• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 165
  • 124
  • 57
  • 30
  • 13
  • Tagged with
  • 384
  • 156
  • 122
  • 110
  • 84
  • 75
  • 70
  • 70
  • 57
  • 48
  • 40
  • 38
  • 33
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Les processus d'apprentissage fondamentaux sont-ils prédicteurs du neurodéveloppement?

Deguire, Florence 05 1900 (has links)
Thèse de doctorat présenté en vue de l'obtention du doctorat en psychologie - recherche intervention, option neuropsychologie clinique (Ph.D) / L’enfance représente une période charnière dans le développement du cerveau en raison des multiples changements qui s’y opèrent. En considérant que c’est au cours des deux premières années de vie que le cerveau est le plus sensible aux interventions, nous devrions chercher à intervenir plus tôt dans le développement des enfants. Pour ce faire, il est nécessaire d’identifier des biomarqueurs, c’est-à-dire des mesures objectives permettant d’évaluer les processus biologiques normaux et pathologiques du cerveau, afin d’éventuellement être en mesure de reconnaitre, en bas âge, les enfants à risque de connaître une perturbation de leur développement cognitif. L’électroencéphalographie (EEG), et plus particulièrement les réponses cérébrales d’apprentissage, constituent des avenues intéressantes pour l’identification de biomarqueurs étant donné leur rôle clé dans le développement perceptuel et cognitif des enfants. De plus, les paramètres EEG du développement typique du cerveau sont relativement bien compris, ce qui fournit une base intéressante pour étudier le développement atypique. Le premier article de cette thèse avait pour objectif de déterminer la courbe développementale de deux types de réponses cérébrales d’apprentissage, soit les réponses cérébrales à la répétition ainsi que la détection du changement, afin de caractériser leur développement typique. Pour ce faire, nous avons utilisé une tâche de type oddball en EEG chez 43 enfants contrôles suivis à trois reprises entre l’âge de 3 mois et l’âge de 4 ans. Les résultats ont permis de démontrer un patron de réponse en forme de U semblable à travers les âges, c’est-à-dire une réponse de suppression neuronale entre la première et la deuxième présentation du stimulus suivi d’une réponse de détection du changement au stimulus déviant. Ceci révèle un développement relativement stable des réponses cérébrales chez les sujets contrôles. Dans le second article, le premier objectif était de déterminer la valeur prédictive de ces réponses cérébrales d’apprentissage, mesurées dans les deux premières années de vie, en les mettant en relation avec le fonctionnement intellectuel et adaptatif à l’âge de 4 ans, chez les mêmes 43 enfants contrôles et un groupe composé de 20 enfants macrocéphales. Les résultats révèlent que lorsque mesurée lors de la première année de vie, un patron de réponses cérébrales en forme de U est lié positivement avec le fonctionnement adaptatif à 4 ans. Un deuxième objectif était de déterminer dans quelle mesure la croissance cérébrale lors de la première année de vie est un facteur de variabilité interindividuelle qui influence les réponses cérébrales d’apprentissage entre 3 mois et 2 ans. Un impact négatif d’une croissance cérébrale accrue sur les réponses cérébrales à la répétition et de détection du changement a été observé, mais uniquement dans la période 0-12 mois. Il semble donc que les réponses cérébrales d’apprentissage auraient le potentiel de servir de biomarqueur dès la première année de vie puisqu’elles sont liées au fonctionnement adaptatif et sont sensibles au rythme de croissance du cerveau. Cette thèse contribue à améliorer nos connaissances sur les réponses cérébrales d’apprentissage, notamment en caractérisant leur courbe développementale durant l’enfance. Nous avons également contribué à l’avancement de la recherche sur les biomarqueurs EEG en mesurant le pouvoir prédictif de ces réponses sur le fonctionnement adaptatif des enfants d’âge préscolaire ainsi que leur sensibilité aux différences interindividuelles telles que la croissance cérébrale. / Childhood is a pivotal period in the brain’s development due to the many changes it undergoes. Considering that the brain is the most susceptible to interventions during the first two years of life, we should aim to intervene sooner in infant’s development. Therefore, there is a need to establish biomarkers, i.e., a characteristic that is objectively measured and evaluated, and that can serve as an indication of normal or pathogenic biological processes, that would allow for earlier diagnosis. Electroencephalography (EEG), and more specifically cerebral learning responses, are interesting prospects for biomarker identification given their key role in children's perceptual and cognitive development. Moreover, EEG typical patterns of brain development are well established, then allowing the study of atypical brain development. The aim of the first article in this thesis was to investigate the developmental course of two types of cerebral learning responses, i.e., repetition and change detection responses. To do so, we used an EEG oddball task in 43 healthy children who were tested three times from the age of 3 months to 4 years. It allowed us to characterize the typical development of these two cerebral responses and establish response patterns. The results showed a similar U-shaped response pattern in infants and children of all ages, i.e., a repetition suppression response between the first and second stimulus presentation followed by a change detection response to the deviant stimulus. This suggests a relatively stable developmental course of repetition and change detection responses in healthy subjects. In the second article, the first objective was to determine the predictive value of these brain learning responses, measured during the two first years of life, on intellectual and adaptive functioning at age 4, in the same 43 healthy children and a group of 20 macrocephalic children. The results reveal that when measured in the first year of life, a U-shaped brain responses pattern is positively related to adaptive functioning at age 4. A second objective was to assess whether brain growth during the first year of life is a factor of interindividual variability that influences cerebral learning responses between 3 months and 2 years of age. A negative impact of increased brain growth on repetition and change detection responses was observed, but only in the 0–12-month period. Thus, it appears that cerebral learning responses may have the potential to be biomarkers in the first year of life since they are associated with adaptive functioning and are sensitive to the brain growth rate. This thesis contributes to improving our knowledge of cerebral learning responses, notably by characterizing their developmental course during childhood. We also contributed to the advancement of research on EEG biomarkers by measuring the predictive power of these responses on preschoolers’ adaptive functioning as well as their sensitivity to interindividual differences such as brain growth.
332

