Spelling suggestions: "subject:"ensitivity 2analysis"" "subject:"ensitivity 3analysis""
871 |
Náklady vlastního kapitálu pro tržní ocenění podniku v podmínkách ČR s důrazem na rizikovou prémii kapitálového trhu / Cost of Equity for Market Valuation in the Czech Republic with an Emphasis on Market Risk PremiumNovotný, Tomáš January 2012 (has links)
The aim of the work is to analyze the theoretical basis of determination of the market risk premium in conditions of the national market in the Czech Republic with CAPM and practical procedures of its determination using the market data provided by Bloomberg. The work addresses some open problems of practical determination of market risk premium as a choice between historical and implied risk premium, determination of credit spread as a representative of country risk and accurate determination of the equity and bond market volatility ratio. The thesis also contains research on the cost of equity and single-factor sensitivity analysis demonstrating the significant influence of a small change in one parameter entering the calculation of the discount rate on the resulting value.
|
872 |
Site evaluation approach for reforestations based on SVAT water balance modeling considering data scarcity and uncertainty analysis of model input parameters from geophysical dataMannschatz, Theresa 05 June 2015 (has links)
Extensive deforestations, particularly in the (sub)tropics, have led to intense soil degradation and erosion with concomitant reduction in soil fertility. Reforestations or plantations on those degraded sites may provide effective measures to mitigate further soil degradation and erosion, and can lead to improved soil quality. However, a change in land use from, e.g., grassland to forest may have a crucial impact on water balance. This may affect water availability even under humid tropical climate conditions where water is normally not a limiting factor. In this context, it should also be considered that according to climate change projections rainfall may decrease in some of these regions. To mitigate climate change related problems (e.g. increases in erosion and drought), reforestations are often carried out. Unfortunately, those measures are seldom completely successful, because the environmental conditions and the plant specific requirements are not appropriately taken into account. This is often due to data-scarcity and limited financial resources in tropical regions. For this reason, innovative approaches are required that are able to measure environmental conditions quasi-continuously in a cost-effective manner.
Simultaneously, reforestation measures should be accompanied by monitoring in order to evaluate reforestation success and to mitigate, or at least to reduce, potential problems associated with reforestation (e.g. water scarcity). To avoid reforestation failure and negative implications on ecosystem services, it is crucial to get insights into the water balance of the actual ecosystem, and potential changes resulting from reforestation. The identification and prediction of water balance changes as a result of reforestation under climate change requires the consideration of the complex feedback system of processes in the soil-vegetation-atmosphere continuum. Models that account for those feedback system are Soil-Vegetation-Atmosphere-Transfer (SVAT) models.
For the before-mentioned reasons, this study targeted two main objectives: (i) to develop and test a method combination for site evaluation under data scarcity (i.e. study requirements) (Part I) and (ii) to investigate the consequences of prediction uncertainty of the SVAT model input parameters, which were derived using geophysical methods, on SVAT modeling (Part II).
A water balance modeling approach was set at the center of the site evaluation approach. This study used the one-dimensional CoupModel, which is a SVAT model. CoupModel requires detailed spatial soil information for (i) model parameterization, (ii) upscaling of model results and accounting for local to regional-scale soil heterogeneity, and (iii) monitoring of changes in soil properties and plant characteristics over time. Since traditional approaches to soil and vegetation sampling and monitoring are time consuming and expensive (and therefore often limited to point information), geophysical methods were used to overcome this spatial limitation. For this reason, vis-NIR spectroscopy (visible to near-infrared wavelength range) was applied for the measurement of soil properties (physical and chemical), and remote sensing to derive vegetation characteristics (i.e. leaf area index (LAI)). Since the estimated soil properties (mainly texture) could be used to parameterize a SVAT model, this study investigated the whole processing chain and related prediction uncertainty of soil texture and LAI, and their impact on CoupModel water balance prediction uncertainty.
A greenhouse experiment with bamboo plants was carried out to determine plant-physiological characteristics needed for CoupModel parameterization. Geoelectrics was used to investigate soil layering, with the intent of determining site-representative soil profiles for model parameterization. Soil structure was investigated using image analysis techniques that allow the quantitative assessment and comparability of structural features. In order to meet the requirements of the selected study approach, the developed methodology was applied and tested for a site in NE-Brazil (which has low data availability) with a bamboo plantation as the test site and a secondary forest as the reference (reference site). Nevertheless, the objective of the thesis was not the concrete modeling of the case study site, but rather the evaluation of the suitability of the selected methods to evaluate sites for reforestations and to monitor their influence on the water balance as well as soil properties.
The results (Part III) highlight that one needs to be aware of the measurement uncertainty related to SVAT model input parameters, so for instance the uncertainty of model input parameters such as soil texture and leaf area index influences meaningfully the simulated model water balance output. Furthermore, this work indicates that vis-NIR spectroscopy is a fast and cost-efficient method for soil measurement, mapping, and monitoring of soil physical (texture) and chemical (N, TOC, TIC, TC) properties, where the quality of soil prediction depends on the instrument (e.g. sensor resolution), the sample properties (i.e. chemistry), and the site characteristics (i.e. climate).
