Spelling suggestions: "subject:"branchandbound"" "subject:"branchesaround""
211 |
Global Optimization of Dynamic Process Systems using Complete Search MethodsSahlodin, Ali Mohammad 04 1900 (has links)
<p>Efficient global dynamic optimization (GDO) using spatial branch-and-bound (SBB) requires the ability to construct tight bounds for the dynamic model. This thesis works toward efficient GDO by developing effective convex relaxation techniques for models with ordinary differential equations (ODEs). In particular, a novel algorithm, based upon a verified interval ODE method and the McCormick relaxation technique, is developed for constructing convex and concave relaxations of solutions of nonlinear parametric ODEs. In addition to better convergence properties, the relaxations so obtained are guaranteed to be no looser than their underlying interval bounds, and are typically tighter in practice. Moreover, they are rigorous in the sense of accounting for truncation errors. Nonetheless, the tightness of the relaxations is affected by the overestimation from the dependency problem of interval arithmetic that is not addressed systematically in the underlying interval ODE method. To handle this issue, the relaxation algorithm is extended to a Taylor model ODE method, which can provide generally tighter enclosures with better convergence properties than the interval ODE method. This way, an improved version of the algorithm is achieved where the relaxations are generally tighter than those computed with the interval ODE method, and offer better convergence. Moreover, they are guaranteed to be no looser than the interval bounds obtained from Taylor models, and are usually tighter in practice. However, the nonlinearity and (potentially) nonsmoothness of the relaxations impedes their fast and reliable solution. Therefore, the algorithm is finally modified by incorporating polyhedral relaxations in order to generate relatively tight and computationally cheap linear relaxations for the dynamic model. The resulting relaxation algorithm along with a SBB procedure is implemented in the MC++ software package. GDO utilizing the proposed relaxation algorithm is demonstrated to have significantly reduced computational expense, up to orders of magnitude, compared to existing GDO methods.</p> / Doctor of Philosophy (PhD)
|
212 |
Méthode de génération de colonnes pour les problèmes de conception de réseaux avec coûts d’ajout de capacitéEl Filali, Souhaïla 05 1900 (has links)
Les problèmes de conception de réseaux ont reçu un intérêt particulier et ont été largement étudiés de par leurs nombreuses applications dans différents domaines, tels que les transports et les télécommunications.
Nous nous intéressons dans ce mémoire au problème de conception de réseaux avec coûts d’ajout de capacité. Il s’agit d’installer un ensemble d’équipements sur un réseau en vue de satisfaire la demande, tout en respectant les contraintes de capacité, chaque arc pouvant admettre plusieurs équipements. L’objectif est de minimiser les coûts variables de transport des produits et les coûts fixes d’installation ou d’augmentation de capacité des équipements.
La méthode que nous envisageons pour résoudre ce problème est basée sur les techniques utilisées en programmation linéaire en nombres entiers, notamment celles de génération de colonnes et de coupes. Ces méthodes sont introduites dans un algorithme général de branch-and-bound basé sur la relaxation linéaire.
Nous avons testé notre méthode sur quatre groupes d’instances de tailles différentes, et nous l’avons comparée à CPLEX, qui constitue un des meilleurs solveurs permettant de résoudre des problèmes d’optimisation, ainsi qu’à une méthode existante dans la littérature combinant des méthodes exactes et heuristiques. Notre méthode a été plus performante que ces deux méthodes, notamment pour les instances de très grandes tailles. / Network design problems received a particular interest and have been widely studied because of their many applications in different areas, such as logistics and telecommunications.
We focus in this work on the multicommodity capacitated network design problem with capacity expansion costs. It consists in opening a set of facilities on a network in order to meet the demand of some commodities, while respecting the capacity constraints. Each arc can admit several facilities. The objective is to minimize the commodities transportation costs, and the fixed costs of opening or increasing the capacity of the facilities.
The method we are using to solve this problem is based on techniques used in integer programming, including column generation and cutting-plane methods. These methods are introduced into a general branch-and-bound algorithm, based on linear relaxation.