Serum neurofilament indicates that DBS surgery can cause neuronal damage whereas stimulation itself does not

Frank, Anika, Bendig, Jonas, Schniewind, Iñaki, Polanski, Witold H., Sobottka, Stephan B., Reichmann, Heinz, Akgün, Katja, Ziemssen, Tjalf, Klingelhoefer, Lisa, Falkenburger, Björn H. 04 April 2024 (has links)
Deep brain stimulation (DBS) is a potent symptomatic therapy for Parkinson’s disease, but it is debated whether it causes or prevents neurodegeneration. We used serum neurofilament light chain (NFL) as a reporter for neuronal damage and found no difference between 92 patients with chronic STN-DBS and 57 patients on best medical treatment. Serum NFL transiently increased after DBS surgery whereas the initiation of STN stimulation did not affect NFL levels, suggesting that DBS surgery can be associated with neuronal damage whereas stimulation itself is not.
333

Resting-state BOLD signal variability is associated with individual differences in metacontrol

Zhang, Chenyan, Beste, Christian, Prochazkova, Luisa, Wang, Kangcheng, Speer, Sebastian P. H., Smidts, Ale, Boksem, Maarten A. S., Hommel, Bernhard 22 April 2024 (has links)
Numerous studies demonstrate that moment-to-moment neural variability is behaviorally relevant and beneficial for tasks and behaviors requiring cognitive flexibility. However, it remains unclear whether the positive effect of neural variability also holds for cognitive persistence. Moreover, different brain variability measures have been used in previous studies, yet comparisons between them are lacking. In the current study, we examined the association between resting-state BOLD signal variability and two metacontrol policies (i.e., persistence vs. flexibility). Brain variability was estimated from resting-state fMRI (rsfMRI) data using two different approaches (i.e., Standard Deviation (SD), and Mean Square Successive Difference (MSSD)) and metacontrol biases were assessed by three metacontrol-sensitive tasks. Results showed that brain variability measured by SD and MSSD was highly positively related. Critically, higher variability measured by MSSD in the attention network, parietal and frontal network, frontal and ACC network, parietal and motor network, and higher variability measured by SD in the parietal and motor network, parietal and frontal network were associated with reduced persistence (or greater flexibility) of metacontrol (i.e., larger Stroop effect or worse RAT performance). These results show that the beneficial effect of brain signal variability on cognitive control depends on the metacontrol states involved. Our study highlights the importance of temporal variability of rsfMRI activity in understanding the neural underpinnings of cognitive control.
334

Etablierung eines reprogrammierten humanen neuronalen Modells zur Untersuchung einer entzündlichen Leukodystrophie

