• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 15
  • 11
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 90
  • 90
  • 37
  • 26
  • 26
  • 23
  • 21
  • 19
  • 15
  • 15
  • 15
  • 15
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

考量信用風險下之海外可轉債評價 / Pricing Euro-Convertible Bonds with Credit Risk

吳岱恩, Wu, Tai En Unknown Date (has links)
鑒於近年全球海外可轉換公司債發行檔數大增,然而以此商品為研究主題的文獻並不多,於是決定以此為研究目標。   影響海外可轉換公司債的價格因素包括股票價格、匯率、國內利率、國外利率和發行公司的違約機率,因此可買回、可賣回海外可轉換公司債是一個複雜的商品,而評價也較為困難。本文採用三維度二項樹和最小平方蒙地卡羅法建立評價海外可轉債的數值模型。為了更貼近真實世界,本文考量各變數間相關性和動態信用風險;另外,為了使評價更為精準,於股價過程中加入跳躍過程。   本文將模型運用至兩檔台灣公司所發行的海外可轉債,發現理論價格傾向於高估,但是理論價格與市價極為接近,尤其當以最小平方蒙地卡羅法評價時。另外本文也針對發行條件和模型中各個變數作敏感度分析,其中重要的是發現股票波動度、股票與匯率間相關係數在海外可轉債評價中扮演重要的角色。 / The number of Euro-convertible bonds issued has highly increased in the early 2010s. However, the related literature is barely found. This paper studies the pricing models of this investment product. Euro-convertible bonds are complex instruments affected by the credit risk of the issuers, the dynamic process of stock prices, the term structure of the interest rate and the movement of the exchange rate in the same time. Accordingly, building the ECB pricing model is a hard work. This paper presents a model considering the dynamic credit risk and jump in stock price process to make valuation more precise. Another advantage of models in this paper is use of stochastic interest rates for both local and foreign so as to make the model more staying with the real world. The other advantage is taking the correlation between each random variables into account. For pricing the Euro-convertible bonds, the numerical methodologies used in this paper are three-dimension binomial tree and least squares Monte Carlo approach. For purpose of assessing the performance of the model, two Euro-convertible bonds issued by Taiwan companies are chosen as samples and the difference between the theoretical price and market price during its issue period are provided. The results demonstrate that in spite of pretty slight overestimation, the least squares Monte Carlo simulation does a better job. In addition, this paper performs several kinds of sensitivity analysis to have in-depth understanding about the models. The consequence shows that the volatility of a stock return and the correlation between stock and exchange rate play a central role in ECB valuations.
82

Ett generationsneutralt avkastningsmål : Asset Liability Management analys för buffertfonderna i det svenska pensionssystemet / A Generation Neutral Target Return : Asset Liability Management Analysis for the Buffer Funds in the Swedish Pension System

Nyström, Erika, Wirell, Viktoria January 2016 (has links)
Syftet med detta arbete var att fastställa det avkastningsmål som buffertfonderna bör ha för att bidra till största möjliga nytta för det svenska pensionssystemet samt att analysera styrkan och känsligheten i systemet. För att besvara syftet genomfördes en Asset Liability Management analys, där risk och avkastning optimerades samtidigt som hänsyn togs till pensionssystemets skulder och rättvisa mellan generationer. Ett nyckeltal definierades för att ta hänsyn till generationsneutralitet. Nyckeltalet visar hur mycket en generation procentuellt sett får ut i pension relativt vad de har betalat in till pensionssystemet och det anses vara rättvist om detta nyckeltal är samma för samtliga generationer. Utifrån nyckeltalet togs en stokastisk optimeringsmodell fram som minimerade förluster och orättvisor mellan generationer. Avkastningsmålet som fastställdes genom optimeringen blev 3,6 procent realt, vilket är lägre än samtliga buffertfonders nuvarande avkastningsmål. Känslighetsanalysen visade att pensionssystemet mest sannolikt ser starkt ut framöver. Pensionssystemet är framförallt känsligt för demografiska förändringar, medan förutsättningarna på de finansiellamarknaderna får mindre påverkan för systemets långsiktiga stabilitet. / The aim of this thesis was to determine the target return that the buffer funds should have to generate maximum possible benefit for the Swedish pension system and to analyse the strength and sensitivity of the system. An Asset Liability Management analysis, with optimization of risk and return with respect to the pension system’s liabilities and equality between generations, was performed. A key ratio was defined to illustrate the generation-neutrality in the pensions system. The key ratio shows how much pension one generation will receive compared to how much they have paid to the pension system and it is considered to be fair if the ratio is the same for every generation. A stochastic optimization model that minimized losses with respect to the key ratio was developed. The target real return that was determined in the optimization was 3.6 percent, which is lower than all the buffer funds’ current target returns. The sensitivity analysis showed that the pension system most plausible is strong in the future. The system is mainly sensitive for demographic changes while the condition of the financial market has less impact on the system’s long-term stability.
83