We test our method on four groups of instances of different sizes, and we compare it with CPLEX, which is one of the best solvers available for optimization problems. We compare it also with an existing method in the literature, combining exact and heuristic methods.
Numerical results show that our method was able to outperform both methods, especially when tested on large scale instances.
|
213 |
Decomposition in multistage stochastic programming and a constraint integer programming approach to mixed-integer nonlinear programmingVigerske, Stefan 27 March 2013 (has links)
Diese Arbeit leistet Beiträge zu zwei Gebieten der mathematischen Programmierung: stochastische Optimierung und gemischt-ganzzahlige nichtlineare Optimierung (MINLP). Im ersten Teil erweitern wir quantitative Stetigkeitsresultate für zweistufige stochastische gemischt-ganzzahlige lineare Programme auf Situationen in denen Unsicherheit gleichzeitig in den Kosten und der rechten Seite auftritt, geben eine ausführliche Übersicht zu Dekompositionsverfahren für zwei- und mehrstufige stochastische lineare und gemischt-ganzzahlig lineare Programme, und diskutieren Erweiterungen und Kombinationen des Nested Benders Dekompositionsverfahrens und des Nested Column Generationsverfahrens für mehrstufige stochastische lineare Programme die es erlauben die Vorteile sogenannter rekombinierender Szenariobäume auszunutzen. Als eine Anwendung dieses Verfahrens betrachten wir die optimale Zeit- und Investitionsplanung für ein regionales Energiesystem unter Einbeziehung von Windenergie und Energiespeichern. Im zweiten Teil geben wir eine ausführliche Übersicht zum Stand der Technik bzgl. Algorithmen und Lösern für MINLPs und zeigen dass einige dieser Algorithmen innerhalb des constraint integer programming Softwaresystems SCIP angewendet werden können. Letzteres erlaubt uns die Verwendung schon existierender Technologien für gemischt-ganzzahlige linear Programme und constraint Programme für den linearen und diskreten Teil des Problems. Folglich konzentrieren wir uns hauptsächlich auf die Behandlung der konvexen und nichtkonvexen nichtlinearen Nebenbedingungen mittels Variablenschrankenpropagierung, äußerer Approximation und Reformulierung. In einer ausführlichen numerischen Studie untersuchen wir die Leistung unseres Ansatzes anhand von Anwendungen aus der Tagebauplanung und des Aufbaus eines Wasserverteilungssystems und mittels verschiedener Vergleichstests. Die Ergebnisse zeigen, dass SCIP ein konkurrenzfähiger Löser für MINLPs geworden ist. / This thesis contributes to two topics in mathematical programming: stochastic optimization and mixed-integer nonlinear programming (MINLP). In the first part, we extend quantitative continuity results for two-stage stochastic mixed-integer linear programs to include situations with simultaneous uncertainty in costs and right-hand side, give an extended review on decomposition algorithm for two- and multistage stochastic linear and mixed-integer linear programs, and discuss extensions and combinations of the Nested Benders Decomposition and Nested Column Generation methods for multistage stochastic linear programs to exploit the advantages of so-called recombining scenario trees. As an application of the latter, we consider the optimal scheduling and investment planning for a regional energy system including wind power and energy storages. In the second part, we give a comprehensive overview about the state-of-the-art in algorithms and solver technology for MINLPs and show that some of these algorithm can be applied within the constraint integer programming framework SCIP. The availability of the latter allows us to utilize the power of already existing mixed integer linear and constraint programming technologies to handle the linear and discrete parts of the problem. Thus, we focus mainly on the domain propagation, outer-approximation, and reformulation techniques to handle convex and nonconvex nonlinear constraints. In an extensive computational study, we investigate the performance of our approach on applications from open pit mine production scheduling and water distribution network design and on various benchmarks sets. The results show that SCIP has become a competitive solver for MINLPs.
