• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 63
  • 39
  • 20
  • 14
  • 12
  • 11
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 4
  • Tagged with
  • 426
  • 134
  • 72
  • 40
  • 37
  • 33
  • 32
  • 29
  • 27
  • 25
  • 25
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Form factors and correlation functions in N=4 super Yang-Mills theory from twistor space

Koster, Laura Rijkje Anne 26 July 2017 (has links)
Das Standardmodell der Teilchenphysik hat sich bis heute, mit Ausnahme der allgemeinen Relativitätstheorie, als erfolgreichste Theorie zur Beschreibung der Natur erwiesen. Störungstheoretische Rechnungen für bestimmte Mengen in Quantenchromodynamik (QCD) haben bisher unerreicht präzise Vorraussagen ermöglicht, die experimentell nachgewiesen wurden. Trotz dieser Erfolge gibt es Teile des Standardmodells und Energieskalen bei denen die Störungstheorie versagt und man nach Alternativen suchen muss. Vieles können wir hierbei verstehen, indem wir eine ähnliche Theorie untersuchen, die sogenannte planare N=4 Super Yang-Millstheorie in vier Dimensionen (N=4 SYM). Es existieren viele Indizien dafür, dass die Theorie exakte Lösungen zulässt. Dies lässt sich zurückführen auf die Integrabilität der Theorie, eine unendlich dimensionale Symmetriealgebra, die die Theorie stark einschränkt. Neben besagter Integrabilität besitzt diese Theorie auch andere spezielle Eigenschaften. So ist sie des am besten verstandenen Beispiels der Eich-/Gravitations Dualität durch die AdS/CFT Korrespondenz. Ausserdem sind die Streuamplituden von Gluonen auf Baumgraphenniveau in N=4 SYM die selben wie in Quantenchromodynamik. Diese Streuamplituden besitzen eine elegante Struktur und stellen sich als deutlich simpler heraus, als die dazugehörigen Feynmangraphen vermuten lassen. Tatsächlich umgehen viele der zur Berechnung von Streuamplituden entwickelten Masseschalenmethoden die Feynmangraphen, indem sie vorrübergehend manifeste Unitarität und Lokalität aufgeben und dadurch die Rechnungen stark vereinfachen. Alle diese Entwicklungen suggerieren, dass der konventionelle Formalismus der Theorie mit Hilfe der Wirkung im Minkowskiraum nicht der aufschlussreichste oder effizienteste Weg ist, die Theorie zu untersuchen. Diese Arbeit untersucht der Hypothese, ob dass stattdessen Twistorvariablen besser geeignet sind, die Theorie zu beschreiben. Der Twistorformalismus wurde zuerst von Roger Penrose eingeführt. Auf dem klassischen Level ist die holomorphe Chern-Simonstheorie im Twistorraum äquivalent zur klassischen selbst-dualen Yang-Mills Lösung in der Raumzeit. Die volle Twistorwirkung, welche eine Störung um diesen klassisch integrablen Sektor ist und durch eine Eichbedingung auf die N=4 SYM Wirkung reduziert werden kann, produziert unter einer anderen Eichbedingung alle sogenannten maximalhelizitätsverletzenden (MHV) Amplituden auf Baumgraphenniveau. Durch die Einführung eines Twistorpropagators konnten auch NkMHV Amplituden effizient beschrieben werden. In dieser Arbeit erweitern wir den Twistorformalismus um auch Größen, die sich nicht auf den Masseschalen befinden, beschreiben zu können. Wir untersuchen alle lokalen eichinvarianten zusammengesetzten Operatoren im Twistorraum und zeigen, dass sie alle Baumgraphenniveau-Formfaktoren des sogenannten MHV-Typs erzeugen. Wir erweitern diese Methode zu NMHV und öher NkMHW Level in Anlehnung an die Amplituden. Schliess lich knüpfen wir an die Integrabilität an, indem wir den ein-Schleifen Dilatationsoperator in dem skalaren Sektor der Theorie im Twistorraum berechnen. / The Standard Model of particle physics has proven to be, with the exception of general relativity, the most accurate description of nature to this day. Perturbative calculations for certain quantities in Quantum Chromo Dynamics (QCD) have led to the highest precision predictions that have been experimentally verified. However, for certain sectors and energy regimes, perturbation theory breaks down and one must look for alternative methods. Much can be learned from studying a close cousin of the standard model, called planar N = 4 super Yang-Mills theory in four dimensions (N = 4 SYM), for which a lot of evidence exists that it admits exact solutions. This exact solvability is due to its quantum integrability, a hidden infinite symmetry algebra that greatly constrains the theory, which has led to a lot of progress in solving the spectral problem. Integrability aside, this non-Abelian quantum field theory is special in yet other ways. For example, it is the most well understood example of a gauge/gravity duality via the AdS/CFT correspondence. Furthermore, at tree level the scattering amplitudes in its gluon sector coincide with those of Quantum Chromo Dynamics. These scattering amplitudes exhibit a very elegant structure and are much simpler than the corresponding Feynman diagram calculation would suggest. Indeed, many on-shell methods that have been developed for computing these scattering amplitudes circumvent the tedious Feynman calculation, by giving up manifest unitarity and locality at intermediate stages of the calculation, greatly simplifying the work. All these developments suggest that the conventional way in which the theory is presented, i.e. in terms of the well- known action on Minkowski space, might not be the most revealing or in any case not the most efficient way. This thesis investigates whether instead twistor variables provide a more suitable description. The twistor formalism was first introduced by Roger Penrose. At the classical level, a holomorphic Chern-Simons theory on twistor space is equivalent to classically integrable self-dual Yang-Mills solutions in space-time. A quantum perturbation around this classically integrable sector reduces to the conventional N = 4 SYM action by imposing a partial gauge condition. This action generates all so-called maximally helicity violating (MHV) amplitudes at tree level directly, when a different gauge was chosen. By including a twistor propagator into the formalism, also higher degree NkMHV amplitudes can be described efficiently. In this thesis we extend this twistor formalism to encompass (partially) off-shell quantities. We describe all gauge-invariant local composite operators in twistor space and show that they immediately generate all tree-level form factors of the MHV type. We use the formalism to compute form factors at NMHV and higher NkMHV level in parallel to how this was done for amplitudes. Finally, we move on to integrability by computing the one-loop dilatation operator in the scalar sector of the theory in twistor space.
372