Additionally, also the sensitivity of the CoupModel with respect to texture prediction uncertainty with respect to surface runoff, transpiration, evaporation, evapotranspiration, and soil water content depends on site conditions (i.e. climate and soil type). For this reason, it is recommended that SVAT model sensitivity analysis be carried out prior to field spectroscopic measurements to account for site specific climate and soil conditions. Nevertheless, mapping of the soil properties estimated via spectroscopy using kriging resulted in poor interpolation (i.e. weak variograms) results as a consequence of a summation of uncertainty arising from the method of field measurement to mapping (i.e. spectroscopic soil prediction, kriging error) and site-specific ‘small-scale’ heterogeneity. The selected soil evaluation method (vis-NIR spectroscopy, structure comparison using image analysis, traditional laboratory analysis) showed that there are significant differences between the bamboo soil and the adjacent secondary forest soil established on the same soil type (Vertisol). Reflecting on the major study results, it can be stated that the selected method combination is a way forward to a more detailed and efficient way to evaluate the suitability of a specific site for reforestation. The results of this study provide insights into where and when during soil and vegetation measurements a high measurement accuracy is required to minimize uncertainties in SVAT modeling.:I. Development of method combination for site evaluation for reforestations in data-scarce regions .... 23
2. Motivation, objectives and study approach .... 24
2.1. Introduction and study motivation .... 24
2.1.1. Research objectives and hypotheses ..... 27
2.1.2. Study approach ..... 28
3. Site selection and characterization procedure .... 32
3.1. On large scale – landscape segmentation .... 32
3.2. On local scale - case study site selection and characterization .... 34
3.2.1. Available data and characterization of identified case study site .... 34
3.2.2. Spatial distribution of soil properties - soil structure, bulk density and porosity .... 37
4. Eco-hydrological modeling - deriving plant-physiological model parameters .... 50
4.1. Introduction .... 50
4.2. Motivation and objectives ..... 52
4.3. Methods ... 53
4.3.1. Design of greenhouse experiment .... 53
4.3.2. Derivation of climate time-series .... 56
4.3.3. Plant variables and response to water availability .... 59
4.4. Results and discussion .... 62
4.4.1. Soil sample analysis .... 62
4.4.2. Measured time-series .... 63
4.4.3. Plant response to drought stress ..... 67
4.4.4. Water balance approach and estimated time-series of plant transpiration .... 71
4.4.5. Derived SVAT model plant input parameter .... 73
5. Near-surface geophysics .... 75
5.1. Vis-NIR spectroscopy of soils .... 76
5.1.1. Methods and materials .... 77
5.1.2. Results and discussion .... 79
5.2. Geoelectrics ..... 88
5.2.1. Methods and materials .... 89
5.2.2. Results and discussion .... 94
6. Remote sensing of vegetation .... 102
6.1. Introduction .... 102
6.2. Methods and materials .... 103
6.2.1. RapidEye images and ATCOR description .... 103
6.2.2. Satellite image preparation and atmospheric correction .... 104
6.2.3. LAI field measurement and computation of vegetation indices .... 105
6.2.4. Establishment of empirical LAI retrieval model .... 106
6.3. Results and discussion .... 108
6.3.1. Vegetation index ranking .... 108
II. Uncertainty analysis of model input parameters from geophysical data .... 110
7. Deriving soil properties - vis-NIR spectroscopy technique .... 111
7.1. Motivation .... 111
7.2. Materials and methods .... 113
7.2.1. Study sites .... 113
7.2.2. Samples used for uncertainty analysis .... 114
7.2.3. Vis-NIR spectral measurement, chemometric spectral data transformation and spectroscopic modeling .... 116
7.2.4. Assessment statistics .... 118
7.2.5. Inter-instrument calibration model transferability for soil monitoring .... 119
7.2.6. Analysis of SVAT model sensitivity to soil texture .... 121
7.3. Results and discussion .... 124
7.3.1. Effect of pre-processing transformation methods on prediction accuracy .... 124
7.3.2. Effect of spectral resampling .... 125
7.3.3. Accuracy of soil property prediction .... 127
7.3.4. Spectrometer comparison .... 133
7.3.5. Inter-instrument transferability .... 134
7.3.6. Precision of spectroscopic predictions in the context of SVAT modeling ....139
7.4. Conclusion .... 146
8. Deriving vegetation properties - remote sensing techniques .... 149
8.1. Motivation .... 149
8.2. Materials and methods .... 150
8.2.1. Study site .... 150
8.2.2. RapidEye images .... 150
8.2.3. Satellite image preparation .... 152
8.2.4. Atmospheric correction with parameter variation .... 152
8.2.5. Investigation of two successive images .... 154
8.2.6. LAI field measurement and computation of vegetation indices .... 155
8.2.7. Establishment of empirical LAI retrieval model .... 155
8.2.8. Sensitivity of SVAT model to LAI uncertainty .... 157
8.3. Results and discussion .... 157
8.3.1. Influence of atmospheric correction on RapidEye bands .... 158
8.3.2. Uncertainty of LAI field measurements and empirical relationship .... 161
8.3.3. Influence of ATCOR parameterization on LAI estimation .... 161
8.3.4. LAI variability within one image .... 167
8.3.5. LAI differences within the overlapping area of successive images recorded on the same date .... 171
8.3.6. Evaluation of LAI uncertainty in context of SVAT modeling ... 174
8.4. Conclusion .... 176
III. Synthesis .... 178
9. Summary of results and conclusions .... 179
10. Perspectives .... 185 / Umfangreiche Abholzungen, besonders in den (Sub-)Tropen, habe zu intensiver Bodendegradierung und Erosion mit einhergehendem Verlust der Bodenfruchtbarkeit geführt. Eine wirksame Maßnahme zur Vermeidung fortschreitender Bodendegradierung und Erosion sind Aufforstungen auf diesen Flächen, die bisweilen zu einer verbesserten Bodenqualität führen können. Eine Umwandlung von Grünland zu Wald kann jedoch einen entscheidenden Einfluss auf den Wasserhaushalt haben. Selbst unter humid-tropischen Klimabedingungen, wo Wasser in der Regel kein begrenzender Faktor ist, können sich Aufforstungen negativ auf die Wasserverfügbarkeit auswirken.