|
214 |
Simulation and optimization models for scheduling and balancing the public bicycle-sharing systems / Modéles de simulation et d'optimisation pour l'ordonnancement et l'équilibrage des systèmes de vélos en libre-serviceKadri, Ahmed Abdelmoumene 11 December 2015 (has links)
Les enjeux du développement durable, le réchauffement climatique, la pollution dans les grandes villes, la congestion et les nuisances sonores, l'augmentation des prix de carburants, sont parmi des nombreux facteurs qui incitent les pays développés à l'innovation dans les transports publics. Dans ce contexte, l'introduction des systèmes de vélos en libre-service, au cours de ces dernières années, est une des solutions adoptées par de nombreuses grandes villes. Malgré leur succès fulgurant dans le monde entier, il existe peu d'études fondamentales sur ce type transport urbain. Pourtant, leur exploitation et leur management par des opérateurs soulèvent de nombreuses questions notamment d'ordre opérationnel. Dans ce contexte, cette thèse s'adresse aux problèmes d'ordonnancement et de rééquilibrage des stations de vélos en libre-service. Ce sont des problèmes cruciaux pour la qualité de service et la viabilité économique de tels systèmes. Le rééquilibrage consiste à redistribuer le nombre de vélos entre les différentes stations afin de satisfaire au mieux les demandes des usagers. Cette régulation se fait souvent par le biais de véhicules spécifiques qui font des tournées autour des différentes stations. Ainsi, deux problèmes d'optimisation difficiles se posent : la recherche de la meilleure tournée du véhicule de régulation (ordonnancement de la tournée) et la détermination des nombres de véhicules à utiliser (rééquilibrage des stations). Dans cette optique, les travaux de cette thèse constituent une contribution à la modélisation et à l'optimisation de performances des systèmes de vélos en libre-service en vue de leur rééquilibrage et leur ordonnancement. Plusieurs méthodes d'optimisation et ont été développées et testées. De telles méthodes incorporent différentes approches de simulation ou d'optimisation comme les réseaux de Petri, les algorithmes génétiques, les algorithmes gloutons, les algorithmes de recherche par voisinage, la méthode arborescente de branch-and-bound, l'élaboration des bornes supérieures et inférieures, etc. Différentes facettes du problème ont été étudiées : le cas statique, le cas dynamique, l'ordonnancement et le rééquilibrage avec un seul (ou multiple) véhicule(s). Afin de montrer la pertinence de nos approches, la thèse comporte également plusieurs applications réelles et expérimentations / In our days, developed countries have to face many public transport problems, including traffic congestion, air pollution, global oil prices and global warming. In this context, Public Bike sharing systems are one of the solutions that have been recently implemented in many big cities around the world. Despite their apparent success, the exploitation and management of such transportation systems imply crucial operational challenges that confronting the operators while few scientific works are available to support such complex dynamical systems. In this context, this thesis addresses the scheduling and balancing in public bicycle-sharing systems. These problems are the most crucial questions for their operational efficiency and economic viability. Bike sharing systems are balanced by distributing bicycles from one station to another. This procedure is generally ensured by using specific redistribution vehicles. Therefore, two hard optimization problems can be considered: finding a best tour for the redistribution vehicles (scheduling) and the determination of the numbers of bicycles to be assigned and of the vehicles to be used (balancing of the stations). In this context, this thesis constitutes a contribution to modelling and optimizing the bicycle sharing systems' performances in order to ensure a coherent scheduling and balancing strategies. Several optimization methods have been proposed and tested. Such methods incorporate different approaches of simulation or optimization like the Petri nets, the genetic algorithms, the greedy search algorithms, the local search algorithms, the arborescent branch-and-bound algorithms, the elaboration of upper and lower bounds, ... Different variants of the problem have been studied: the static mode, the dynamic mode, the scheduling and the balancing by using a single or multiple vehicle(s). In order to demonstrate the coherence and the suitability of our approaches, the thesis contains several real applications and experimentations
|
215 |
Comparaison de réseaux biologiquesMohamed Babou, Hafedh 06 November 2012 (has links) (PDF)