Papper och lump : studier av kontinuitet och förändring i nordisk pappersindustri från 1600-tal till 1900-tal

Sjunnesson, Helene January 2006 (has links)
<p>. This thesis consists of an introduction and four previously published articles. The joint empirical focus is papermaking based on textile rags as fibre raw material. Furthermore the physical environment is central in the studies. The relationship between continuity and change is a prevailing theme. The thesis also pays attention to the use of different sorts of rags and to the connection between this kind of papermaking and the textile industry.</p><p>The overall purpose is to throw new light upon the paper industry based on rags – a part of early industry seldom mentioned in historical surveys of the industrialization process in Sweden. The aim is also to question the prevalent Swedish historical writing commissioned by the branch, characterized by set divisions between different phases of technical and industrial development, from simple craft to modern industry. One of these borderlines has been drawn between papermaking by hand and papermaking by machine, with the 1830s as the selected transition period. By studying and analysing changes in the traditional and seemingly static papermaking as well as the opposite: the traditional that has lingered in the new, this thesis shows that the course of events was much more complicated than that. An outcome of the studies is that the industrialization of the rag based paper industry has been a complex, uneven and prolonged process.</p><p>The first main part of the thesis consists of two Swedish regional studies centred on the province of Östergötland in a long-time perspective. The focus is mainly on the long continuity of papermaking by hand, which was carried out between 1628 and 1968. The study shows that a variety of types and sizes of mills regarding ownership, forms of production, location, paper qualities and techniques can be identified. Continuity was the dominating feature but within this framework technological and industrial change also took place.</p><p>The second main part of the thesis has a Nordic perspective and deals with a shorter period, mainly 1830-1870. One study examines the introduction of the paper-machine and the establishment of the first machine-made paper mills in Denmark, Sweden, Norway and Finland with special attention given to the Swedish mill Holmen in Norrköping and the Finnish Tammerfors mill, both situated in textile mill towns. A second Nordic study surveys hand-made paper mills founded during and after the time when the paper-machine technology had been established. As the studies show, two parallel development tracks were prevalent in the paper industry in the Nordic countries during the period 1830-1870 – papermaking by machine and papermaking by hand.</p><p>The first paper machines were imported from Britain to some of the oldest and largest paper mills. The introduction of the new technology led to changes in for instance the paper mill buildings and the organization of work regarding the papermaking process. In the preparatory and finishing work manual methods remained, and as before it employed mostly women.</p><p>At the same time, papermaking by hand continued to change and new hand-made paper mills were founded until as late as the 1890s. The study discusses possible explanations, among them growing markets for special qualities and combinations with other branches of industry.</p><p>All the studies show a connection between hand-made paper mills and wool mills on one hand, and machine-made paper mills and cotton and linen mills on the other hand. The paper industry based on rags could in fact be characterized as a kind of textile industry</p>
373