In diesem Zusammenhang muss auch berücksichtigt werden, dass Klimamodelle eine Abnahme der Niederschläge in einigen dieser Regionen prognostizieren. Um die Probleme, die mit dem Klimawandel in Verbindung stehen zu mildern (z.B. Zunahme von Erosion und Dürreperioden), wurden und werden bereits umfangreiche Aufforstungsmaßnahmen durchgeführt. Viele dieser Maßnahmen waren nicht immer umfassend erfolgreich, weil die Umgebungsbedingungen sowie die pflanzenspezifischen Anforderungen nicht angemessen berücksichtigt wurden. Dies liegt häufig an der schlechten Datengrundlage sowie an den in vielen Entwicklungs- und Schwellenländern begrenzter verfügbarer finanzieller Mittel. Aus diesem Grund werden innovative Ansätze benötigt, die in der Lage sind quasi-kontinuierlich und kostengünstig die Standortbedingungen zu erfassen und zu bewerten.
Gleichzeitig sollte eine Überwachung der Wiederaufforstungsmaßnahme erfolgen, um deren Erfolg zu bewerten und potentielle negative Effekte (z.B. Wasserknappheit) zu erkennen und diesen entgegenzuwirken bzw. reduzieren zu können. Um zu vermeiden, dass Wiederaufforstungen fehlschlagen oder negative Auswirkungen auf die Ökosystemdienstleistungen haben, ist es entscheidend, Kenntnisse vom tatsächlichen Wasserhaushalt des Ökosystems zu erhalten und Änderungen des Wasserhaushalts durch Wiederaufforstungen vorhersagen zu können. Die Ermittlung und Vorhersage von Wasserhaushaltsänderungen infolge einer Aufforstung unter Berücksichtigung des Klimawandels erfordert die Berücksichtigung komplex-verzahnter Rückkopplungsprozesse im Boden-Vegetations-Atmosphären Kontinuum. Hydrologische Modelle, die explizit den Einfluss der Vegetation auf den Wasserhaushalt untersuchen sind Soil-Vegetation-Atmosphere-Transfer (SVAT) Modelle.
Die vorliegende Studie verfolgte zwei Hauptziele: (i) die Entwicklung und Erprobung einer Methodenkombination zur Standortbewertung unter Datenknappheit (d.h. Grundanforderung des Ansatzes) (Teil I) und (ii) die Untersuchung des Einflusses der mit geophysikalischen Methoden vorhergesagten SVAT-Modeleingangsparameter (d.h. Vorhersageunsicherheiten) auf die Modellierung (Teil II).
Eine Wasserhaushaltsmodellierung wurde in den Mittelpunkt der Methodenkombination gesetzt. In dieser Studie wurde das 1D SVAT Model CoupModel verwendet. CoupModel benötigen detaillierte räumliche Bodeninformationen (i) zur Modellparametrisierung, (ii) zum Hochskalierung von Modellergebnissen unter Berücksichtigung lokaler und regionaler Bodenheterogenität, und (iii) zur Beobachtung (Monitoring) der zeitlichen Veränderungen des Bodens und der Vegetation. Traditionelle Ansätze zur Messung von Boden- und Vegetationseigenschaften und deren Monitoring sind jedoch zeitaufwendig, teuer und beschränken sich daher oft auf Punktinformationen.
Ein vielversprechender Ansatz zur Überwindung der räumlichen Einschränkung sind die Nutzung geophysikalischer Methoden. Aus diesem Grund wurden vis-NIR Spektroskopie (sichtbarer bis nah-infraroter Wellenlängenbereich) zur quasi-kontinuierlichen Messung von physikalischer und chemischer Bodeneigenschaften und Satelliten-basierte Fernerkundung zur Ableitung von Vegetationscharakteristika (d.h. Blattflächenindex (BFI)) eingesetzt. Da die mit geophysikalisch hergeleiteten Bodenparameter (hier Bodenart) und Pflanzenparameter zur Parametrisierung eines SVAT Models verwendet werden können, wurde die gesamte Prozessierungskette und die damit verbundenen Unsicherheiten und deren potentiellen Auswirkungen auf die Wasserhaushaltsmodellierung mit CoupModel untersucht. Ein Gewächshausexperiment mit Bambuspflanzen wurde durchgeführt, um die zur CoupModel Parametrisierung notwendigen pflanzenphysio- logischen Parameter zu bestimmen. Geoelektrik wurde eingesetzt, um die Bodenschichtung der Untersuchungsfläche zu untersuchen und ein repräsentatives Bodenprofil zur Modellierung zu definieren.
