second part of this thesis deals with the approximation of the heatequation obtained after changing variables from the Black-Scholes model. Likethe vast majority of PDE, this equation does not have an exact solution, sosolutions must be approached using explicit or implicit time schemes. Itis often customary to prefer the use of implicit methods to solve parabolic PDEsuch as the heat equation, but in the past few years, the stabilized explicitRunge-Kutta methods which have the largest possible domains of stabilityalong the negative real axis, are increasingly used. We show that the useof this type of explicit methods and in particular the ROCK (Runge-Orthogonal-Chebyshev-Kutta) schemes give very good results even if the initial conditionsare not very regular, which is the case in the financial models
187

Études mathématiques et numériques de problèmes non-linéaires et non-locaux issus de la biologie / Mathematical and numerical studies of non-linear and non-local problems involved in biology

Muller, Nicolas 21 November 2013 (has links)
Dans cette thèse nous étudions l'influence de l'environnement sur le comportement d'une cellule dans deux situations différentes. Dans chacune de ces deux situations, apparaît un couplage non-linéaire sur le champ d'advection lié à un terme non-local provenant du bord du domaine. Dans une première partie, nous modélisons la polarisation cellulaire durant la conjugaison de la cellule de levure. Nous utilisons un modèle de type convection-diffusion avec un terme de convection non-linéaire et non-local. Ce modèle présente des similarités avec le modèle de Keller-Segel, la source du potentiel attractif étant sur le bord du domaine. Nous étudions le cas de la dimension un en utilisant des inégalités de Sobolev logarithmiques et HWI. En nous appuyant sur un raisonnement heuristique, nous ramenons l'étude de notre modèle en dimension deux au bord du domaine. Nous validons le modèle à l'aide des résultats expérimentaux obtenus par M. Piel en utilisant un bruit dynamique dans nos simulations numériques. Nous étudions ensuite le problème du dialogue cellulaire entre cellules de levure de sexe opposé. Dans une seconde partie, nous étudions la réaction immunitaire durant l'athérosclérose. Nous construisons puis développons un modèle structuré en âge pour décrire l'inflammation. Pour des paramètres particuliers, nous déterminons le comportement en temps long de notre système en utilisant une fonctionnelle de Lyapunov. / We investigate the influence of the environment on the behaviour of a cell in two different situations. In each of these situations, there is a non-linear coupling of the drift due to a non-local term coming from the boundary of the domain.The first part focuses on the modeling of cell polarisation during the mating of yeast. We use a convection-diffusion model with a non-linear and non-local drift. This model is similar to the Keller-Segel model, the source of the attractive potential comes from the boundary of the domain. We study the long time behaviour of the one-dimensional case by using logarithmic Sobolev and HWI inequalities.By relying on a heuristic, we reduce the study of our model in the two-dimensional case to the boundary of the domain. We validate the model with data provided by M. Piel. This validation requires adding a dynamical noise in our numerical simulations. We study then the cell discussion between yeast of opposite gender. In the second part we study the immune response in atherosclerosis. We build and then develop an age structured model in order to describe the inflammation. For specific parameters, we investigate the long time behaviour of our system by using a Lyapunov functional.
188

Fluctuations non-linéaires dans les gaz quantiques à deux composantes / Nonlinear fluctuations in two-component quantum gases