Hänchen, Vanessa 18 April 2024 (has links)
Hintergrund Das Aicardi-Goutières Syndrom (AGS) ist eine genetisch bedingte Enzephalopathie, die durch Mutationen in neun verschiedenen Genen verursacht wird und zu einer Neurodegenration mit globaler Entwicklungsverzögerung führt. Die Mutationen führen zu einer Fehlregulation des Metabolismus und der immunologischen Erkennung intrazellulärer Nukleinsäuren sowie einer konstitutiven Aktivierung von Typ 1-Interferon (IFN). Bei AGS-Patienten sind Kalzifizierungen der Basalganglia sowie Demyelinisierungen der weißen Substanz charakteristisch. Fragestellung: Biallele Mutationen in den Genen, TREX1 und SAMHD1, sind Ursache des AGS Typ 1 und AGS Typ 5. Die DNA-Exonuklease TREX1 degradiert intrazelluläre Nukleinsäure-Metabolite, die während zellulärer Prozesse gebildet werden. Die Triphosphohydrolase SAMHD1 spielt vorrangig in der Regulation des intrazellulären dNTP-Pools und des RNA-Metabolismus eine wichtige Rolle. Die Möglichkeit induzierte pluripotente Stammzellen (iPSC) zu generieren und damit aus somatischen Zellen embryonale Stammzellen nachzubilden, um diese in unterschiedliche Zelltypen zu differenzieren, ermöglicht es, Zelltypen von schwer zugänglichen Geweben wie das Gehirn zu erforschen. Die vorliegende Arbeit untersucht die Auswirkungen einer TREX1- und SAMHD1-Defizienz in neuronalen Zellen. Dazu wurden reprogrammierte neuronale Modelle für das AGS Typ 1 und AGS Typ 5 etabliert. Ziel war hierbei die Aufdeckung bisher unbekannter molekularer Mechanismen, die zur Entstehung einer Typ 1-IFN-induzierten Inflammation und Neurodegeneration bei Patienten mit AGS führt. Material und Methoden: Als Ausgangspunkt dieser Arbeit dienten primäre Fibroblasten und PBMCs, die aus Hautbiopsien bzw. Blutproben von AGS-Patienten mit Mutationen in den Genen, TREX1 und SAMHD1, gewonnen wurden. Durch eine Reprogrammierung dieser patientenspezifischen Zellen wurden pluripotente Stammzellen induziert und anschließend über die Bildung von Embryonalkörperchen und neuronale Vorläuferzellen in neuronale Zellen differenziert. Um die etablierten neuronalen Zelllinien funktionell zu charakterisieren, wurden isogene Zelllinien etabliert. Hierbei wurde mittels Genomeditierung der patientenspezifischen iPS-Zellen die krankheitsassoziierte Mutation behoben und auf diese Weise isogene Zelllinien mit identischem genetischen Hintergrund generiert, die sich lediglich durch die Anwesenheit oder das Fehlen der krankheitsrelevanten Mutation unterscheiden. Unter Nutzung verschiedener molekularbiologischer Methoden wurden die patientenspezifischen neuronalen Zellen näher untersucht. Um die in Patienten-Fibroblasten nachgewiesene erhöhten Typ 1-IFN-Aktivität auch im neuronalen Zellmodell zu untersuchen, wurden in dieser Arbeit AGS-patientenspezifische neuronale Zellen und deren Vorläufer auf eine Erhöhung der IFN-Signatur überprüft. Um die etablierten neuronalen Zellmodelle eines AGS auf zellulären Stress in Form von ROS zu untersuchen, wurden patientenspezifische NPCs im Vergleich zu WT-Linien mittels DHR-Assay analysiert. Weiterhin wurde aus neuronalen Zellen mit AGS-spezifischen Mutationen mittels einer speziellen Kultivierungsmethode zur in vitro Separation von Axonen und Dendriten in proximale und distale Bereiche und einem nachfolgenden Tracking von Lysosomen und Mitochondrien per Live cell imaging die subzelluläre Verteilung dieser Organellen untersucht. Mittels immunhistochemischer Färbungen wurden zudem aus iPSC bzw. NPCs gewonnene neuronale Zellen mit AGS-spezifischen Mutationen die zelluläre Expression von Proteinen, die eine Rolle bei neurodegenerativen Krankheiten spielen, untersucht. Ergebnisse Die Nutzung der iPSC-Technologie eröffnet besonders für neurodegenerative Krankheiten die Möglichkeit, geeignete zelluläre Krankheitsmodelle zu schaffen. So existieren bereits eine Reihe iPSC-basierter Studien für Alzheimer, Parkinson, Chorea Huntington oder amyotropher Lateralsklerose. Mit der vorliegenden Arbeit wurden iPSC-basierte Modelle für das AGS entwickelt. Als Grundstein dieser Arbeit konnten aus somatischen Zellen von AGS-Patienten pluripotente Stammzellen erzeugt und als iPSCLinien etabliert werden. Die funktionelle Charakterisierung der patientenspezifischen Zellen erfolgte durch die Etablierung isogener Kontrollen mit identischem genetischen Hintergrund, um phänotypische Unterschiede direkt auf die krankheitsspezifischen Mutationen zurückzuführen. Die vorhandenen SAMHD1- und TREX1-Mutationen in den iPS-Zellen der Patienten wurden zunächst mittels Genomeditierung korrigiert. Anschließend wurden iPSC-Linien etabliert. Die patientenspezifischen iPS-Zellen sowie die isogenen Kontrollen wurden über neuronale Vorläuferzellen zu Neuronen differenziert, validiert und funktionell untersucht. Insgesamt konnte gezeigt werden, dass die etablierten Zellmodelle teilweise den Phänotyp eines AGS rekapitulieren. So entsprach die im AGS-Modell neuronaler Vorläuferzellen untersuchte Expression von IFN-stimulierten Genen (ISGs) weitgehend dem typischen Bild einer Interferonopathie und konnte durch den Vergleich mit isogenen Zelllinien auf die TREX1-Mutation der neuronalen Vorläuferzellen zurückgeführt werden. Eine Variabilität der ISG-Expression in ausdifferenzierten neuronalen Zellen könnte verschiedene Ursachen haben. Die Untersuchungen auf zellulären Stress in Form von ROS konnten zeigen, dass sowohl in TREX1- als auch SAMHD1-defizienten neuronalen Vorläuferzellen ein erhöhtes zelluläres Level an ROS vorliegt. Möglicherweise ist dies mit dem festgestellten langsamen Zellwachstum der patientenspezifischen Vorläuferzellen assoziiert. Weiterhin konnte mittels Live cell imaging ein verringertes Mobilitätsverhalten von Lysosomen und Mitochondrien in patienten- spezifischen neuronalen Zellen festgestellt werden, was die Vermutung nahelegt, dass die untersuchten AGS-verursachenden Mutationen in TREX1 und SAMHD1 ursächlich an der Neurodegeneration bei AGS-Patienten beteiligt sind. Ausblick: Die in dieser Arbeit erfolgreich etablierten reprogrammierten neuronalen AGS-Modelle können zukünftig dazu dienen, pathogenetische Prozesse im Gehirn zu untersuchen. Es konnten Grundlagen zur Aufklärung bisher unbekannter molekularer Mechanismen der Neurodegeneration bei AGS-Patienten geschaffen werden. Weiterführend kann das etablierte Modell zur Untersuchung weiterer Aspekte wie der Messung von transkriptomweiten Expressionsprofilen verwendet werden und somit neue Einblicke in die zellintrinsische Aktivierung der Typ 1-IFN-Achse von AGS-Patienten liefen. Um die Rolle von neuronal vorkommenden Proteinen oder Vesikeln bei neuronalen Erkrankungen, insbesondere bei AGS,zu untersuchen, stellt das patientenspezifische AGS-Modell eine wichtige Grundlage dar. Die hier aufgeführten immunhistochemischen Untersuchungen neuronaler Proteine können vertieft und in einem größeren Umfang ausgewertet werden. Die vorteilhaften Eigenschaften der iPSC-basierten neurodegenerativen Modelle ermöglichen neben grundlagenwissenschaftlichen Untersuchungen zur Krankheitsursache auch die Bearbeitung von Fragestellungen zur Behandlung von AGS-Patienten.
335