Drift estimation for jump diffusions

Mai, Hilmar 08 October 2012 (has links)
Das Ziel dieser Arbeit ist die Entwicklung eines effizienten parametrischen Schätzverfahrens für den Drift einer durch einen Lévy-Prozess getriebenen Sprungdiffusion. Zunächst werden zeit-stetige Beobachtungen angenommen und auf dieser Basis eine Likelihoodtheorie entwickelt. Dieser Schritt umfasst die Frage nach lokaler Äquivalenz der zu verschiedenen Parametern auf dem Pfadraum induzierten Maße. Wir diskutieren in dieser Arbeit Schätzer für Prozesse vom Ornstein-Uhlenbeck-Typ, Cox-Ingersoll-Ross Prozesse und Lösungen linearer stochastischer Differentialgleichungen mit Gedächtnis im Detail und zeigen starke Konsistenz, asymptotische Normalität und Effizienz im Sinne von Hájek und Le Cam für den Likelihood-Schätzer. In Sprungdiffusionsmodellen ist die Likelihood-Funktion eine Funktion des stetigen Martingalanteils des beobachteten Prozesses, der im Allgemeinen nicht direkt beobachtet werden kann. Wenn nun nur Beobachtungen an endlich vielen Zeitpunkten gegeben sind, so lässt sich der stetige Anteil der Sprungdiffusion nur approximativ bestimmen. Diese Approximation des stetigen Anteils ist ein zentrales Thema dieser Arbeit und es wird uns auf das Filtern von Sprüngen führen. Der zweite Teil dieser Arbeit untersucht die Schätzung der Drifts, wenn nur diskrete Beobachtungen gegeben sind. Dabei benutzen wir die Likelihood-Schätzer aus dem ersten Teil und approximieren den stetigen Martingalanteil durch einen sogenannten Sprungfilter. Wir untersuchen zuerst den Fall endlicher Aktivität und zeigen, dass die Driftschätzer im Hochfrequenzlimes die effiziente asymptotische Verteilung erreichen. Darauf aufbauend beweisen wir dann im Falle unendlicher Sprungaktivität asymptotische Effizienz für den Driftschätzer im Ornstein-Uhlenbeck Modell. Im letzten Teil werden die theoretischen Ergebnisse für die Schätzer auf endlichen Stichproben aus simulierten Daten geprüft und es zeigt sich, dass das Sprungfiltern zu einem deutlichen Effizienzgewinn führen. / The problem of parametric drift estimation for a a Lévy-driven jump diffusion process is considered in two different settings: time-continuous and high-frequency observations. The goal is to develop explicit maximum likelihood estimators for both observation schemes that are efficient in the Hájek-Le Cam sense. The likelihood function based on time-continuous observations can be derived explicitly for jump diffusion models and leads to explicit maximum likelihood estimators for several popular model classes. We consider Ornstein-Uhlenbeck type, square-root and linear stochastic delay differential equations driven by Lévy processes in detail and prove strong consistency, asymptotic normality and efficiency of the likelihood estimators in these models. The appearance of the continuous martingale part of the observed process under the dominating measure in the likelihood function leads to a jump filtering problem in this context, since the continuous part is usually not directly observable and can only be approximated and the high-frequency limit. In the second part of this thesis the problem of drift estimation for discretely observed processes is considered. The estimators are constructed from discretizations of the time-continuous maximum likelihood estimators from the first part, where the continuous martingale part is approximated via a thresholding technique. We are able to proof that even in the case of infinite activity jumps of the driving Lévy process the estimator is asymptotically normal and efficient under weak assumptions on the jump behavior. Finally, the finite sample behavior of the estimators is investigated on simulated data. We find that the maximum likelihood approach clearly outperforms the least squares estimator when jumps are present and that the efficiency gap between both techniques becomes even more severe with growing jump intensity.
84