La comparaison de réseaux biologiques est actuellement l'une des approches les plus prometteuses pour aider à la compréhension du fonctionnement des organismes vivants. Elle apparaît comme la suite attendue de la comparaison de séquences biologiques dont l'étude ne représente en réalité que l'aspect génomique des informations manipulées par les biologistes. Dans cette thèse, nous proposons une approche innovante permettant de comparer deux réseaux biologiques modélisés respectivement par un graphe orienté D et un graphe non-orienté G, et dotés d'une fonction f établissant la correspondance entre les sommets des deux graphes. L'approche consiste à extraire automatiquement une structure dans D, biologiquement significative, dont les sommets induisent dans G, par f, une structure qui soit aussi biologiquement significative. Nous réalisons une étude algorithmique du problème issu de notre approche en commençant par sa version dans laquelle D est acyclique (DAG). Nous proposons des algorithmes polynomiaux pour certains cas, et nous montrons que d'autres cas sont algorithmiquement difficiles (NP-complets). Pour résoudre les instances difficiles, nous proposons une bonne heuristique et un algorithme exact basé sur la méthode branch-and-bound. Pour traiter le cas où D est cyclique, nous introduisons une méthode motivée par des hypothèses biologiques et consistant à décomposer D en DAGs tels que les sommets de chaque DAG induisent dans G un sous-graphe connexe. Nous étudions également dans cette thèse, l'inférence des voies de signalisation en combinant les informations sur les causes et sur les effets des événements extra-cellulaires. Nous modélisons ce problème par un problème d'orientation de graphes mixtes et nous effectuons une étude de complexité permettant d'identifier les instances faciles et celles difficiles.
|
216 |
Programmation DC et DCA en optimisation combinatoire et optimisation polynomiale via les techniques de SDP : codes et simulations numériques / DC programming and DCA combinatorial optimization and polynomial optimization via SDP techniquesNiu, Yi Shuai 28 May 2010 (has links)
L’objectif de cette thèse porte sur des recherches théoriques et algorithmiques d’optimisation locale et globale via les techniques de programmation DC & DCA, Séparation et Evaluation (SE) ainsi que les techniques de relaxation DC/SDP, pour résoudre plusieurs types de problèmes d’optimisation non convexe (notamment en Optimisation Combinatoire et Optimisation Polynomiale). La thèse comporte quatre parties :La première partie présente les outils fondamentaux et les techniques essentielles en programmation DC & l’Algorithme DC (DCA), ainsi que les techniques de relaxation SDP, et les méthodes de séparation et évaluation (SE).Dans la deuxième partie, nous nous intéressons à la résolution de problèmes de programmation quadratique et linéaire mixte en variables entières. Nous proposons de nouvelles approches locales et globales basées sur DCA, SE et SDP. L’implémentation de logiciel et des simulations numériques sont aussi étudiées.La troisième partie explore des approches de la programmation DC & DCA en les combinant aux techniques SE et SDP pour la résolution locale et globale de programmes polynomiaux. Le programme polynomial avec des fonctions polynomiales homogènes et son application à la gestion de portefeuille avec moments d’ordre supérieur en optimisation financière ont été discutés de manière approfondie dans cette partie.Enfin, nous étudions dans la dernière partie un programme d’optimisation sous contraintes de type matrices semi-définies via nos approches de la programmation DC. Nous nous consacrons à la résolution du problème de réalisabilité des contraintes BMI et QMI en contrôle optimal.L’ensemble de ces travaux a été implémenté avec MATLAB, C/C++ ... nous permettant de confirmer l’utilisation pratique et d’enrichir nos travaux de recherche. / The main objective of this thesis focuses on theoretical and algorithmic researches of local and global optimization techniques to DC programming & DCA with Branch and Bound (B&B) and the DC/SDP relaxation techniques to solve several types of non-convex optimization problems (including Combinatorial Optimization and Polynomial Optimization). This thesis is divided into four parts :We present in the first part some fondamental theorems and essential techniques in DC programming & DC Algorithm (DCA), the SDP Relaxation techniques, as well as the Branch and Bound methods (B&B).In the second part, we are interested in solving mixed integer quadratic and linear programs. We propose new local and global approaches based on DCA, B&B and SDP. The implementation of software and numerical simulations have also been investigated.The third part explores the DC programming approaches & DCA combined with a B&B technique and SDP for locally and globally solving a class of polynomial programming. The polynomial program with homogeneous polynomial functionsand its application to portfolio selection problem involving higher order moments in financial optimization have been deeply studied in this part.Finally, in the last part, we present our research on optimization problems under constraints of semi-definite matrices via our DC programming approaches. This part is dedicated to the resolution of the BMI and QMI feasibility problems in the field of optimal control.All these proposed methods have been implemented with MATLAB, C++ etc., that allowing us to confirm the practical use and enrich our research works.