Kähler and almost-Kähler geometric flows / Flots géométriques kähleriens et presque-kähleriens

Pook, Julian 21 March 2014 (has links)
Les objects d'étude principaux de la thèse "Flots géométriques kähleriens et presque-kähleriens" sont des généralisations du flot de Calabi et du flot hermitienne de Yang--Mills. <p> Le flot de Calabi $partial_t omega = -i delbar del S(omega) =- i delbar del Lambda_omega <p> ho(omega) $ tente de déformer une forme initiale kählerienne vers une forme kählerienne $omega_c$ de courbure scalaire constante caractérisée par $S(omega_c) = Lambda_{omega_c} <p> ho(omega_c) = underline{S}$ dans la même classe de cohomologie. La généralisation étudiée est le flot de Calabi twisté qui remplace la forme de Kähler--Ricci $ho$ par $ho + alpha(t)$, où le emph{twist} $alpha(t)$ est une famille de $2$-formes qui converge vers $alpha_infty$. Le but de ce flot est de trouver des métriques kähleriennes $omega_{tc}$ de courbure scalaire twistées constantes caractérisées par $Lambda_{omega_{tc}} (ho(omega_{tc}) +alpha_infty) = underline{S} + underline{alpha}_infty$. L'existence et la convergence de ce flot sont établies sur des surfaces de Riemann à condition que le twist soit défini négatif et reste dans une classe de cohomologie fixe. <p>Si $E$ est un fibré véctoriel holomorphe sur une varieté kählerienne $(X,omega)$, une métrique de Hermite--Einstein $h_{he}$ est caractérisée par la condition $Lambda_omega i F_{he} = lambda id_E$. Le flot hermitien de Yang--Mills donné par $h^{-1}partial_t h =- [Lambda_omega iF_{h} - lambda id_E]$ tente de déformer une métrique hermitienne initiale vers une métrique Hermite--Einstein. La version classique du flot fixe la forme kählerienne $omega$. Le cas où $omega$ varie dans sa classe de cohomologie et converge vers $omega_infty$ est considéré dans la thèse. Il est démontré que le flot existe pour tout $t$ sur des surfaces de Riemann et converge vers une métrique Hermite--Einstein (par rapport à $omega_infty$) si le fibré $E$ est stable. <p> Les généralisations du flot de Calabi et du flot hermitien de Yang--Mills ne sont pas arbitraires, mais apparaissent naturellement comme une approximation du flot de Calabi sur des fibrés adiabatiques. Si $Z,X$ sont des variétés complexes compactes, $pi colon Z \ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
374