Die Bodenstruktur wurde unter Verwendung einer Bildanalysetechnik ausgewertet, die die qualitativen Bewertung und Vergleichbarkeit struktureller Merkmale ermöglicht. Um den Anforderungen des gewählten Standortbewertungsansatzes gerecht zu werden, wurde die Methodik auf einem Standort mit einer Bambusplantage und einem Sekundärregenwald (als Referenzfläche) in NO-Brasilien (d.h. geringe Datenverfügbarkeit) entwickelt und getestet. Das Ziel dieser Arbeit war jedoch nicht die Modellierung dieses konkreten Standortes, sondern die Bewertung der Eignung des gewählten Methodenansatzes zur Standortbewertung für Aufforstungen und deren zeitliche Beobachtung, als auch die Bewertung des Einfluss von Aufforstungen auf den Wasserhaushalt und die Bodenqualität.
Die Ergebnisse (Teil III) verdeutlichen, dass es notwendig ist, sich den potentiellen Einfluss der Messunsicherheiten der SVAT Modelleingangsparameter auf die Modellierung bewusst zu sein. Beispielsweise zeigte sich, dass die Vorhersageunsicherheiten der Bodentextur und des BFI einen bedeutenden Einfluss auf die Wasserhaushaltsmodellierung mit CoupModel hatte. Die Arbeit zeigt weiterhin, dass vis-NIR Spektroskopie zur schnellen und kostengünstigen Messung, Kartierung und Überwachung boden-physikalischer (Bodenart) und -chemischer (N, TOC, TIC, TC) Eigenschaften geeignet ist. Die Qualität der Bodenvorhersage hängt vom Instrument (z.B. Sensorauflösung), den Probeneigenschaften (z.B. chemische Zusammensetzung) und den Standortmerkmalen (z.B. Klima) ab.
Die Sensitivitätsanalyse mit CoupModel zeigte, dass der Einfluss der spektralen Bodenartvorhersageunsicherheiten auf den mit CoupModel simulierten Oberflächenabfluss, Evaporation, Transpiration und Evapotranspiration ebenfalls von den Standortbedingungen (z.B. Klima, Bodentyp) abhängt. Aus diesem Grund wird empfohlen eine SVAT Model Sensitivitätsanalyse vor der spektroskopischen Feldmessung von Bodenparametern durchzuführen, um die Standort-spezifischen Boden- und Klimabedingungen angemessen zu berücksichtigen. Die Anfertigung einer Bodenkarte unter Verwendung von Kriging führte zu schlechten Interpolationsergebnissen in Folge der Aufsummierung von Mess- und Schätzunsicherheiten (d.h. bei spektroskopischer Feldmessung, Kriging-Fehler) und der kleinskaligen Bodenheterogenität. Anhand des gewählten Bodenbewertungsansatzes (vis-NIR Spektroskopie, Strukturvergleich mit Bildanalysetechnik, traditionelle Laboranalysen) konnte gezeigt werden, dass es bei gleichem Bodentyp (Vertisol) signifikante Unterschiede zwischen den Böden unter Bambus und Sekundärwald gibt.
Anhand der wichtigsten Ergebnisse kann festgehalten werden, dass die gewählte Methodenkombination zur detailreicheren und effizienteren Standortuntersuchung und -bewertung für Aufforstungen beitragen kann. Die Ergebnisse dieser Studie geben einen Einblick darauf, wo und wann bei Boden- und Vegetationsmessungen eine besonders hohe Messgenauigkeit erforderlich ist, um Unsicherheiten bei der SVAT Modellierung zu minimieren.:I. Development of method combination for site evaluation for reforestations in data-scarce regions .... 23
2. Motivation, objectives and study approach .... 24
2.1. Introduction and study motivation .... 24
2.1.1. Research objectives and hypotheses ..... 27
2.1.2. Study approach ..... 28
3. Site selection and characterization procedure .... 32
3.1. On large scale – landscape segmentation .... 32
3.2. On local scale - case study site selection and characterization .... 34
3.2.1. Available data and characterization of identified case study site .... 34
3.2.2. Spatial distribution of soil properties - soil structure, bulk density and porosity .... 37
4. Eco-hydrological modeling - deriving plant-physiological model parameters .... 50
4.1. Introduction .... 50
4.2. Motivation and objectives ..... 52
4.3. Methods ... 53
4.3.1. Design of greenhouse experiment .... 53
4.3.2. Derivation of climate time-series .... 56
4.3.3. Plant variables and response to water availability .... 59
4.4. Results and discussion .... 62
4.4.1. Soil sample analysis .... 62
4.4.2. Measured time-series .... 63
4.4.3. Plant response to drought stress ..... 67
4.4.4. Water balance approach and estimated time-series of plant transpiration .... 71
4.4.5. Derived SVAT model plant input parameter .... 73
5. Near-surface geophysics .... 75
5.1. Vis-NIR spectroscopy of soils .... 76
5.1.1. Methods and materials .... 77
5.1.2. Results and discussion .... 79
5.2. Geoelectrics ..... 88
5.2.1. Methods and materials .... 89
5.2.2. Results and discussion .... 94
6. Remote sensing of vegetation .... 102
6.1. Introduction .... 102
6.2. Methods and materials .... 103
6.2.1. RapidEye images and ATCOR description .... 103
6.2.2. Satellite image preparation and atmospheric correction .... 104
6.2.3. LAI field measurement and computation of vegetation indices .... 105