Implications of neuronal excitability and morphology for spike-based information transmission

Hesse, Janina 29 November 2017 (has links)
Signalverarbeitung im Nervensystem hängt sowohl von der Netzwerkstruktur, als auch den zellulären Eigenschaften der Nervenzellen ab. In dieser Abhandlung werden zwei zelluläre Eigenschaften im Hinblick auf ihre funktionellen Anpassungsmöglichkeiten untersucht: Es wird gezeigt, dass neuronale Morphologie die Signalweiterleitung unter Berücksichtigung energetischer Beschränkungen verstärken kann, und dass selbst kleine Änderungen in biophysikalischen Parametern die Aktivierungsbifurkation in Nervenzellen, und damit deren Informationskodierung, wechseln können. Im ersten Teil dieser Abhandlung wird, unter Verwendung von mathematischen Modellen und Daten, die Hypothese aufgestellt, dass Energie-effiziente Signalweiterleitung als starker Evolutionsdruck für unterschiedliche Zellkörperlagen bei Nervenzellen wirkt. Um Energie zu sparen, kann die Signalweiterleitung vom Dendrit zum Axon verstärkt werden, indem relativ kleine Zellkörper zwischen Dendrit und Axon eingebaut werden, während relativ große Zellkörper besser ausgelagert werden. Im zweiten Teil wird gezeigt, dass biophysikalische Parameter, wie Temperatur, Membranwiderstand oder Kapazität, den Feuermechanismus des Neurons ändern, und damit gleichfalls Aktionspotential-basierte Informationsverarbeitung. Diese Arbeit identifiziert die sogenannte "saddle-node-loop" (Sattel-Knoten-Schlaufe) Bifurkation als den Übergang, der besonders drastische funktionale Auswirkungen hat. Neben der Änderung neuronaler Filtereigenschaften sowie der Ankopplung an Stimuli, führt die "saddle-node-loop" Bifurkation zu einer Erhöhung der Netzwerk-Synchronisation, was möglicherweise für das Auslösen von Anfällen durch Temperatur, wie bei Fieberkrämpfen, interessant sein könnte. / Signal processing in nervous systems is shaped by the connectome as well as the cellular properties of nerve cells. In this thesis, two cellular properties are investigated with respect to the functional adaptations they provide: It is shown that neuronal morphology can improve signal transmission under energetic constraints, and that even small changes in biophysical parameters can switch spike generation, and thus information encoding. In the first project of the thesis, mathematical modeling and data are deployed to suggest energy-efficient signaling as a major evolutionary pressure behind morphological adaptations of cell body location: In order to save energy, the electrical signal transmission from dendrite to axon can be enhanced if a relatively small cell body is located between dendrite and axon, while a relatively large cell body should be externalized. In the second project, it is shown that biophysical parameters, such as temperature, membrane leak or capacitance, can transform neuronal excitability (i.e., the spike onset bifurcation) and, with that, spike-based information processing. This thesis identifies the so-called saddle-node-loop bifurcation as the transition with particularly drastic functional implications. Besides altering neuronal filters and stimulus locking, the saddle-node-loop bifurcation leads to an increase in network synchronization, which may potentially be relevant for the initiation of seizures in response to increased temperature, such as during fever cramps.
336

Stress oxydatif cérébrovasculaire et rupture de la barrière hémato-encéphalique dans le syndrome de Wernicke-Korsakoff expérimental