On the integrable structure of super Yang-Mills scattering amplitudes

Kanning, Nils 15 December 2016 (has links)
Diese Dissertation ist auch unter folgender DOI auffindbar:http://dx.doi.org/10.20386/HUB-43089 / Die maximal supersymmetrische Yang-Mills-Theorie im vierdimensionalen Minkowski-Raum ist ein außergewöhnliches Modell der mathematischen Physik. Dies gilt vor allem im planaren Limes, in dem die Theorie integrabel zu sein scheint. So sind etwa ihre Streuamplituden auf Baumgraphenniveau Invarianten einer Yangschen Algebra, die die superkonforme Algebra psu(2,2|4) beinhaltet. Diese unendlichdimmensionale Symmetrie ist ein Kennzeichen für Integrabilität. In dieser Dissertation untersuchen wir Verbindungen zwischen solchen Amplituden und integrablen Modellen, um Grundlagen für eine effiziente, auf der Integrabilität basierende Berechnung von Amplituden zu legen. Dazu charakterisieren wir Yangsche Invarianten innerhalb der Quanten-Inverse-Streumethode, die Werkzeuge zur Behandlung integrabler Spinketten bereitstellt. In diesem Rahmen entwickeln wir Methoden zur Konstruktion Yangscher Invarianten. Wir zeigen, dass der algebraische Bethe-Ansatz für die Erzeugung von Yangschen Invarianten für u(2) anwendbar ist. Die zugehörigen Bethe-Gleichungen lassen sich leicht lösen. Unser Zugang erlaubt es zudem diese Invarianten als Zustandssummen von Vertexmodellen zu interpretieren. Außerdem führen wir ein unitäres Graßmannsches Matrixmodell zur Berechnung Yangscher Invarianten mit Oszillatordarstellungen von u(p,q|m) ein. In einem Spezialfall reduziert es sich zu dem Brezin-Gross-Witten-Model. Wir wenden eine auf Bargmann zurückgehende Integraltransformation auf unser Matrixmodell an, welche die Oszillatoren in Spinor-Helizitäts-artige Variablen überführt. Dadurch gelangen wir zu einer Weiterentwicklung der Graßmann-Integralformulierung bestimmter Amplituden. Die maßgeblichen Unterschiede sind, dass wir in der Minkowski-Signatur arbeiten und die Integrationskontur auf die unitäre Gruppenmannigfaltigkeit festgelegt ist. Wir vergleichen durch unser Integral gegebene Yangsche Invarianten mit Amplituden und kürzlich eingeführten Deformationen derselben. / The maximally supersymmetric Yang-Mills theory in four-dimensional Minkowski space is an exceptional model of mathematical physics. Even more so in the planar limit, where the theory is believed to be integrable. In particular, the tree-level scattering amplitudes were shown to be invariant under the Yangian of the superconformal algebra psu(2,2|4). This infinite-dimensional symmetry is a hallmark of integrability. In this dissertation we explore connections between these amplitudes and integrable models. Our aim is to lay foundations for an efficient integrability-based computation of amplitudes. To this end, we characterize Yangian invariants within the quantum inverse scattering method, which is an extensive toolbox for integrable spin chains. Making use of this setup, we develop methods for the construction of Yangian invariants. We show that the algebraic Bethe ansatz can be specialized to yield Yangian invariants for u(2). Our approach also allows to interpret these Yangian invariants as partition functions of vertex models. What is more, we establish a unitary Graßmannian matrix model for the construction of u(p,q|m) Yangian invariants with oscillator representations. In a special case our formula reduces to the Brezin-Gross-Witten model. We apply an integral transformation due to Bargmann to our unitary Graßmannian matrix model, which turns the oscillators into spinor helicity-like variables. Thereby we are led to a refined version of the Graßmannian integral formula for certain amplitudes. The most decisive differences are that we work in Minkowski signature and that the integration contour is fixed to be a unitary group manifold. We compare Yangian invariants defined by our integral to amplitudes and recently introduced deformations thereof.
375

Renormalisation in perturbative quantum gravity

Rodigast, Andreas 28 August 2012 (has links)
In dieser Arbeit berechnen wir die gravitativen Ein-Schleifen-Korrekturen zu den Propagatoren und Wechselwirkungen der Felder des Standardmodells der Elementarteilchenphysik. Wir betrachten hierzu ein höherdimensionales brane-world-Modell: Wärend die Gravitonen, die Austauchteilchen der Gravitationswechselwirkung, in der gesamten D-dimensionalen Raumzeit propagieren können, sind die Materiefelder an eine d-dimensionale Untermanigfaltigkeit (brane) gebunden. Um die divergenten Anteile der Ein-Schleifen-Diagramme zu bestimmen, entwickeln wir ein neues Regularisierungschema welches einerseits die Wardidentitäten der Yang-Mills-Theorie respektiert anderseits sensitiv für potenzartige Divergenzen ist. Wir berechnen die gravitativen Beiträge zu den beta-Funktionen der Yang-Mills-Eichtheorie, der quartischen Selbst-Wechselwirkung skalarer Felder und der Yukawa-Wechselwirkung zwischen Skalaren und Fermionen. Im physikalisch besonders interessanten Fall einer vier-dimensionalen Materie-brane verschwinden die gravitativen Beiträge zum Laufen der Yang-Mills-Kopplungskonstante. Die führenden Beiträge zum Laufen der anderen beiden Kopplungskonstanten sind positiv. Diese Ergebnisse sind unabhängig von der Anzahl der Extradimensionen in denen die Gravitonen propagieren können. Des Weiteren bestimmen wir alle gravitationsinduzierten Ein-Schleifen-Konterterme mit höheren kovarianten Ableitungen für skalare Felder, Dirac-Fermionen und Eichbosonen. Ein Vergleich dieser Konterterme mit den höheren Ableitungsoperatoren des Lee-Wick-Standardmodells zeigt, dass die Gravitationskorrekturen nicht auf letzte beschränkt sind. Eine Beziehung zwischen Quantengravitation und dem Lee-Wick-Standardmodell besteht somit nicht. / In this thesis, we derive the gravitational one-loop corrections to the propagators and interactions of the Standard Model field. We consider a higher dimensional brane world scenario: Here, gravitons can propagate in the whole D dimensional space-time whereas the matter fields are confined to a d dimensional sub-manifold (brane). In order to determine the divergent part of the one-loop diagrams, we develop a new regularisation scheme which is both sensitive for polynomial divergences and respects the Ward identities of the Yang-Mills theory. We calculate the gravitational contributions to the beta functions of non-Abelian gauge theories, the quartic scalar self-interaction and the Yukawa coupling between scalars and fermions. In the physically interesting case of a four dimensional matter brane, the gravitational contributions to the running of the Yang-Mills coupling constant vanish. The leading contributions to the other two couplings are positive. These results do not depend on the number of extra dimensions. We further compute the gravitationally induced one-loop counterterms with higher covariant derivatives for scalars, Dirac fermions and gauge bosons. In is shown that these counterterms do not coincide with the higher derivative terms in the Lee-Wick standard model. A possible connection between quantum gravity and the latter cannot be inferred.
376