跳躍擴散模型下固定比例債務債券評價,風險構面及避險分析 / The Pricing, Credit Risk Decomposition and Hedging Analysis of CPDO Under The Jump Diffusion Model

王聖元, Wang , Sheng Yuan Unknown Date (has links)
信用衍生性商品在市場上交易漸趨熱絡,創新速度更是一日千里,市場上琳琅滿目的信用衍生性商品,投資人要如何審慎客觀評估風險後再檢視自身能承擔的風險後投資,諸如此類的議題在近幾年備受關注。尤其在2007金融海嘯之後,所有信用衍生性產品也無一倖免,信用評等公司對信用衍生性產品的評價,也備受挑戰,因此,辨識風險以及驅避風險在後金融海嘯時期,已是一刻不容緩之待解決問題。固定比例債務債券(Constant Proportion Debt Obligations; CPDO)亦是金融海嘯前一年所發明的創新信用衍生性商品,由於其高收益特性以及強調極低投資風險,吸引了許多投資人爭相購買,但金融海嘯時期,也是付之一炬。為了使投資人更了解此商品的風險,本研究運用在跳躍擴散模型假設下,存在封閉解的雙出場障礙式選擇權複製此商品的風險因子,並且為了描述此商品具有動態調整槓桿的時間相依(Time Dependent)性質,加入了蒙地卡羅模擬法,捕捉任意時點上,投資人面臨的風險,將風險因子拆解選擇權後,也更能讓投資人能以投資選擇權的知識運用到此商品來操作。最後,為了使投資人趨避諸如金融海嘯時期的風險,本研究也用選擇權的Delta 避險策略,替商品虛擬一現貨市場,並模擬出其避險之績效。 / The increasing trading volumes and innovative structures of credit derivatives have attracted great academic attention in the quantification and analysis of their complex risk characteristics. The pricing and hedging issues of complex credit structuers after the 2009 financial crisis are especially vital, and they present great challegens to both the academic community and industry practitioners. Constant Proportion Debt Obligations (CPDOs) are one of the new credit-innovations that claim to provide risk-adverse investors with fixed-income cash flows and minimal risk-bearing, yet the cash-outs events of such products during the crisis unfolded risk characteristics that had been unseen to investors. This research focuses on the pricing risk quantification, and dynamic hedging issues of CPDOs under a Levy jump diffusion setting. Based on decomposing the product's risk structure, we derive explicit closed-form solutions in the form of time-dependent double digital knock-out barrier options. This enables us to explore, in terms of the associated hedging greeks, the embeded risk characteristics of CPDOs and propose feasible delta-netral strategies that are feasible to hedge such products. Numerical simulations are subsequently performed to provide benchmark measures for the proposed hedging strategies.
85

確定提撥制退休金之評價:馬可夫調控跳躍過程模型下股價指數之實證 / Valuation of a defined contribution pension plan: evidence from stock indices under Markov-Modulated jump diffusion model