Beauchesne, Élizabeth 03 1900 (has links)
Le syndrome de Wernicke-Korsakoff (SWK) est un désordre neuropsychiatrique causé par la déficience en thiamine (DT). Dans la DT expérimentale comme dans le SWK, on observe une mort neuronale et des hémorragies dans certaines régions précises du diencéphale et du tronc cérébral. Les lésions diencéphaliques du SWK sont particulièrement sévères et entraînent souvent des séquelles amnésiques permanentes. Le lien entre la dysfonction métabolique induite par la DT et la mort neuronale n’est pas connu. Des rapports précédents ont démontré que la perméabilité de la barrière hémato-encéphalique (BHE) était altérée et ce, précédant l’apparition du dommage neuronal, suggérant un rôle critique de la dysfonction vasculaire. Les jonctions serrées (JS) interendothéliales, la base anatomique de la BHE, constituent un réseau moléculaire incluant l’occludin et les zonula occludens (ZOs). Cette thèse démontre une perte d’expression et une altération de la morphologie de ces protéines en relation avec la dysfonction de la BHE dans le thalamus de souris déficientes en thiamine, fournissant une explication pour la présence d’hémorragies. Le stress oxydatif peut entraîner des dommages directs aux protéines des JS et interférer avec leurs mécanismes de régulation. De plus, l’oxyde nitrique (NO) peut induire la métalloprotéinase matricielle-9 (MMP-9) impliquée dans la dégradation de ces protéines. L’endothélium vasculaire cérébral (EVC) semble être une source importante de NO dans la DT, l’expression de l’oxyde nitrique synthase endothéliale (eNOS) étant sélectivement induite dans les régions vulnérables. Le NO peut réagir avec les espèces réactives oxygénées et former du peroxynitrite, entraînant un stress oxydatif/nitrosatif endothélial. Les résultats présentés démontrent que la délétion du gène de eNOS prévient le stress oxydatif/nitrosatif cérébrovasculaire, l’extravasation des immunoglobulins G (IgGs) et l’altération de l’occludin et des ZOs dans le thalamus de souris déficientes en thiamine. De plus, cette délétion prévient l’induction de l’expression de MMP-9 dans l’EVC. Des résultats similaires ont été obtenus avec l’antioxydant N-acétylcystéine (NAC). Les mécanismes précis par lesquels les espèces réactives altèrent les protéines des JS sont inconnus. Caveolin-1, une composante majeure du caveolæ de l’EVC, est impliquée dans la régulation de l’expression des protéines des JS, et celle-ci est modulée par le stress oxydatif/nitrosatif; l’altération de l’expression de caveolin-1 a été récemment associée à la rupture de la BHE. Les résultats présentés démontrent que l’expression de caveolin-1 est sélectivement altérée dans l’EVC du thalamus de souris déficientes en thiamine, coïcidant avec la rupture de la BHE, et démontrent que la normalisation de l’expression de caveolin-1 par le NAC est associée avec l’atténuation du dommage à la BHE. Pris ensemble, ces résultats démontrent un rôle central du stress oxydatif/nitrosatif cérébrovasculaire, particulièrement celui provenant de eNOS, dans l’altération des JS de la BHE via des dommages directs et via l’induction de MMP-9 et de caveolin-1. Cette rupture de la BHE contribue par conséquent à la mort neuronale dans le thalamus, puisque la prévention des altérations cérébrovasculaires par la délétion du gène de eNOS et le NAC atténue significativement la mort neuronale. L’administration précoce d’antioxydants en combinaison avec la thiamine devrait donc être une considération importante pour le traitement du SWK. / Wernicke-Korsakoff syndrome (WKS) is a neuropsychiatric disorder caused by thiamine deficiency (TD). In experimental TD as in WKS, neuronal cell death and hemorrhages are observed in specific diencephalic and brainstem areas. Diencephalic lesions in WKS are especially severe and often lead to permanent amnesic symptoms. The link between TD-induced metabolic dysfunction and neuronal cell death is unknown. Previous reports have shown that blood-brain barrier (BBB) permeability was impaired and that this occurred prior to the onset of neuronal damage, suggesting a critical role for vascular dysfunction. Interendothelial tight junctions (TJs), the anatomical basis of the BBB, constitute a molecular network comprising occludin and zonula occludens (ZOs). This thesis shows a loss of expression and alterations in the morphology of these proteins in relation to BBB dysfunction in the thalamus of thiamine-deficient mice, providing an explanation for the presence of hemorrhages. Oxidative stress can lead to direct oxidative damage to TJ proteins and interfere with their regulation mechanisms. Also, nitric oxide (NO) can induce matrix metalloproteinase-9 (MMP-9) involved in the degradation of these proteins. Cerebral vascular endothelium (CVE) seems to be an important source of NO in TD, since endothelial nitric oxide synthase (eNOS) expression is selectively induced in vulnerable areas. NO can react with reactive oxygen species and form peroxynitrite, leading to endothelial oxidative/nitrosative stress. Results have show that eNOS gene deletion prevents cerebrovascular oxidative/nitrosative stress, immunoglobulins G (IgGs) extravasation and occludin and ZOs alterations in the thalamus of thiamine-deficient mice. Also, eNOS gene deletion prevents the induction of MMP-9 in CVE. Similar results have been obtained with the antioxidant N-acetylcysteine (NAC). Precise mechanisms by which reactive species alter TJ proteins are unknown. Caveolin-1, a major component of CVE caveolæ, is involved in the regulation of TJ protein expression, and is modulated by oxidative/nitrosative stress; alteration in caveolin-1 expression has been recently associated with BBB breakdown. The present results show that caveolin-1 expression is selectively altered in CVE of the thalamus of thiamine-deficient mice, and show that normalization of caveolin-1 expression by NAC is associated with the attenuation of BBB damage. Taken together, these results demonstrate a central role for cerebrovascular oxidative/nitrosative stress, especially coming from eNOS, in BBB TJ protein alterations via direct damage and via induction of MMP-9 and caveolin-1. As a result, BBB breakdown contributes to neuronal cell death in the thalamus, since prevention of cerebrovascular alterations by eNOS gene deletion and NAC significantly attenuates neuronal cell death. Early administration of antioxidants combined with thiamine should therefore be an important consideration for the treatment of WKS.
337