Scattering amplitudes in four- and six-dimensional gauge theories

Schuster, Theodor 06 October 2014 (has links)
Streuamplituden der Quantenchromodynamik (QCD), N = 4 Super-Yang-Mills-Theorie (SYM-Theorie) und der sechsdimensionalen N = (1, 1) SYM-Theorie werden untersucht, mit einem Fokus auf die Symmetrien und Relationen zwischen den Streuamplituden dieser Eichtheorien auf dem Baum-Niveau. Die Baum-Niveau- und Ein-Schleifen-Farbzerlegung beliebiger QCD-Amplituden in primitive Amplituden wird bestimmt und Identitäten hergeleitet, welche den Nullraum unter den primitiven Amplituden aufspannen. Anschließend wird bewiesen, dass alle farbgeordneten Baum-Niveau-Amplituden der masselosen QCD aus der N = 4 SYM-Theorie erhalten werden können. Analytische Formeln für alle für die QCD relevanten N = 4 SYM-Amplituden werden bestimmt und die Effizienz und Genauigkeit der numerischen Auswertung der analytischen Formeln für farbgeordnete QCD-Baum-Niveau-Amplituden mit einer effizienten numerischen Implementierung der Berends-Giele-Rekursion verglichen. Die Symmetrien der massive Amplituden auf dem Coulomb-Zweig der N = 4 SYM-Theorie werden hergeleitet. Diese können durch eine dimensionale Reduktion der masselosen Baum-Niveau-Amplituden der sechsdimensionalen N = (1, 1) SYM-Theory erhalten werden. Darüber hinaus wird bezeigt, wie es mit Hilfe einer numerischen Implementierung der BCFW-Rekursion möglich ist analytische Formeln für die Baum-Niveau-Superamplituden der N = (1, 1) SYM-Theory zu erhalten und die Möglichkeit eines Uplifts der masselose Baum-Niveau-Amplituden der N = 4 SYM-Theory untersucht. Schließlich wird eine Alternative zur dimensionalen Regularisierung der N = 4 SYM-Theorie untersucht. Die Infrarotdivergenzen werden hierbei durch Massen regularisiert, die durch einen Higgs-Mechanismus erhalten wurden. Die korrespondierende Stringtheorie-Beschreibung deutet auf eine exakte duale konforme Symmetrie der Streuamplituden hin. Durch explizite Rechnungen wird dies bestätigt und Vorteile des Regulators werden demonstriert. / We study scattering amplitudes in quantum chromodynamics (QCD), N = 4 super Yang-Mills (SYM) theory and the six-dimensional N = (1, 1) SYM theory, focusing on the symmetries of and relations between the tree-level scattering amplitudes in these three gauge theories. We derive the tree level and one-loop color decomposition of an arbitrary QCD amplitude into primitive amplitudes. Furthermore, we derive identities spanning the null space among the primitive amplitudes. We prove that every color ordered tree amplitude of massless QCD can be obtained from gluon-gluino amplitudes of N = 4 SYM theory. Furthermore, we derive analytical formulae for all gluon-gluino amplitudes relevant for QCD. We compare the numerical efficiency and accuracy of evaluating these closed analytic formulae for color ordered QCD tree amplitudes to a numerically efficient implementation of the Berends-Giele recursion. We derive the symmetries of massive tree amplitudes on the coulomb branch of N = 4 SYM theory, which in turn can be obtained from N = (1, 1) SYM theory by dimensional reduction. Furthermore, we investigate the tree amplitudes of N = (1, 1) SYM theory and explain how analytical formulae can be obtained from a numerical implementation of the supersymmetric BCFW recursion relation and investigate a potential uplift of the massless tree amplitudes of N = 4 SYM theory. Finally we study an alternative to dimensional regularization of N = 4 SYM theory. The infrared divergences are regulated by masses obtained from a Higgs mechanism. The corresponding string theory set-up suggests that the amplitudes have an exact dual conformal symmetry. We confirm this expectation and illustrate the calculational advantages of the massive regulator by explicit calculations.
377