張玉華, Chang, Yu Hua Unknown Date (has links)
退休金是退休人未來生活的依靠,確保在退休後能得到適足的退休給付,政府在退休金上實施保證收益制度,此制度為最低保證利率與投資報酬率連結。本文探討退休金給付標準為確定提撥制,當退休金的投資報酬率是根據其連結之股價指數的表現來計算時,股價指數報酬率的模型假設為馬可夫調控跳躍過程模型,考慮市場狀態與布朗運動項、跳躍項的跳躍頻率相關,即為Elliot et al. (2007) 的模型特例。使用1999年至2012年的道瓊工業指數與S&P 500指數的股價指數對數報酬率作為研究資料,採用EM演算法估計參數及SEM演算法估計參數共變異數矩陣。透過概似比檢定說明馬可夫調控跳躍過程模型比狀態轉換模型、跳躍風險下狀態轉換模型更適合描述股價指數報酬率變動情形,也驗證馬可夫調控跳躍過程模型具有描述報酬率不對稱、高狹峰及波動叢聚的特性。最後,假設最低保證利率為固定下,利用Esscher轉換法計算不同模型下型I保證之確定提撥制退休金的評價公式,從公式中可看出受雇人提領的退休金價值可分為政府補助與個人帳戶擁有之退休金兩部分。以執行敏感度分析探討估計參數對於馬可夫調控跳躍過程模型評價公式的影響,而型II保證之確定提撥制退休金的價值則以蒙地卡羅法模擬並探討其敏感度分析結果。 / Pension plan make people a guarantee life in their retirement. In order to ensure the appropriate amount of pension plan, government guarantees associated with pension plan which ties minimum rate of return guarantees and underlying asset rate of return. In this paper, we discussed the pension plan with defined contribution (DC). When the return of asset is based on the stock indices, the return model was set on the assumption that markov-modulated jump diffusion model (MMJDM) could the Brownian motion term and jump rate be both related to market states. This model is the specific case of Elliot et al. (2007) offering. The sample observations is Dow-Jones industrial average and S&P 500 index from 1999 to 2012 by logarithm return of the stock indices. We estimated the parameters by the Expectation-Maximization (EM) algorithm and calculated the covariance matrix of the estimates by supplemented EM (SEM) algorithm. Through the likelihood ratio test (LRT), the data fitted the MMJDM better than other models. The empirical evidence indicated that the MMJDM could describe the asset return for asymmetric, leptokurtic, volatility clustering particularly. Finally, we derived different model's valuation formula for DC pension plan with type-I guarantee by Esscher transformation under rate of return guarantees is constant. From the formula, the value of the pension plan could divide into two segment: government supplement and employees deposit made pension to their personal bank account. And then, we done sensitivity analysis through the MMJDM valuation formula. We used Monte Carlo simulations to evaluate the valuation of DC pension plan with type-II guarantee and discussed it from sensitivity analysis.
86

狀態相依跳躍風險與美式選擇權評價:黃金期貨市場之實證研究 / State-dependent jump risks and American option pricing: an empirical study of the gold futures market

連育民, Lian, Yu Min Unknown Date (has links)
本文實證探討黃金期貨報酬率的特性並在標的黃金期貨價格遵循狀態轉換跳躍擴散過程時實現美式選擇權之評價。在這樣的動態過程下,跳躍事件被一個複合普瓦松過程與對數常態跳躍振幅所描述,以及狀態轉換到達強度是由一個其狀態代表經濟狀態的隱藏馬可夫鏈所捕捉。考量不同的跳躍風險假設,我們使用Merton測度與Esscher轉換推導出在一個不完全市場設定下的風險中立黃金期貨價格動態過程。為了達到所需的精確度,最小平方蒙地卡羅法被用來近似美式黃金期貨選擇權的價值。基於實際市場資料,我們提供實證與數值結果來說明這個動態模型的優點。 / This dissertation empirically investigates the characteristics of gold futures returns and achieves the valuation of American-style options when the underlying gold futures price follows a regime-switching jump-diffusion process. Under such dynamics, the jump events are described as a compound Poisson process with a log-normal jump amplitude, and the regime-switching arrival intensity is captured by a hidden Markov chain whose states represent the economic states. Considering the different jump risk assumptions, we use the Merton measure and Esscher transform to derive risk-neutral gold futures price dynamics under an incomplete market setting. To achieve a desired accuracy level, the least-squares Monte Carlo method is used to approximate the values of American gold futures options. Our empirical and numerical results based on actual market data are provided to illustrate the advantages of this dynamic model.
87

考量環境保護下能源產業之財務風險管理:煉油廠實證 / Financial risk management in energy industry under the environmental protection: evidence from refinery