|
217 |
Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications / DC programming and DCA for nonconvex optimization/ global optimization in mixed integer programming : Codes and applicationsPham, Viet Nga 18 April 2013 (has links)
Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes. / Based on theoretical and algorithmic tools of DC programming and DCA, the research in this thesis focus on the local and global approaches for non convex optimization and global mixed integer optimization. The thesis consists of 5 chapters. The first chapter presents fundamentals of DC programming and DCA, and techniques of Branch and Bound method (B&B) for global optimization (using the DC relaxation technique for calculating lower bounds of the optimal value). It shall include results concerning the exact penalty technique in mixed integer programming. The second chapter is devoted of a DCA method for solving a class of NP-hard nonconvex nonlinear mixed integer programs. These nonconvex problems are firstly reformulated as DC programs via penalty techniques in DC programming so that the resulting DC programs are effectively solved by DCA and B&B well adapted. As a first application in financial optimization, we modeled the problem pf portfolio selection under concave transaction costs and applied DCA and B&B to its solutions. In the next chapter we study the modeling of the problem of minimization of nonconvex discontinuous transaction costs in portfolio selection in two forms: the first is a DC program obtained by approximating the objective function of the original problem by a DC polyhedral function and the second is an equivalent mixed 0-1 DC program. And we present DCA, B&B algorithm, and a combined DCA-B&B algorithm for their solutions. Chapter 4 studied the exact solution for the multi-objective mixed zero-one linear programming problem and presents two practical applications of proposed method. We are interested int the last chapter two challenging problems: the linear integer least squares problem and the Nonnegative Mattrix Factorization problem (NMF). The NMF method is particularly important because of its many various applications of the first are in telecommunications. The numerical simulations show the robustness, speed (thus scalability), performance, and the globality of DCA in comparison to existent methods.
|
218 |
GIS-based Episode Reconstruction Using GPS Data for Activity Analysis and Route Choice Modeling / GIS-based Episode Reconstruction Using GPS DataDalumpines, Ron 26 September 2014 (has links)
Most transportation problems arise from individual travel decisions. In response, transportation researchers had been studying individual travel behavior – a growing trend that requires activity data at individual level. Global positioning systems (GPS) and geographical information systems (GIS) have been used to capture and process individual activity data, from determining activity locations to mapping routes to these locations. Potential applications of GPS data seem limitless but our tools and methods to make these data usable lags behind. In response to this need, this dissertation presents a GIS-based toolkit to automatically extract activity episodes from GPS data and derive information related to these episodes from additional data (e.g., road network, land use).
The major emphasis of this dissertation is the development of a toolkit for extracting information associated with movements of individuals from GPS data. To be effective, the toolkit has been developed around three design principles: transferability, modularity, and scalability. Two substantive chapters focus on selected components of the toolkit (map-matching, mode detection); another for the entire toolkit. Final substantive chapter demonstrates the toolkit’s potential by comparing route choice models of work and shop trips using inputs generated by the toolkit.
There are several tools and methods that capitalize on GPS data, developed within different problem domains. This dissertation contributes to that repository of tools and methods by presenting a suite of tools that can extract all possible information that can be derived from GPS data. Unlike existing tools cited in the transportation literature, the toolkit has been designed to be complete (covers preprocessing up to extracting route attributes), and can work with GPS data alone or in combination with additional data. Moreover, this dissertation contributes to our understanding of route choice decisions for work and shop trips by looking into the combined effects of route attributes and individual characteristics. / Dissertation / Doctor of Philosophy (PhD)
|
Page generated in 0.0404 seconds