Q-operators, Yangian invariance and the quantum inverse scattering method

Frassek, Rouven 02 December 2014 (has links)
Inspiriert von den integrablen Strukturen der schwach gekoppelten planaren N=4 Super-Yang-Mills-Theorie studieren wir Q-Operatoren und Yangsche Invarianten. Wir geben eine Übersicht der Quanten-Inverse-Streumethode zusammen mit der Yang-Baxter Gleichung welche zentral für diesen systematischen Zugang zu integrablen Modellen ist. Den Fokus richten wir auf rationale integrable Spinketten und Vertexmodelle. Wir besprechen einige ihrer bekannten Gemeinsamkeiten und wie sie durch Bethe-Ansatz-Methoden mit Hilfe sogenannter Q-Funktionen gelöst werden können. Der Hauptteil basiert auf den ursprünglichen Publikationen des Autors. Zuerst konstruieren wir Q-Operatoren, deren Eigenwerte zu den Q-Funktionen rationaler homogener Spinketten führen. Die Q-Operatoren werden als Spuren gewisser Monodromien von R-Operatoren eingeführt. Unsere Konstruktion erlaubt es uns die Hierarchie der kommutierenden Q-Operatoren und ihre funktionalen Beziehungen herzuleiten. Wir studieren wie der nächste-Nachbarn Hamiltonoperator, sowie höhere lokale Ladungen direkt aus den Q-Operatoren extrahiert werden können. Danach widmen wir uns der Formulierung der Yangschen Invarianzbedingung, wie sie auch im Zusammenhang mit Baumgraphen die bei der Berechnung von Streuamplituden in der N=4 Super-Yang-Mills-Theorie auftreten, innerhalb der RTT-Realisierung. Dies erlaubt es uns den algebraischen Bethe-Ansatz anzuwenden und die dazugehörigen Bethe Gleichungen herzuleiten, welche für die Konstruktion der Eigenzustände die Yangsche Invarianz aufweisen, relevant sind. Die Komponenten dieser Eigenzustände der von uns betrachteten Spinketten können außerdem als Zustandssummen gewisser zweidimensionaler Vertexmodelle angesehen werden. Zudem analysieren wir die Verbindung zwischen den Eigenzuständen und den oben genannten Baumgraphen. Schlussendlich diskutieren wir die von uns vorgelegten Ergebnisse und deren Folgen im Hinblick auf die Erforschung der planaren N=4 Super-Yang-Mills-Theorie. / Inspired by the integrable structures appearing in weakly coupled planar N=4 super Yang-Mills theory, we study Q-operators and Yangian invariants of rational integrable spin chains. We review the quantum inverse scattering method QISM along with the Yang-Baxter equation which is the key relation in this systematic approach to study integrable models. Our main interest concerns rational integrable spin chains and lattice models. We recall the relation among them and how they can be solved using Bethe ansatz methods incorporating so-called Q-functions. In order to remind the reader how the Yangian emerges in this context, an overview of its so-called RTT-realization is provided. The main part is based on the author''s original publications. Firstly, we construct Q-operators whose eigenvalues yield the Q-functions for rational homogeneous spin chains. The Q-operators are introduced as traces over certain monodromies of R-operators. Our construction allows us to derive the hierarchy of commuting Q-operators and the functional relations among them. We study how the nearest-neighbor Hamiltonian and in principle also higher local charges can be extracted from the Q-operators directly. Secondly, we formulate the Yangian invariance condition, also studied in relation to scattering amplitudes of N=4 super Yang-Mills theory, in the RTT-realization. We find that Yangian invariants can be interpreted as special eigenvectors of certain inhomogeneous spin chains. This allows us to apply the algebraic Bethe ansatz and derive the corresponding Bethe equations that are relevant to construct the invariants. We examine the connection between the Yangian invariant spin chain eigenstates whose components can be understood as partition functions of certain two-dimensional lattice models and tree-level scattering amplitudes of the four-dimensional gauge theory. Finally, we conclude and discuss some future directions and implications of our studies for planar N=4 super Yang-Mills theory.
378

Integrability in weakly coupled super Yang-Mills theory: form factors, on-shell methods and Q-operators