王品昕, Wang, Pin Hsin Unknown Date (has links)
Schwarz (1997)提出均數回復過程(Mean-Reverting Process, MR)捕捉能源價格的動態過程,而Lucia and Schwarz (2002)將此模型結合確定季節性函數,並推導出期貨價格封閉解。然而,能源價格常會因為未預期事件的發生而產生大幅度的變動,為了描述價格跳躍的現象,Clewlow and Strickland (2000)延伸Schwarz的模型提出均數回復跳躍擴散模型(Mean-reverting jump diffusion process, MRJD),此模型除了保留均數回復模型對能源價格會回復至長期水準的描述外,再加上跳躍項來描述價格的異常變動。而Cartea and Figueroa (2005)則同時考慮季節性和跳躍因子,並推導出期貨價格封閉解。另外,雖然台灣目前並非京都議定書所規範的國家,但環境保護是未來的趨勢,故在衡量能源產業財務風險時,除了考慮相關原料和產品,應考慮碳權交易之影響。為了探討財務風險管理在能源產業之應用,本文以煉油廠為例,將其表示成特定期貨部位的投資組合,並透過計算投資組合風險值來衡量煉油廠的財務風險。文中使用結合季節性的均數回復過程、均數回復跳躍擴散過程進行模型配適。實證結果顯示,均數回復跳躍擴散模型在回溯測試下表現最佳;另外,考慮碳權交易後會使得煉油廠的財務風險上升。 / Schwarz (1997) proposes the mean-reverting process (MR) to model energy spot price dynamics, and Lucia and Schwarz (2002) extend this model by including mean reversion and a deterministic seasonality. This model can capture the mean-reversion of energy price, but fail to account for the huge and non-negligible price movement in the market. Clewlow and Strickland (2000) extend Schwarz’s model to mean-reverting jump diffusion process (MRJD). Cartea and Figueroa (2005) present a model which captures the most importance characteristics of energy spot prices such as mean reversion, jumps and seasonality, and provide a closed-form solution for the forward. Although Taiwan is not the member of Kyoto Protocol, but Environmental Protection is a trend in the future. In order to measure the financial risk induced by energy industries, we should consider the effect of emission trading. In this paper, we discuss the implication of financial risk management in energy industries by analyzing the exposure of refinery which represented certain energy futures portfolios. We use MR and MRJD process with seasonality to model energy spot price dynamics, and calibrate the parameters to historical data. And, we consider the interaction of all of positions and calculate the Value-at-Risk of portfolios. The results show that among various approaches the MRJD presents more efficient results in back-testing, and emission trading poses additional risk factors which will increase the financial risk for refineries.
88

可轉債評價 --- LSMC考慮股價跳躍及信用風險 / Convertible Bond Pricing --- Consider Jump-diffusion model and credit risk with LSMC

丁柏嵩 Unknown Date (has links)
可轉換公司債是一種在持有期間內,投資人可以在規定的時間內將債券轉換為股票,或是到期時得到債券報酬的一種複合式證券。因此,可轉債除了具有債券性質之外,還包含另一部份可視為一美式選擇權的股票選擇權。 本篇論文將可轉換債券評價結合數值分析中的最小蒙地卡羅法(Least square monte carlo),使得在評價可轉債時,能夠具有更多的彈性處理發行公司自行設計的贖回條款與其他各種不同的契約情況。 此外,本篇論文針對股價考慮跳躍的性質,使用Compound Poisson 過程模擬發生跳躍的次數,導入Merton的跳躍模型(Jump-diffusion Model),在Merton的假設下,模擬未來股價的動態變化。 信用風險方面,本文採用Duffie提出的風險CIR模型評價。考慮存活函數(Survival Function)和違約強度(Hazard Rate Function),使用CIR模型描述信用違約強度在可轉債持有期間的動態變化,最後模擬出違約的時點,結合LSMC下的可轉債評價評價法。 最後利率部份,雖然Brennan and Schwartz(1980)認為隨機利率對於可轉換債券的評價,並沒有明顯的效果,反而會降低評價時的效率,但是為了符合評價過程的合理性,本文使用CIR短期利率模型。
89

Highway Development Decision-Making Under Uncertainty: Analysis, Critique and Advancement

El-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous. In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model. This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives. Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.
90

Highway Development Decision-Making Under Uncertainty: Analysis, Critique and Advancement

El-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous. In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model. This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives. Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.

Page generated in 0.0511 seconds