6.2.4. Establishment of empirical LAI retrieval model .... 106
6.3. Results and discussion .... 108
6.3.1. Vegetation index ranking .... 108
II. Uncertainty analysis of model input parameters from geophysical data .... 110
7. Deriving soil properties - vis-NIR spectroscopy technique .... 111
7.1. Motivation .... 111
7.2. Materials and methods .... 113
7.2.1. Study sites .... 113
7.2.2. Samples used for uncertainty analysis .... 114
7.2.3. Vis-NIR spectral measurement, chemometric spectral data transformation and spectroscopic modeling .... 116
7.2.4. Assessment statistics .... 118
7.2.5. Inter-instrument calibration model transferability for soil monitoring .... 119
7.2.6. Analysis of SVAT model sensitivity to soil texture .... 121
7.3. Results and discussion .... 124
7.3.1. Effect of pre-processing transformation methods on prediction accuracy .... 124
7.3.2. Effect of spectral resampling .... 125
7.3.3. Accuracy of soil property prediction .... 127
7.3.4. Spectrometer comparison .... 133
7.3.5. Inter-instrument transferability .... 134
7.3.6. Precision of spectroscopic predictions in the context of SVAT modeling ....139
7.4. Conclusion .... 146
8. Deriving vegetation properties - remote sensing techniques .... 149
8.1. Motivation .... 149
8.2. Materials and methods .... 150
8.2.1. Study site .... 150
8.2.2. RapidEye images .... 150
8.2.3. Satellite image preparation .... 152
8.2.4. Atmospheric correction with parameter variation .... 152
8.2.5. Investigation of two successive images .... 154
8.2.6. LAI field measurement and computation of vegetation indices .... 155
8.2.7. Establishment of empirical LAI retrieval model .... 155
8.2.8. Sensitivity of SVAT model to LAI uncertainty .... 157
8.3. Results and discussion .... 157
8.3.1. Influence of atmospheric correction on RapidEye bands .... 158
8.3.2. Uncertainty of LAI field measurements and empirical relationship .... 161
8.3.3. Influence of ATCOR parameterization on LAI estimation .... 161
8.3.4. LAI variability within one image .... 167
8.3.5. LAI differences within the overlapping area of successive images recorded on the same date .... 171
8.3.6. Evaluation of LAI uncertainty in context of SVAT modeling ... 174
8.4. Conclusion .... 176
III. Synthesis .... 178
9. Summary of results and conclusions .... 179
10. Perspectives .... 185 / Extensos desmatamentos que estão sendo feitos especialmente nos trópicos e sub-trópicos resultam em uma intensa degradação do solo e num aumento da erosão gerando assim uma redução na sua fertilidade. Reflorestamentos ou plantações nestas áreas degradadas podem ser medidas eficazes para atenuar esses problemas e levar a uma melhoria da qualidade do mesmo. No entanto, uma mudança no uso da terra, por exemplo de pastagem para floresta pode ter um impacto crucial no balanço hídrico e isso pode afetar a disponibilidade de água, mesmo sob condições de clima tropical úmido, onde a água normalmente não é um fator limitante. Devemos levar também em consideração que de acordo com projeções de mudanças climáticas, as precipitações em algumas dessas regiões também diminuirão agravando assim, ainda mais o quadro apresentado. Para mitigar esses problemas relacionados com as alterações climáticas, reflorestamentos são frequentemente realizados mas raramente são bem-sucedidos, pois condições ambientais como os requisitos específicos de cada espécie de planta, não são devidamente levados em consideração. Isso é muitas vezes devido, não só pela falta de dados, como também por recursos financeiros limitados, que são problemas comuns em regiões tropicais.
Por esses motivos, são necessárias abordagens inovadoras que devam ser capazes de medir as condições ambientais quase continuamente e de maneira rentável. Simultaneamente com o reflorestamento, deve ser feita uma monitoração a fim de avaliar o sucesso da atividade e para prevenir, ou pelo menos, reduzir os problemas potenciais associados com o mesmo (por exemplo, a escassez de água). Para se evitar falhas e reduzir implicações negativas sobre os ecossistemas, é crucial obter percepções sobre o real balanço hídrico e as mudanças que seriam geradas por esse reflorestamento. Por este motivo, esta tese teve como objetivo desenvolver e testar uma combinação de métodos para avaliação de áreas adequadas para reflorestamento. Com esse intuito, foi colocada no centro da abordagem de avaliação a modelagem do balanço hídrico local, que permite a identificação e estimação de possíveis alterações causadas pelo reflorestamento sob mudança climática considerando o sistema complexo de realimentação e a interação de processos do continuum solo-vegetação-atmosfera. Esses modelos hidrológicos que investigam explicitamente a influência da vegetação no equilíbrio da água são conhecidos como modelos Solo-Vegetação-Atmosfera (SVAT).