Congy, Thibault 29 September 2017 (has links)
Cette thèse est dédiée à l'étude des fluctuations non-linéaires dans les condensats de Bose-Einstein à deux composantes. On présente dans le premier chapitre la dynamique de champ moyen des condensats à deux composantes et les différents phénomènes typiques associés au degré de liberté spinoriel. Dans ce même chapitre, on montre que la dynamique des excitations se sépare en deux modes distincts : un mode dit de densité correspondant au mouvement global des atomes à l'intérieur du condensat et un mode dit de polarisation correspondant à la dynamique relative entre les deux espèces constituant le condensat. Ce calcul est généralisé dans le deuxième chapitre où l'on montre que le mode de polarisation persiste en présence d'un couplage cohérent entre les deux composantes. En particulier on analyse la stabilité modulationnelle du mode en déterminant, à l'aide d'une analyse multi-échelle, la dynamique des excitations non-linéaires. On montre alors que les excitations de polarisation, au contraire des excitations de densité, souffrent d'une instabilité de Benjamin-Feir. Cette instabilité est stabilisée aux grandes impulsions par une résonance onde longue - onde courte. Enfin dans le dernier chapitre, on dérive de façon non-perturbative la dynamique de polarisation proche de la limite de Manakov, dynamique quise révèle être régie par une équation de Landau-Lifshitz sans dissipation. Les équations de Landau-Lifshitz appartiennent à une hiérarchie d'équations intégrables (hiérarchie Ablowitz-Kaup-Newell-Segur) et on étudie les solutions à une phase à l'aide de la méthode d'intégration finite-gap ; on détermine notamment à l'aide de cette méthode un nouveau type de soliton pour les condensats à deux composantes. Finalement, profitant de l'intégrabilité du système, on résout le problème de Riemann à l'aide de la théorie de modulation de Whitham et on montre que les condensats à deux composantes peuvent propager des ondes de raréfaction ainsi que des ondes de choc dispersives ; on décrit notamment la modulation de ces ondes de choc par la propagation d'ondes simples et d'ondes de contact d'invariants de Riemann. / This thesis is devoted to the study of nonlinear fluctuations in two-component Bose-Einstein condensates. In the first chapter we derive the mean field dynamics of two-component condensates and we present the distinctive phenomena associated to the spinorial degree of freedom. In the same chapter, we show that the dynamics of the excitations is divided in two distinct modes: a so-called density mode which corresponds to the global motion of the atoms, and a so-called polarization mode which corresponds to the relative motion between the two species composing the condensate. The computation is generalized in the second chapter in which we demonstrate that the polarization mode remains in presence of a coherent coupling between the two components. In particular we study the modulational stability of the mode and we determine through a multi-scaling analysis the dynamics of non-linear excitations. We show that the excitations of polarization undergo a Benjamin-Feir instability contrary to the density excitations. This instability is then stabilized in the short wavelength regime by a long wave - short wave resonance. Finally in the last chapter, we derive in a non-perturbative way the polarisation dynamics close the Manakov limit.In this limit, the dynamics proves to be governed by a Landau-Lifshitz equation without dissipation. Landau-Lifshitz equations belong to a hierarchy of integrable equations (Ablowitz-Kaup-Newell-Segur hierarchy) and we derive the single-phase solutions thanks to the finite-gap method; in particular we identify a new type of soliton for the two-component Bose-Einstein condensates. Finally, taking advantage of the integrability of the system, we solve the Riemann problem thanks to the Whitham modulation theory and we show that the two-component condensates can propagate rarefaction waves as well as dispersive shockwaves; we describe the modulation of the shockwaves by the propagation of simple waves and contact waves of Riemann invariants.
189

Problèmes inverses de sources dans des équations de transport à coefficients variables / Inverse source problem in evolution advection-dispersion-reaction with varying coefficients