Meidinger, David 25 June 2018 (has links)
Diese Arbeit untersucht die N = 4 super-Yang-Mills-Theorie bei schwacher Kopplung, mit dem Ziel eines tieferen Verständnisses von Größen der Theorie als Zustände des integrablen Modells dass der planaren Theorie zu Grunde liegt. Wir leiten On-Shell-Diagramme für Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts aus der BCFW-Rekursion her, und untersuchen deren Eigenschaften. Dies erlaubt die Herleitung eines Graßmannschen Integrals. Für NMHV-Formfaktoren bestimmen wir die Integrationskontur. Dies erlaubt es das Integral mit einer Twistor-String-Formulierung in Beziehung zu setzen. Mit Hilfe dieser Methoden zeigen wir dass Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts und On-Shell-Funktionen mit Einfügungen beliebiger Operatoren Eigenzustände integrabler Transfermatrizen sind. Diese Identitäten verallgemeinern die Yangsche Invarianz der On-Shell-Funktionen von Amplituden. Wir zeigen weiterhin dass ein Teil der Yangschen Symmetrien erhalten bleibt. Wir erweitern unsere Untersuchung auf nichtplanare On-Shell-Funktionen und zeigen dass sie ebenfalls solche Symmetrien besitzen. Weitere Identitäten mit Transfermatrizen werden hergeleitet, und zeigen insbesondere dass Diagramme auf Zylindern als Intertwiner fungieren. Als Schritt hin zur Berechnung der Eigenzustände des integrablen Modells zu höheren Schleifenordnungen untersuchen wir Einspuroperatoren. Hier erlaubt die Quantum Spectral Curve die nichtperturbative Berechnung ihres Spektrums, liefert jedoch keine Information zu den Zustände. Die QSC kann als Q-System verstanden werden, welches durch Baxter Q-Operatoren formulierbar sein sollte. Um darauf hinzuarbeiten untersuchen wir die Q-Operatoren nichtkompakter Superspinketten und entwickeln ein effiziente Methode zur Berechnung ihrer Matrixelemente. Dies erlaubt es das gesamte Q-System durch Matrizen für jeden Anregungssektor zu realisieren, und liefert die Grundlage für perturbative Rechnungungen mit der QSC in Operatorform. / This thesis investigates weakly coupled N = 4 super Yang-Mills theory, aiming at a better understanding of various quantities as states of the integrable model underlying the planar theory. We use the BCFW recursion relations to develop on-shell diagrams for form factors of the chiral stress-tensor multiplet, and investigate their properties. The diagrams allow to derive a Graßmannian integral for these form factors. We devise the contour of this integral for NMHV form factors, and use this knowledge to relate the integral to a twistor string formulation. Based on these methods, we show that both form factors of the chiral stress-tensor multiplet as well as on-shell functions with insertions of arbitrary operators are eigenstates of integrable transfer matrices. These identities can be seen as symmetries generalizing the Yangian invariance of amplitude on-shell functions. In addition, a part of these Yangian symmetries are unbroken. We furthermore consider nonplanar on-shell functions and prove that they exhibit a partial Yangian invariance. We also derive identities with transfer matrices, and show that on-shell diagrams on cylinders can be understood as intertwiners. To make progress towards the calculation of the higher loop eigenstates of the integrable model, we consider single trace operators, for which the Quantum Spectral Curve determines their spectrum non-perturbatively. This formulation however carries no information about the states. The QSC is an algebraic Q-system, for which an operatorial form in terms of Baxter Q-operators should exist. To initiate the development such a formulation we investigate the Q-operators of non-compact super spin chains and devise efficient methods to evaluate their matrix elements. This allows to obtain the entire Q-system in terms of matrices for each magnon sector. These can be used as input data for perturbative calculations using the QSC in operatorial form.
379