Genetics of amyotrophic lateral sclerosis

Belzil, Véronique Valérie 02 1900 (has links)
La sclérose latérale amyotrophique (SLA) est la maladie des neurones moteurs la plus fréquente, affectant 4-6 individus par 100,000 habitants à l’échelle mondiale. La maladie se caractérise par une faiblesse et une atrophie musculaire suite à la dégénérescence des neurones du cortex moteur, tronc cérébral et moelle épinière. Les personnes atteintes développent les premiers symptômes à l’âge adulte et la maladie progresse sur une période de trois à cinq ans. Il a été répertorié qu’environ 10% des patients ont une histoire familiale de SLA; 90% des gens affectés le sont donc de façon sporadique. La découverte il y a 19 ans de mutations dans le gène zinc/copper superoxide dismutase (SOD1), présentes dans 15-20% des cas familiaux de SLA et environ 2% du total des individus affectés, a été l’événement déclencheur pour la découverte de variations génétiques responsables de la maladie. La recherche sur la génétique de la SLA a connu une progression rapide ces quatre dernières années avec l’identification de mutations dans de nouveaux gènes. Toutefois, même si certains de ces gènes ont été démontrés comme réellement liés à la maladie, la contribution d’autres gènes demeure incertaine puisque les résultats publiés de ceux-ci n’ont pas, à ce jour, été répliqués. Une portion substantielle de cas reste cependant à être génétiquement expliquée, et aucun traitement à ce jour n’a été démontré comme étant efficace pour remédier, atténuer ou prévenir la maladie. Le but du projet de recherche de doctorat était d’identifier de nouveaux gènes mutés dans la SLA, tout en évaluant la contribution de gènes nouvellement identifiés chez une importante cohorte multiethnique de cas familiaux et sporadiques. Les résultats présentés sont organisés en trois sections différentes. Dans un premier temps, la contribution de mutations présentes dans le gène FUS est évaluée chez les patients familiaux, sporadiques et juvéniles de SLA. Précisément, de nouvelles mutations sont rapportées et la proportion de mutations retrouvées chez les cas familiaux et sporadiques de SLA est évaluée. De plus, une nouvelle mutation est rapportée dans un cas juvénile de SLA; cette étude de cas est discutée. Dans un deuxième temps, de nouvelles avenues génétiques sont explorées concernant le gène SOD1. En effet, une nouvelle mutation complexe est rapportée chez une famille française de SLA. De plus, la possibilité qu’une mutation présente dans un autre gène impliqué dans la SLA ait un impact sur l’épissage du gène SOD1 est évaluée. Finalement, la dernière section explique la contribution de nouveaux gènes candidats chez les patients atteints de SLA. Spécifiquement, le rôle des gènes OPTN, SIGMAR1 et SORT1 dans le phénotype de SLA est évalué. Il est souhaité que nos résultats combinés avec les récents développements en génétique et biologie moléculaire permettent une meilleure compréhension du mécanisme pathologique responsable de cette terrible maladie tout en guidant le déploiement de thérapies suite à l’identification des cibles appropriées. / Amyotrophic lateral sclerosis (ALS) is the most common of motor neuron diseases, affecting 4-6 individuals per 100,000 individuals worldwide. ALS is characterized by muscle weakness and atrophy caused by the degeneration of neurons located in the motor cortex, brain stem and spinal cord. This fatal disease generally has an adult onset and progresses over a three to five year period. While 10% of patients affected have a family history of the disease, 90% of cases do not and are considered sporadic. The finding of mutations in the zinc/copper superoxide dismutase gene (SOD1) gene 19 years ago in about 15-20% of familial ALS (FALS) patients and approximately 2% of overall cases developed the interest of identifying rare genetics variants causing the disease. The ALS research field experienced a rapid progression during the last four years as mutations in new genes have been identified. While mutations in some of those new genes have been clearly linked to ALS, the role of others is still questionable and so far has not been positively replicated in other populations. Importantly, a significant portion of cases still need to be genetically explained and, unfortunately, there is still no effective treatment to cure, attenuate or prevent the disease. The aim of this Ph.D research project was to identify new ALS mutated genes while analysing the causative role of other newly identified genes in a large familial and sporadic ALS cohort of different origins. The results presented here are categorized into three different sections. First, the contribution of FUS mutations to familial, sporadic and juvenile ALS is analysed. Specifically, new FUS mutations are reported in ALS cases and the proportions of variants present in the tested familial and sporadic ALS cohorts are assessed. In addition, a new mutation is reported in a juvenile ALS patient, and this interesting case is discussed. Second, new genetic avenues are explored for the SOD1 gene. Precisely, a new and complex SOD1 mutation is reported in a French ALS family. Moreover, the possibility that other ALS mutated genes influence SOD1 splicing events is evaluated. Third, the contribution of new candidate genes is evaluated. Precisely, the contribution of OPTN, SIGMAR1 and SORT1 genes to the ALS phenotype is assessed. Hopefully, our different findings combined with recent developments in genetics and molecular biology will permit a better understanding of the pathological mechanisms involved in the disease and will lead to the identification of the right targets in order to develop appropriate therapeutics for ALS patients.
338

Étude intracrânienne sur les mécanismes cérébraux permettant la reconnaissance d’objets

