• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 60
  • 17
  • 2
  • 1
  • 1
  • Tagged with
  • 261
  • 154
  • 105
  • 80
  • 64
  • 63
  • 63
  • 61
  • 49
  • 46
  • 36
  • 32
  • 31
  • 31
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Modelling and Quantification of scRNA-seq Experiments and the Transcriptome Dynamics of the Cell Cycle

Laurentino Schwabe, Daniel 26 October 2022 (has links)
In dieser Dissertation modellieren und analysieren wir scRNA-Seq-Daten, um Mechanismen, die biologischen Prozessen zugrunde liegen, zu verstehen In scRNA-Seq-Experimenten wird biologisches Rauschen mit technischem Rauschen vermischt. Mittels eines vereinfachten scRNA-Seq-Modells leiten wir eine analytische Verteilungsfunktion für die beobachtete Verteilung unter Kenntnis einer Ausgangsverteilung her. Charakteristiken und sogar ein allgemeines Moment der Ausgangsverteilung können aus der beobachteten Verteilung berechnet werden. Unsere Formeln stellen den Ausgangspunkt zur Quantifizierung von Zellvariabilität dar. Wir haben eine vollständig lineare Analyse von Transkriptomdaten entwickelt, die zeigt, dass sich Zellen während des Zellzyklus auf einer ebenen zirkulären Trajektorie im Transkriptomraum bewegen. In immortalisierten Zelllinien stellen wir fest, dass die Transkriptomdynamiken des Zellzyklus hauptsächlich unabhängig von den Dynamiken anderer Zellprozesse stattfinden. Unser Algorithmus (“Revelio”) bringt eine einfache Methode mit sich, um unsynchronisierte Zellen nach der Zeit zu ordnen und ermöglicht das exakte Entfernen von Zellzykluseffekten. Die Form der Zellzyklus-Trajektorie zeigt, dass der Zellzyklus sich dazu entwickelt hat, Änderungen der transkriptionellen Aktivitäten und der damit verbundenen regulativen Anstrengungen zu minimieren. Dieses Konstruktionsprinzip könnte auch für andere Prozesse relevant sein. Durch die Verwendung von metabolischer Molekülmarkierung erweitern wir Modelle zur mRNA-Kinetik, um dynamische mRNA-Ratenparameter für Transkription, Splicing und Degradation zu erhalten und die Lösungen auf den Zellzyklus anzuwenden. Wir zeigen, dass unser Modell zwischen Genen mit ähnlicher Genexpression aber unterschiedlicher Genregulation unterscheiden kann. Zwar enthalten scRNA-Seq-Daten aktuell noch zu viel technisches Rauschen, unser Modell wird jedoch für das zukünftige Errechnen von dynamischen mRNA-Ratenparametern von großem Nutzen sein. / In this dissertation, we model and analyse scRNA-seq data to understand mechanisms underlying biological processes. In scRNA-seq experiments, biological noise gets convoluted with various sources of technical noise. With the help of a simplified scRNA-seq model, we derive an analytical probability distribution function for the observed output distribution given a true input distribution. We find that characteristics and even general moments of the input distribution can be calculated from the output distribution. Our formulas are a starting point for the quantification of cell-to-cell variability. We developed a fully linear analysis of transcriptome data which reveals that cells move along a planar circular trajectory in transcriptome space during the cell cycle. Additionally, we find in immortalized cell lines that cell cycle transcriptome dynamics occur largely independently from other cellular processes. Our algorithm (“Revelio”) offers a simple method to order unsynchronized cells in time and enables the precise removal of cell cycle effects from the data. The shape of the cell cycle trajectory indicates that the cell cycle has evolved to minimize changes of transcriptional activity and their related regulatory efforts. This design principle may be of relevance to other cellular processes. By considering metabolic labelling, we extend existing mRNA kinetic models to obtain dynamic mRNA rate parameters for transcription, splicing and degradation and apply our solutions to the cell cycle. We can distinguish genes with similar expression values but different gene regulation strategies. While current scRNA-seq data contains too much technical noise, the model will be of great value for inferring dynamic mRNA rate parameters in future research.
252

Aggregation and Gelation in Random Networks / Aggregation und Gelation in zufälligen Netzwerken

Ulrich, Stephan 03 March 2010 (has links)
No description available.
253

Stabilisierung und Kontrolle komplexer Dynamik durch mehrfach zeitverzögerte Rückkopplung / Stabilization and control of complex dynamics using multiple delay feedback

Ahlborn, Alexander 16 May 2007 (has links)
No description available.
254

Modelling closed-loop receptive fields: On the formation and utility of receptive fields in closed-loop behavioural systems / Entwicklung rezeptiver Felder in autonom handelnden, rückgekoppelten Systemen

Kulvicius, Tomas 20 April 2010 (has links)
No description available.
255

Internal representations of time and motion / Interne Repräsentationen von Zeit und Bewegung