Esta pesquisa focou em dois objetivos principais: (i) desenvolvimento e teste de uma combinação de métodos para avaliação de áreas que sofrem com a escassez de dados (pré-requisito do estudo) (Parte I), e (ii) a investigação das consequências da incerteza nos parâmetros de entrada do modelo SVAT, provenientes de dados geofísicos, para modelagem hídrica (Parte II). A fim de satisfazer esses objetivos, o estudo foi feito no nordeste brasileiro,por representar uma área de grande escassez de dados, utilizando como base uma plantação de bambu e uma área de floresta secundária. Uma modelagem do balanço hídrico foi disposta no centro da metodologia para a avaliação de áreas. Este estudo utilizou o CoupModel que é um modelo SVAT unidimensional e que requer informações espaciais detalhadas do solo para (i) a parametrização do modelo, (ii) aumento da escala dos resultados da modelagem, considerando a heterogeneidade do solo de escala local para regional e (iii) o monitoramento de mudanças nas propriedades do solo e características da vegetação ao longo do tempo. Entretanto, as abordagens tradicionais para amostragem de solo e de vegetação e o monitoramento são demorados e caros e portanto muitas vezes limitadas a informações pontuais.
Por esta razão, métodos geofísicos como a espectroscopia visível e infravermelho próximo (vis-NIR) e sensoriamento remoto foram utilizados respectivamente para a medição de propriedades físicas e químicas do solo e para derivar as características da vegetação baseado no índice da área foliar (IAF). Como as propriedades estimadas de solo (principalmente a textura) poderiam ser usadas para parametrizar um modelo SVAT, este estudo investigou toda a cadeia de processamento e as incertezas de previsão relacionadas à textura de solo e ao IAF. Além disso explorou o impacto destas incertezas criadas sobre a previsão do balanço hídrico simulado por CoupModel. O método geoelétrico foi aplicado para investigar a estratificação do solo visando a determinação de um perfil representante. Já a sua estrutura foi explorada usando uma técnica de análise de imagens que permitiu a avaliação quantitativa e a comparabilidade dos aspectos estruturais. Um experimento realizado em uma estufa com plantas de bambu (Bambusa vulgaris) foi criado a fim de determinar as caraterísticas fisiológicas desta espécie que posteriormente seriam utilizadas como parâmetros para o CoupModel.
Os resultados do estudo (Parte III) destacam que é preciso estar consciente das incertezas relacionadas à medição de parâmetros de entrada do modelo SVAT. A incerteza presente em alguns parâmetros de entrada como por exemplo, textura de solo e o IAF influencia significantemente a modelagem do balanço hídrico. Mesmo assim, esta pesquisa indica que vis-NIR espectroscopia é um método rápido e economicamente viável para medir, mapear e monitorar as propriedades físicas (textura) e químicas (N, TOC, TIC, TC) do solo. A precisão da previsão dessas propriedades depende do tipo de instrumento (por exemplo da resolução do sensor), da propriedade da amostra (a composição química por exemplo) e das características das condições climáticas da área. Os resultados apontam também que a sensitividade do CoupModel à incerteza da previsão da textura de solo em respeito ao escoamento superficial, transpiração, evaporação, evapotranspiração e ao conteúdo de água no solo depende das condições gerais da área (por exemplo condições climáticas e tipo de solo).
Por isso, é recomendado realizar uma análise de sensitividade do modelo SVAT prior a medição espectral do solo no campo, para poder considerar adequadamente as condições especificas do área em relação ao clima e ao solo. Além disso, o mapeamento de propriedades de solo previstas pela espectroscopia usando o kriging, resultou em interpolações de baixa qualidade (variogramas fracos) como consequência da acumulação de incertezas surgidas desde a medição no campo até o seu mapeamento (ou seja, previsão do solo via espectroscopia, erro do kriging) e heterogeneidade especifica de uma pequena escala. Osmétodos selecionados para avaliação das áreas (vis-NIR espectroscopia, comparação da estrutura de solo por meio de análise de imagens, análise de laboratório tradicionais) revelou a existência de diferenças significativas entre o solo sob bambu e o sob floresta secundária, apesar de ambas terem sido estabelecidas no mesmo tipo de solo (vertissolo). Refletindo sobre os principais resultados do estudo, pode-se afirmar que a combinação dos métodos escolhidos e aplicados representam uma forma mais detalhada e eficaz de avaliar se uma determinada área é adequada para ser reflorestada. Os resultados apresentados fornecem percepções sobre onde e quando, durante a medição do solo e da vegetação, é necessário se ter uma precisão mais alta a fim de minimizar incertezas potenciais na modelagem com o modelo SVAT.:I. Development of method combination for site evaluation for reforestations in data-scarce regions .... 23
2. Motivation, objectives and study approach .... 24
2.1. Introduction and study motivation .... 24
2.1.1. Research objectives and hypotheses ..... 27
2.1.2. Study approach ..... 28
3. Site selection and characterization procedure .... 32
3.1. On large scale – landscape segmentation .... 32
3.2. On local scale - case study site selection and characterization .... 34