Superconformal quantum field theories in string / gauge theory dualities

Wiegandt, Konstantin 25 October 2012 (has links)
In dieser Dissertation werden Aspekte von superkonformen Quantenfeldtheorien untersucht, die für die sogenannte AdS/CFT Korrespondenz relevant sind. Die AdS/CFT Korrespondenz beschreibt eine Dualität zwischen Stringtheorien im Anti-de Sitter Raum und superkonformen Quantenfeldtheorien im Minkowskiraum. In diesem Kontext wurde die sog. Wilsonschleifen / Amplituden Dualität entdeckt, die die Übereinstimmung von n-Gluon MHV Amplituden und n-seitigen polygonalen Wilsonschleifen in der N=4 supersymmetrischen Yang-Mills (SYM) Theorie beschreibt. Im ersten Teil dieser Dissertation wird die Wilsonschleifenseite einer solchen möglichen Dualität in der N=6 superkonformen Chern-Simons (ABJM) Theorie untersucht. Das Hauptergebnis dieser Untersuchungen ist, dass der Erwartungswert der n-seitigen polygonalen Wilsonschleifen auf Einschleifenebene verschwindet, während er auf Zweischleifenebene in seiner funktionalen Form identisch zu der analogen Wilsonschleife in N=4 SYM auf Einschleifenniveau ist. Außerdem wird eine anomale konforme Wardidentität für Wilsonschleifen in Chern-Simons Theorie berechnet. Zudem werden die damit im Zusammenhang stehenden Entwicklungen für Amplituden und Korrelatoren in der ABJM Theorie diskutiert. Im zweiten Teil dieser Dissertation werden Dreipunktfunktionen von zwei geschützten Operatoren und einem Twist-Zwei Operator mit beleibigem Spin j in der N=4 SYM Theorie berechnet. Dafür werden die Indizes des Spin j Operators auf den Lichtkegel projiziert und der Korrelator wird in einem Grenzfall untersucht in dem der Impuls der bei dem Spin j Operator einfließt verschwindet. Dieser Grenzfall vereinfacht die perturbative Berechnung erheblich, da alle Dreipunktdiagramme effektiv auf Zweipunktdiagramme reduziert werden und die Abhängigkeit der Mischungsmatrix auf Einschleifenebene herausfällt. Das Ergebnis stimmt mit der Analyse der Operatorproduktentwicklung von Vierpunktfunktionen geschützter Operatoren von Dolan und Osborn aus dem Jahre 2004 überein. / In this thesis aspects of superconformal field theories that are of interest in the so-called AdS/CFT correspondence are investivated. The AdS/CFT correspondence states a duality between string theories living on Anti-de Sitter space and superconformal quantum field theories in Minkowski space. In the context of the AdS/CFT correspondence the so-called Wilson loop / amplitude duality was discovered, stating the equality of the finite parts of n-gluon MHV amplitudes and n-sided lightlike polygonal Wilson loops in N=4 supersymmetric Yang-Mills (SYM) theory. It is the subject of the first part of this thesis to investigate the Wilson loop side of a possible similar duality in N=6 superconformal Chern-Simons matter (ABJM) theory. The main result is, that the expectation value of n-sided lightlike polygonal Wilson loops vanishes at one-loop order and at two-loop order is identical in its functional form to the Wilson loop in N=4 SYM theory at one-loop order. Furthermore, an anomalous conformal Ward identity for Wilson loops in Chern-Simons theory is derived. Related developments and symmetries of amplitudes and correlators in ABJM theory are discussed as well. In the second part of this thesis we calculate three-point functions of two protected operators and one twist-two operator with arbitrary even spin j in N =4 SYM theory. In order to carry out the calculations, the indices of the spin j operator are projected to the light-cone and the correlator is evaluated in a soft-limit where the momentum coming in at the spin j operator becomes zero. This limit largely simplifies the perturbative calculation, since all three-point diagrams effectively reduce to two-point diagrams and the dependence on the one-loop mixing matrix drops out completely. The result is in agreement with the analysis of the operator product expansion of four-point functions of half-BPS operators by Dolan and Osborn in 2004.
380

Vývoj vodního práva v českých zemích do roku 1914 / Development of water law in Czech lands before 1914

Urban, Michael January 2016 (has links)
The purpose of this thesis was to capture the development of legal regulation of the Czech water law and of water-law relationships, and to point out that miller's law, fisheries law and navigation law are naturally related to the water law. Water transport and handling were not regulated in any manner in the most ancient times. The Czech water law was built on the heritage of the Roman legal culture. From the end of the 10th century, the first mentions of water-law relationships can be found, particularly in monarch's charters. The first important legal regulations related to water included the Mining Code (Ius Regale Montanorum) by king Wenceslas II of 1300-1305 and the Code Maiestas Carolina by king Charles IV, which was not implemented in practice, though. The so called lawbooks are another significant resource for understanding legal regulations related to water. Elements of a complex legal regulation with statewide legal force started to be applied from the end of the 15th and in the course of the 16th century - a number of municipal establishments and the code of municipal law created by Pavel Kristián of Koldín. A considerable boom of legal regulations with respect to all aspects of water-law relationships was seen during the reign of Maria Theresia and Joseph II (the navigation patent,...

Page generated in 0.3933 seconds