Haß, Joachim 11 November 2009 (has links)
No description available.
256

Hydrodynamic Diffuse Interface Models for Cell Morphology and Motility

Marth, Wieland 05 July 2016 (has links) (PDF)
In this thesis, we study mathematical models that describe the morphology of a generalized biological cell in equilibrium or under the influence of external forces. Within these models, the cell is considered as a thermodynamic system, where streaming effects in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell membrane. The governing evolution equations for the cell given in a continuum formulation are derived using an energy variation approach. Such two-phase flow problems that combine streaming effects with a free boundary problem that accounts for bending and surface tension can be described effectively by a diffuse interface approach. An advantage of the diffuse interface approach is that models for e.g. different biophysical processes can easily be combined. That makes this method suitable to describe complex phenomena such as cell motility and multi-cell dynamics. Within the first model for cell motility, we combine a biological network for GTPases with the hydrodynamic Helfrich-type model. This model allows to account for cell motility driven by membrane protrusion as a result of actin polymerization. Within the second model, we moreover extend the Helfrich-type model by an active gel theory to account for the actin filaments in the cell bulk. Caused by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking event occurs that lead to cell motility. In this thesis, we further study the dynamics of multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply the diffuse interface framework, we introduce several phase field variables to account for several cells that are coupled by a local interaction potential. In a first application, we study white blood cell margination, a biological phenomenon that results from the complex relation between collisions, different mechanical properties and lift forces of red blood cells and white blood cells within the vascular system. Here, it is shown that inertial effects, which can become of relevance in various parts of the cardiovascular system, lead to a decreasing tendency for margination with increasing Reynolds number. Finally, we combine the active polar gel theory and the multi-cell approach that is capable of studying collective migration of cells. This hydrodynamic approach predicts that collective migration emerges spontaneously forming coherently-moving clusters as a result of the mutual alignment of the velocity vectors during inelastic collisions. We further observe that hydrodynamics heavily influence those systems. However, a complete suppression of the onset of collective migration cannot be confirmed. Moreover, we give a brief insight how such highly coupled systems can be treated numerically using finite elements and how the numerical costs can be limited using operator splitting approaches and problem parallelization with OPENMP. / Diese Dissertation beschäftigt sich mit mathematischen Modellen zur Beschreibung von Gleichgewichts- und dynamischen Zuständen von verallgemeinerten biologischen Zellen. Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungseffekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell für Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-Ansatz die Evolutionsgleichungen für die Zelle hergeleitet. Es ergeben sie dabei Mehrphasen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusätzlich physikalischen Einflüssen wie Biegung und Oberflächenspannung unterliegt, vereinen. Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe biologische Phänomene, wie zum Beispiel Zellmotilität oder auch die kollektive Bewegung von Zellen, zu beschreiben. In den Modellen für Zellmotilität wird ein biologisches Netzwerk-Modell für GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfilamente im Inneren der Zellen als Flüssigkristall auffasst, mit dem Multi-Phasen-Modell kombiniert. Beide Modelle erlauben es, komplexe Vorgänge bei der selbst hervorgerufenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpolymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollektive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare Phänomene zeigen. Um das Diffuse-Interface-Modell für eine Zelle auf die Beschreibung mehrerer Zellen zu übertragen, werden mehrere Phasenfelder eingeführt, die die Zellen jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspotential gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die Annäherung von Leukozyten an die Blutgefäßwand bezeichnet, zu verstehen. Dieser Prozess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen, den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft innerhalb der Adern. Die Simulationen zeigen, dass diese Annäherung sich in bestimmten Gebieten des kardiovaskulären Systems stark vermindert, in denen die Blutströmung das Stokes-Regime verlässt. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell für die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu untersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisionen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat, deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung vollständig unterdrückt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppelten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP.
257