Mahfoudhi, Imed 15 November 2013 (has links)
Cette thèse porte sur l’étude de quelques questions liées à l’identifiabilité et l’identification d’un problème inverse non-linéaire de source. Il s’agit de l’identification d’une source ponctuelle dépendante du temps constituant le second membre d’une équation de type advection-dispersion-réaction à coefficients variables. Dans le cas monodimensionnel, la souplesse du modèle stationnaire nous a permis de développer des réponses théoriques concernant le nombre des capteurs nécessaires et leurs emplacements permettant d’identifier la source recherchée d’une façon unique. Ces résultats nous ont beaucoup aidés à définir la ligne de conduite à suivre afin d’apporter des réponses similaires pour le modèle transitoire. Quant au modèle bidimensionnel transitoire, en utilisant quelques résultats de nulle contrôlabilité frontière et des mesures de l’état sur la frontière sortie et de son flux sur la frontière entrée du domaine étudié, nous avons établi un théorème d’identifiabilité et une méthode d’identification permettant de localiser les deux coordonnées de la position de la source recherchée comme étant l’unique solution d’un système non-linéaire de deux équations, et de transformer l’identification de sa fonction de débit en la résolution d’un problème de déconvolution. La dernière partie de cette thèse discute la difficulté principale rencontrée dans ce genre de problèmes inverses à savoir la non identifiabilité d’une source dans sa forme abstraite, propose une alternative permettant de surmonter cette difficulté dans le cas particulier où le but est d’identifier le temps limite à partir duquel la source impliquée a cessé d’émettre, et donc ouvre la porte sur de nouveaux horizons. / The thesis deals with the two main issues identifiability and identification related to a nonlinear inverse source problem. This problem consists in the identification of a time-dependent point source occurring in the right hand-side of an advection-dispersion-reaction equation with spatially varying coefficients. Starting from the stationnary case in the one-dimensional model, we derived theoritical results defining the necessary number of sensors and their positions that enable to uniquely determine the sought source. Those results gave us a good visibility on how to proceed in order to obtain similar results for the time-dependent (evolution) case. As far as the two-dimensional evolution model is concerned, using some boundary null controllability results and the records of the generated state on the inflow boundary and its flux on the outflow boundary of the monitored domain, we established a constructive identifiability theorem as well as an identification method that localizes the two coordinates of the sought source position as the unique solution of a nonlinear system of two equations and transforms the identification of its time-dependent intensity function into solving a deconvolution problem. The last part of this thesis highlights the main difficulty encountred in such inverse problems namely the nonidentifiabilityof a source in its abstract form, proposes a method that enables to overcome this difficulty in the particular case where the aim is to identify the time active limit of the involved source. And thus, this last part opens doors on new horizons and prospects.
190

Algorithme de reconstruction itératif pour tomographie optique diffuse avec mesures dans le domaine temporel

Allali, Anthony January 2016 (has links)
L'imagerie par tomographie optique diffuse requiert de modéliser la propagation de la lumière dans un tissu biologique pour une configuration optique et géométrique donnée. On appelle cela le problème direct. Une nouvelle approche basée sur la méthode des différences finies pour modéliser numériquement via l'équation de la diffusion (ED) la propagation de la lumière dans le domaine temporel dans un milieu inhomogène 3D avec frontières irrégulières est développée pour le cas de l'imagerie intrinsèque, c'est-à-dire l'imagerie des paramètres optiques d'absorption et de diffusion d'un tissu. Les éléments finis, lourds en calculs, car utilisant des maillages non structurés, sont généralement préférés, car les différences finies ne permettent pas de prendre en compte simplement des frontières irrégulières. L'utilisation de la méthode de blocking-off ainsi que d'un filtre de Sobel en 3D peuvent en principe permettre de surmonter ces difficultés et d'obtenir des équations rapides à résoudre numériquement avec les différences finies. Un algorithme est développé dans le présent ouvrage pour implanter cette approche et l'appliquer dans divers cas puis de la valider en comparant les résultats obtenus à ceux de simulations Monte-Carlo qui servent de référence. L'objectif ultime du projet est de pouvoir imager en trois dimensions un petit animal, c'est pourquoi le modèle de propagation est au coeur de l'algorithme de reconstruction d'images. L'obtention d'images requière la résolution d'un problème inverse de grandes dimensions et l'algorithme est basé sur une fonction objective que l'on minimise de façon itérative à l'aide d'une méthode basée sur le gradient. La fonction objective mesure l'écart entre les mesures expérimentales faites sur le sujet et les prédictions de celles-ci obtenues du modèle de propagation. Une des difficultés dans ce type d'algorithme est l'obtention du gradient. Ceci est fait à l'aide de variables auxiliaire (ou adjointes). Le but est de développer et de combiner des méthodes qui permettent à l'algorithme de converger le plus rapidement possible pour obtenir les propriétés optiques les plus fidèles possible à la réalité capable d'exploiter la dépendance temporelle des mesures résolues en temps, qui fournissent plus d'informations tout autre type de mesure en TOD. Des résultats illustrant la reconstruction d'un milieu complexe comme une souris sont présentés pour démontrer le potentiel de notre approche.

Page generated in 0.1314 seconds