Bertrand, Josie-Anne 06 1900 (has links)
La reconnaissance d’objets est une tâche complexe au cours de laquelle le cerveau doit assembler de manière cohérente tous les éléments d’un objet accessible à l’œil afin de le reconnaître. La construction d’une représentation corticale de l’objet se fait selon un processus appelé « bottom-up », impliquant notamment les régions occipitales et temporales. Un mécanisme « top-down » au niveau des régions pariétales et frontales, facilite la reconnaissance en suggérant des identités potentielles de l’objet à reconnaître. Cependant, le mode de fonctionnement de ces mécanismes est peu connu. Plusieurs études ont démontré une activité gamma induite au moment de la perception cohérente de stimuli, lui conférant ainsi un rôle important dans la reconnaissance d’objets. Cependant, ces études ont utilisé des techniques d’enregistrement peu précises ainsi que des stimuli répétitifs. La première étude de cette thèse vise à décrire la dynamique spatio-temporelle de l’activité gamma induite à l’aide de l’électroencéphalographie intracrânienne, une technique qui possède des résolutions spatiales et temporelles des plus précises. Une tâche d’images fragmentées a été conçue dans le but de décrire l’activité gamma induite selon différents niveaux de reconnaissance, tout en évitant la répétition de stimuli déjà reconnus. Afin de mieux circonscrire les mécanismes « top-down », la tâche a été répétée après un délai de 24 heures. Les résultats démontrent une puissante activité gamma induite au moment de la reconnaissance dans les régions « bottom-up ». Quant aux mécanismes « top-down », l’activité était plus importante aux régions occipitopariétales. Après 24 heures, l’activité était davantage puissante aux régions frontales, suggérant une adaptation des procédés « top-down » selon les demandes de la tâche. Très peu d’études se sont intéressées au rythme alpha dans la reconnaissance d’objets, malgré qu’il soit bien reconnu pour son rôle dans l’attention, la mémoire et la communication des régions neuronales distantes. La seconde étude de cette thèse vise donc à décrire plus précisément l’implication du rythme alpha dans la reconnaissance d’objets en utilisant les techniques et tâches identiques à la première étude. Les analyses révèlent une puissante activité alpha se propageant des régions postérieures aux régions antérieures, non spécifique à la reconnaissance. Une synchronisation de la phase de l’alpha était, quant à elle, observable qu’au moment de la reconnaissance. Après 24 heures, un patron similaire était observable, mais l’amplitude de l’activité augmentait au niveau frontal et les synchronies de la phase étaient davantage distribuées. Le rythme alpha semble donc refléter des processus attentionnels et communicationnels dans la reconnaissance d’objets. En conclusion, cette thèse a permis de décrire avec précision la dynamique spatio-temporelle de l’activité gamma induite et du rythme alpha ainsi que d’en apprendre davantage sur les rôles potentiels que ces deux rythmes occupent dans la reconnaissance d’objets. / Recognizing objects is a complex task requiring the brain to assemble visual information in such a way that coherent perception can happen. Building a visual cerebral representation is done through a bottom-up process, involving mainly occipital and temporal areas. A top-down mechanism from parietal and frontal areas, is thought to facilitate recognition by taking into account expectations and generating possible candidates. However, the precise mechanisms by which all these processes are done are still unclear. Studies investigating induced gamma response were able to link this activity to coherent perception of objects, suggesting a significant role of this activity in object recognition. However, these studies used imprecise recording techniques and stimuli repetition. The first study of this thesis aimed at describing with more precision the induced gamma activity using intracranial encephalography and a fragmented images paradigm in which only new stimuli are presented. Moreover, the task was presented again 24 hours later to circumscribe top-down mechanisms. Results show that the induced gamma activity is highest at recognition in regions involved in bottom-up processes. Top-down mechanism involved occipito-parietal areas when images were presented for the first time. When images were presented again 24 hours later, frontal areas mediated top-down facilitation, suggesting that top-down mechanisms vary according to task demand. Alpha rhythm has been less clearly related to visual perception, but is nevertheless well known to be involved in attention, memory and long-distance brain communication. The second study of this thesis investigated the role of alpha rhythm in object recognition, using the same technique and task as in the first study. Time-frequency analysis revealed a strong alpha activity unspecific to recognition, which was propagating from posterior to anterior regions. Phase coherence analysis, however, showed significant phase synchronisation specific to recognition. A similar pattern of alpha activity was found 24 hours later. However, the activity was stronger in frontal regions and the phase synchronisation was more distributed. Alpha rhythm is thus thought to be involved in attentional and communicational mechanisms of object recognition. In conclusion, this thesis was able to describe the precise spatio-temporal dynamics of induced gamma and alpha activity and suggest potential roles of these rhythms in response to object recognition.
339