Hydrodynamic Diffuse Interface Models for Cell Morphology and Motility

Marth, Wieland 27 May 2016 (has links)
In this thesis, we study mathematical models that describe the morphology of a generalized biological cell in equilibrium or under the influence of external forces. Within these models, the cell is considered as a thermodynamic system, where streaming effects in the cell bulk and the surrounding are coupled with a Helfrich-type model for the cell membrane. The governing evolution equations for the cell given in a continuum formulation are derived using an energy variation approach. Such two-phase flow problems that combine streaming effects with a free boundary problem that accounts for bending and surface tension can be described effectively by a diffuse interface approach. An advantage of the diffuse interface approach is that models for e.g. different biophysical processes can easily be combined. That makes this method suitable to describe complex phenomena such as cell motility and multi-cell dynamics. Within the first model for cell motility, we combine a biological network for GTPases with the hydrodynamic Helfrich-type model. This model allows to account for cell motility driven by membrane protrusion as a result of actin polymerization. Within the second model, we moreover extend the Helfrich-type model by an active gel theory to account for the actin filaments in the cell bulk. Caused by contractile stress within the actin-myosin solution, a spontaneous symmetry breaking event occurs that lead to cell motility. In this thesis, we further study the dynamics of multiple cells which is of wide interest since it reveals rich non-linear behavior. To apply the diffuse interface framework, we introduce several phase field variables to account for several cells that are coupled by a local interaction potential. In a first application, we study white blood cell margination, a biological phenomenon that results from the complex relation between collisions, different mechanical properties and lift forces of red blood cells and white blood cells within the vascular system. Here, it is shown that inertial effects, which can become of relevance in various parts of the cardiovascular system, lead to a decreasing tendency for margination with increasing Reynolds number. Finally, we combine the active polar gel theory and the multi-cell approach that is capable of studying collective migration of cells. This hydrodynamic approach predicts that collective migration emerges spontaneously forming coherently-moving clusters as a result of the mutual alignment of the velocity vectors during inelastic collisions. We further observe that hydrodynamics heavily influence those systems. However, a complete suppression of the onset of collective migration cannot be confirmed. Moreover, we give a brief insight how such highly coupled systems can be treated numerically using finite elements and how the numerical costs can be limited using operator splitting approaches and problem parallelization with OPENMP. / Diese Dissertation beschäftigt sich mit mathematischen Modellen zur Beschreibung von Gleichgewichts- und dynamischen Zuständen von verallgemeinerten biologischen Zellen. Die Zellen werden dabei als thermodynamisches System aufgefasst, bei dem Strömungseffekte innerhalb und außerhalb der Zelle zusammen mit einem Helfrich-Modell für Zellmembranen kombiniert werden. Schließlich werden durch einen Energie-Variations-Ansatz die Evolutionsgleichungen für die Zelle hergeleitet. Es ergeben sie dabei Mehrphasen-Systeme, die Strömungseffekte mit einem freien Randwertproblem, das zusätzlich physikalischen Einflüssen wie Biegung und Oberflächenspannung unterliegt, vereinen. Um solche Probleme effizient zu lösen, wird in dieser Arbeit die Diffuse-Interface-Methode verwendet. Ein Vorteil dieser Methode ist, dass es sehr einfach möglich ist, Modelle, die verschiedenste Prozesse beschreiben, miteinander zu vereinen. Dies erlaubt es, komplexe biologische Phänomene, wie zum Beispiel Zellmotilität oder auch die kollektive Bewegung von Zellen, zu beschreiben. In den Modellen für Zellmotilität wird ein biologisches Netzwerk-Modell für GTPasen oder auch ein Active-Polar-Gel-Modell, das die Aktinfilamente im Inneren der Zellen als Flüssigkristall auffasst, mit dem Multi-Phasen-Modell kombiniert. Beide Modelle erlauben es, komplexe Vorgänge bei der selbst hervorgerufenen Bewegung von Zellen, wie das Vorantreiben der Zellmembran durch Aktinpolymerisierung oder auch die Kontraktionsbewegung des Zellkörpers durch kontraktile Spannungen innerhalb des Zytoskelets der Zelle, zu verstehen. Weiterhin ist die kollektive Bewegung von vielen Zellen von großem Interesse, da sich hier viele nichtlineare Phänomene zeigen. Um das Diffuse-Interface-Modell für eine Zelle auf die Beschreibung mehrerer Zellen zu übertragen, werden mehrere Phasenfelder eingeführt, die die Zellen jeweils kennzeichnen. Schließlich werden die Zellen durch ein lokales Abstoßungspotential gekoppelt. Das Modell wird angewendet, um White blood cell margination, das die Annäherung von Leukozyten an die Blutgefäßwand bezeichnet, zu verstehen. Dieser Prozess wird dabei bestimmt durch den komplexen Zusammenhang zwischen Kollisionen, den jeweiligen mechanischen Eigenschaften der Zellen, sowie deren Auftriebskraft innerhalb der Adern. Die Simulationen zeigen, dass diese Annäherung sich in bestimmten Gebieten des kardiovaskulären Systems stark vermindert, in denen die Blutströmung das Stokes-Regime verlässt. Schließlich wird das Active-Polar-Gel-Modell mit dem Modell für die kollektive Bewegung vom Zellen kombiniert. Dies macht es möglich, die kollektive Bewegung der Zellen und den Einfluss von Hydrodynamik auf diese Bewegung zu untersuchen. Es zeigt sich dabei, dass der Zustand der kollektiven gerichteten Bewegung sich spontan aus der Neuausrichtung der jeweiligen Zellen durch inelastische Kollisionen ergibt. Obwohl die Hydrodynamik einen großen Einfluss auf solche Systeme hat, deuten die Simulationen nicht daraufhin, dass Hydrodynamik die kollektive Bewegung vollständig unterdrückt. Weiterhin wird in dieser Arbeit gezeigt, wie die stark gekoppelten Systeme numerisch gelöst werden können mit Hilfe der Finiten-Elemente-Methode und wie die Effizienz der Methode gesteigert werden kann durch die Anwendung von Operator-Splitting-Techniken und Problemparallelisierung mittels OPENMP.
258