3.2.1. Available data and characterization of identified case study site .... 34
3.2.2. Spatial distribution of soil properties - soil structure, bulk density and porosity .... 37
4. Eco-hydrological modeling - deriving plant-physiological model parameters .... 50
4.1. Introduction .... 50
4.2. Motivation and objectives ..... 52
4.3. Methods ... 53
4.3.1. Design of greenhouse experiment .... 53
4.3.2. Derivation of climate time-series .... 56
4.3.3. Plant variables and response to water availability .... 59
4.4. Results and discussion .... 62
4.4.1. Soil sample analysis .... 62
4.4.2. Measured time-series .... 63
4.4.3. Plant response to drought stress ..... 67
4.4.4. Water balance approach and estimated time-series of plant transpiration .... 71
4.4.5. Derived SVAT model plant input parameter .... 73
5. Near-surface geophysics .... 75
5.1. Vis-NIR spectroscopy of soils .... 76
5.1.1. Methods and materials .... 77
5.1.2. Results and discussion .... 79
5.2. Geoelectrics ..... 88
5.2.1. Methods and materials .... 89
5.2.2. Results and discussion .... 94
6. Remote sensing of vegetation .... 102
6.1. Introduction .... 102
6.2. Methods and materials .... 103
6.2.1. RapidEye images and ATCOR description .... 103
6.2.2. Satellite image preparation and atmospheric correction .... 104
6.2.3. LAI field measurement and computation of vegetation indices .... 105
6.2.4. Establishment of empirical LAI retrieval model .... 106
6.3. Results and discussion .... 108
6.3.1. Vegetation index ranking .... 108
II. Uncertainty analysis of model input parameters from geophysical data .... 110
7. Deriving soil properties - vis-NIR spectroscopy technique .... 111
7.1. Motivation .... 111
7.2. Materials and methods .... 113
7.2.1. Study sites .... 113
7.2.2. Samples used for uncertainty analysis .... 114
7.2.3. Vis-NIR spectral measurement, chemometric spectral data transformation and spectroscopic modeling .... 116
7.2.4. Assessment statistics .... 118
7.2.5. Inter-instrument calibration model transferability for soil monitoring .... 119
7.2.6. Analysis of SVAT model sensitivity to soil texture .... 121
7.3. Results and discussion .... 124
7.3.1. Effect of pre-processing transformation methods on prediction accuracy .... 124
7.3.2. Effect of spectral resampling .... 125
7.3.3. Accuracy of soil property prediction .... 127
7.3.4. Spectrometer comparison .... 133
7.3.5. Inter-instrument transferability .... 134
7.3.6. Precision of spectroscopic predictions in the context of SVAT modeling ....139
7.4. Conclusion .... 146
8. Deriving vegetation properties - remote sensing techniques .... 149
8.1. Motivation .... 149
8.2. Materials and methods .... 150
8.2.1. Study site .... 150
8.2.2. RapidEye images .... 150
8.2.3. Satellite image preparation .... 152
8.2.4. Atmospheric correction with parameter variation .... 152
8.2.5. Investigation of two successive images .... 154
8.2.6. LAI field measurement and computation of vegetation indices .... 155
8.2.7. Establishment of empirical LAI retrieval model .... 155
8.2.8. Sensitivity of SVAT model to LAI uncertainty .... 157
8.3. Results and discussion .... 157
8.3.1. Influence of atmospheric correction on RapidEye bands .... 158
8.3.2. Uncertainty of LAI field measurements and empirical relationship .... 161
8.3.3. Influence of ATCOR parameterization on LAI estimation .... 161
8.3.4. LAI variability within one image .... 167
8.3.5. LAI differences within the overlapping area of successive images recorded on the same date .... 171
8.3.6. Evaluation of LAI uncertainty in context of SVAT modeling ... 174
8.4. Conclusion .... 176
III. Synthesis .... 178
9. Summary of results and conclusions .... 179
10. Perspectives .... 185
|
873 |
Modelling, simulation and control of the filtration process in a submerged anaerobic membrane bioreactor treating urban wastewaterRobles Martínez, Ángel 28 November 2013 (has links)
El reactor anaerobio de membranas sumergidas (SAnMBR) está considerado como tecnología
candidata para mejorar la sostenibilidad en el sector de la depuración de aguas residuales,
ampliando la aplicabilidad de la biotecnología anaerobia al tratamiento de aguas residuales de
baja carga (v.g. agua residual urbana) o a condiciones medioambientales extremas (v.g. bajas
temperaturas de operación). Esta tecnología alternativa de tratamiento de aguas residuales es
más sostenible que las tecnologías aerobias actuales ya que el agua residual se transforma en
una fuente renovable de energía y nutrientes, proporcionando además un recurso de agua
reutilizable. SAnMBR no sólo presenta las principales ventajas de los reactores de membranas
(i.e. efluente de alta calidad, y pocas necesidades de espacio), sino que también presenta las
principales ventajas de los procesos anaerobios. En este sentido, la tecnología SAnMBR
presenta una baja producción de fangos debido a la baja tasa de crecimiento de los
microorganismos implicados en la degradación de la materia orgánica, presenta una baja
demanda energética debido a la ausencia de aireación, y permite la generación de metano, el
cual representa una fuente de energía renovable que mejora el balance energético neto del
sistema. Cabe destacar el potencial de recuperación de nutrientes del agua residual bien cuando
el efluente es destinado a irrigación directamente, o bien cuando debe ser tratado previamente
mediante tecnologías de recuperación de nutrientes.