Neurodynamische Module zur Bewegungssteuerung autonomer mobiler Roboter

Hild, Manfred 07 January 2008 (has links)
In der vorliegenden Arbeit werden rekurrente neuronale Netze im Hinblick auf ihre Eignung zur Bewegungssteuerung autonomer Roboter untersucht. Nacheinander werden Oszillatoren für Vierbeiner, homöostatische Ringmodule für segmentierte Roboter und monostabile Neuromodule für Roboter mit vielen Freiheitsgraden und komplexen Bewegungsabläufen besprochen. Neben dem mathematisch-theoretischen Hintergrund der Neuromodule steht in gleichberechtigter Weise deren praktische Implementierung auf realen Robotersystemen. Hierzu wird die funktionale Einbettung ins Gesamtsystem ebenso betrachtet, wie die konkreten Aspekte der zugrundeliegenden Hardware: Rechengenauigkeit, zeitliche Auflösung, Einfluss verwendeter Materialien und dergleichen mehr. Interessante elektronische Schaltungsprinzipien werden detailliert besprochen. Insgesamt enthält die vorliegende Arbeit alle notwendigen theoretischen und praktischen Informationen, um individuelle Robotersysteme mit einer angemessenen Bewegungssteuerung zu versehen. Ein weiteres Anliegen der Arbeit ist es, aus der Richtung der klassischen Ingenieurswissenschaften kommend, einen neuen Zugang zur Theorie rekurrenter neuronaler Netze zu schaffen. Gezielte Vergleiche der Neuromodule mit analogen elektronischen Schaltungen, physikalischen Modellen und Algorithmen aus der digitalen Signalverarbeitung können das Verständnis von Neurodynamiken erleichtern. / How recurrent neural networks can help to make autonomous robots move, will be investigated within this thesis. First, oscillators which are able to control four-legged robots will be dealt with, then homeostatic ring modules which control segmented robots, and finally monostable neural modules, which are able to drive complex motion sequences on robots with many degrees of freedom will be focused upon. The mathematical theory of neural modules will be addressed as well as their practical implementation on real robot platforms. This includes their embedding into a major framework and concrete aspects, like computational accuracy, timing and dependance on materials. Details on electronics will be given, so that individual robot systems can be built and equipped with an appropriate motion controller. It is another concern of this thesis, to shed a new light on the theory of recurrent neural networks, from the perspective of classical engineering science. Selective comparisons to analog electronic schematics, physical models, and digital signal processing algorithms can ease the understanding of neural dynamics.
340

Signal transmission in stochastic neuron models with non-white or non-Gaussian noise

Droste, Felix 02 September 2015 (has links)
Die vorliegende Arbeit befasst sich mit dem Einfluss von nicht-weißem oder nicht-Gauß’schem synaptischen Rauschen auf die Informationsübertragung in stochastischen Neuronenmodellen. Ziel ist es, zu verstehen, wie eine Nervenzelle ein Signal in ihrer Pulsaktivität kodiert. Synaptisches Rauschen beschreibt hier den Einfluss anderer Nervenzellen, die nicht das interessierende Signal tragen, aber seine Übertragung durch ihre synaptische Wirkung auf die betrachtete Zelle beeinflussen. In stochastischen Neuronenmodellen wird diese Hintergrundaktivität durch einen stochastischen Prozess mit geeigneter Statistik beschrieben. Ist die Rate, mit der präsynaptische Pulse auftreten, hoch und zeitlich konstant, die Wirkung einzelner Pulse aber verschwindend gering, so wird das synaptische Rauschen durch einen Gauß’schen Prozess beschrieben. Oft wird zudem angenommen, dass das Rauschen unkorreliert (weiß) ist. In dieser Arbeit wird neuronale Signalübertragung in dem Fall untersucht, dass eine solche Näherung nicht mehr gerechtfertigt ist, d.h. wenn der synaptische Hintergrund durch einen stochastischen Prozess beschrieben werden muss, der nicht weiß, nicht Gauß’sch, oder weder weiß noch Gauß’sch ist. Mittels Simulationen und analytischer Rechnungen werden drei Szenarien behandelt: Zunächst betrachten wir eine Zelle, die nicht ein, sondern zwei Signale empfängt, welche zusätzlich durch synaptische Kurzzeitplastizität gefiltert werden. In diesem Fall muss der Hintergrund durch ein farbiges Rauschen beschrieben werden. Im zweiten Szenario betrachten wir den Fall, dass der Effekt einzelner Pulse nicht mehr als schwach angenommen werden kann. Das Rauschen ist dann nicht mehr Gauß’sch, sondern ein Schrotrauschen. Schließlich untersuchen wir den Einfluss einer präsynaptischen Population, deren Feuerrate nicht zeitlich konstant ist, sondern zwischen Phasen hoher und niedriger Aktivität, sogenannten up und down states, springt. In diesem Fall ist das Rauschen weder weiß noch Gauß’sch. / This thesis is concerned with the effect of non-white or non-Gaussian synaptic noise on the information transmission properties of single neurons. Synaptic noise subsumes the massive input that a cell receives from thousands of other neurons. In the framework of stochastic neuron models, this input is described by a stochastic process with suitably chosen statistics. If the overall arrival rate of presynaptic action potentials is high and constant in time and if each individual incoming spike has only a small effect on the dynamics of the cell, the massive synaptic input can be modeled as a Gaussian process. For mathematical tractability, one often assumes that furthermore, the input is devoid of temporal structure, i.e. that it is well described by a Gaussian white noise. This is the so-called diffusion approximation (DA). The present thesis explores neuronal signal transmission when the conditions that underlie the DA are no longer met, i.e. when one must describe the synaptic background activity by a stochastic process that is not white, not Gaussian, or neither. We explore three distinct scenarios by means of simulations and analytical calculations: First, we study a cell that receives not one but two signals, additionally filtered by synaptic short-term plasticity (STP), so that the background has to be described by a colored noise. The second scenario deals with synaptic weights that cannot be considered small; here, the effective noise is no longer Gaussian and the shot-noise nature of the input has to be taken into account. Finally, we study the effect of a presynaptic population that does not fire at a rate which is constant in time but instead undergoes transitions between states of high and low activity, so-called up and down states.

Page generated in 0.0588 seconds