Network Inference from Perturbation Data: Robustness, Identifiability and Experimental Design

Groß, Torsten 29 January 2021 (has links)
Hochdurchsatzverfahren quantifizieren eine Vielzahl zellulärer Komponenten, können aber selten deren Interaktionen beschreiben. Daher wurden in den letzten 20 Jahren verschiedenste Netzwerk-Rekonstruktionsmethoden entwickelt. Insbesondere Perturbationsdaten erlauben dabei Rückschlüsse über funktionelle Mechanismen in der Genregulierung, Signal Transduktion, intra-zellulärer Kommunikation und anderen Prozessen zu ziehen. Dennoch bleibt Netzwerkinferenz ein ungelöstes Problem, weil die meisten Methoden auf ungeeigneten Annahmen basieren und die Identifizierbarkeit von Netzwerkkanten nicht aufklären. Diesbezüglich beschreibt diese Dissertation eine neue Rekonstruktionsmethode, die auf einfachen Annahmen von Perturbationsausbreitung basiert. Damit ist sie in verschiedensten Zusammenhängen anwendbar und übertrifft andere Methoden in Standard-Benchmarks. Für MAPK und PI3K Signalwege in einer Adenokarzinom-Zellline generiert sie plausible Netzwerkhypothesen, die unterschiedliche Sensitivitäten von PI3K-Mutanten gegenüber verschiedener Inhibitoren überzeugend erklären. Weiterhin wird gezeigt, dass sich Netzwerk-Identifizierbarkeit durch ein intuitives Max-Flow Problem beschreiben lässt. Dieses analytische Resultat erlaubt effektive, identifizierbare Netzwerke zu ermitteln und das experimentelle Design aufwändiger Perturbationsexperimente zu optimieren. Umfangreiche Tests zeigen, dass der Ansatz im Vergleich zu zufällig generierten Perturbationssequenzen die Anzahl der für volle Identifizierbarkeit notwendigen Perturbationen auf unter ein Drittel senkt. Schließlich beschreibt die Dissertation eine mathematische Weiterentwicklung der Modular Response Analysis. Es wird gezeigt, dass sich das Problem als analytisch lösbare orthogonale Regression approximieren lässt. Dies erlaubt eine drastische Reduzierung des nummerischen Aufwands, womit sich deutlich größere Netzwerke rekonstruieren und neueste Hochdurchsatz-Perturbationsdaten auswerten lassen. / 'Omics' technologies provide extensive quantifications of components of biological systems but rarely characterize the interactions between them. To fill this gap, various network reconstruction methods have been developed over the past twenty years. Using perturbation data, these methods can deduce functional mechanisms in gene regulation, signal transduction, intra-cellular communication and many other cellular processes. Nevertheless, this reverse engineering problem remains essentially unsolved because inferred networks are often based on inapt assumptions, lack interpretability as well as a rigorous description of identifiability. To overcome these shortcoming, this thesis first presents a novel inference method which is based on a simple response logic. The underlying assumptions are so mild that the approach is suitable for a wide range of applications while also outperforming existing methods in standard benchmark data sets. For MAPK and PI3K signalling pathways in an adenocarcinoma cell line, it derived plausible network hypotheses, which explain distinct sensitivities of PI3K mutants to targeted inhibitors. Second, an intuitive maximum-flow problem is shown to describe identifiability of network interactions. This analytical result allows to devise identifiable effective network models in underdetermined settings and to optimize the design of costly perturbation experiments. Benchmarked on a database of human pathways, full network identifiability is obtained with less than a third of the perturbations that are needed in random experimental designs. Finally, the thesis presents mathematical advances within Modular Response Analysis (MRA), which is a popular framework to quantify network interaction strengths. It is shown that MRA can be approximated as an analytically solvable total least squares problem. This insight drastically reduces computational complexity, which allows to model much bigger networks and to handle novel large-scale perturbation data.
259

Räumliche, GIS-gestützte Analyse von Linientransektstichproben / Spatial, GIS-aided analysis of line transect surveys

Mader, Felix 09 March 2007 (has links)
No description available.
260

Scale-free Fluctuations in in Bose-Einstein Condensates, Quantum Dots and Music Rhythms / Skalenfreie Fluktuationen in Bose-Einstein Kondensaten, Quantenpunkten und Musikrhythmen

Hennig, Holger 27 May 2009 (has links)
No description available.

Page generated in 0.3518 seconds