El objetivo principal de esta tesis doctoral es evaluar la viabilidad de la tecnología SAnMBR
como núcleo en el tratamiento de aguas residuales urbanas a temperatura ambiente. Por lo tanto,
esta tesis se centra en las siguientes tareas: (1) implementación, calibración y puesta en marcha
del sistema de instrumentación, control y automatización requerido; (2) identificación de los
parámetros de operación clave que afectan al proceso de filtración; (3) modelación y simulación
del proceso de filtración; y (4) desarrollo de estrategias de control para la optimización del
proceso de filtración minimizando los costes de operación.
En este trabajo de investigación se propone un sistema de instrumentación, control y
automatización para SAnMBR, el cual fue esencial para alcanzar un comportamiento adecuado
y estable del sistema frente a posibles perturbaciones. El comportamiento de las membranas fue
comparable a sistemas MBR aerobios a escala industrial. Tras más de dos años de operación
ininterrumpida, no se detectaron problemas significativos asociados al ensuciamiento
irreversible de las membranas, incluso operando a elevadas concentraciones de sólidos en el
licor mezcla (valores de hasta 25 g·L-1
). En este trabajo se presenta un modelo de filtración
(basado en el modelo de resistencias en serie) que permitió simular de forma adecuada el proceso de filtración. Por otra parte, se propone un control supervisor basado en un sistema
experto que consiguió reducir el consumo energético asociado a la limpieza física de las
membranas, un bajo porcentaje de tiempo destinado a la limpieza física respecto al total de
operación, y, en general, un menor coste operacional del proceso de filtración.
Esta tesis doctoral está integrada en un proyecto nacional de investigación, subvencionado por
el Ministerio de Ciencia e Innovación (MICINN), con título ¿Modelación de la aplicación de la
tecnología de membranas para la valorización energética de la materia orgánica del agua
residual y la minimización de los fangos producidos¿ (MICINN, proyecto CTM2008-06809-
C02-01/02). Para obtener resultados representativos que puedan ser extrapolados a plantas
reales, esta tesis doctoral se ha llevado a cabo utilizando un sistema SAnMBR que incorpora
módulos comerciales de membrana de fibra hueca. Además, esta planta es alimentada con el
efluente del pre-tratamiento de la EDAR del Barranco del Carraixet (Valencia, España). / Robles Martínez, Á. (2013). Modelling, simulation and control of the filtration process in a submerged anaerobic membrane bioreactor treating urban wastewater [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34102 / Premios Extraordinarios de tesis doctorales
|
874 |
From impact to resource / case studies of bioenergy, biomaterials and associated carbon for climate change mitigationHansen, Anja 17 May 2017 (has links)
Energie und Rohstoffe auf Basis von Biomasse gelten als wichtiger Beitrag, um den anthropogen begründeten Klimawandel zu mindern. Diese publikationsbasierte Arbeit analysiert, inwiefern Aussagen über Vorzüglichkeit von Biomassenutzung im direkten Vergleich oder auch in komplexeren wirtschaftlichen Nutzungssystemen durch Unsicherheiten in den Treibhausgasemissionen (THG) oder durch die Anwendung der Bewertungsmethodik beeinflusst werden. Eine Fallstudie zur stationären Biostromerzeugung aus der Vergasung von Pappelhackschnitzeln zeigte mittels Monte-Carlo-Analyse, dass dieser Biostrom trotz Unsicherheiten weniger THG emittiert bzw. sogar Kohlendioxid sequestrieren könnte. Die zweite Fallstudie analysierte Biomassenutzung im Systemzusammenhang. Sie bezog neben THG-Emissionen als Bewertungskriterien sowohl den Bedarf an Agrarfläche als auch an fossilen Ressourcen mit ein. Für das Beispiel der Häuserdämmung mittels Hanffasern oder Styropor konnte aus den drei Kriterien auch unter Berücksichtigung mehrerer Szenarien keine eindeutige Vorzugslösung der Biomassenutzung abgeleitet werden. Basierend auf dem Produktivitätskonzept stellt der dritte Beitrag mit CUDe (Carbon Utilization Degree) einen Ansatz vor, wie die Nutzungseffizienz des in der Biomasse bereitgestellten Kohlenstoffs bewertet werden könnte. THG-Minderungsrechnungen erfordern eine fundierte Kenntnis der Methode als auch des Produktionssystems in seinem regionalen Kontext. Als Landnutzungseffekte sollten neben Änderungen im Bodenkohlenstoffgehalt auch Unterschiede in Lachgas-Hintergrundemissionen von annuellen gegenüber mehrjährigen Kulturen berücksichtigt werden. Trade-Offs sprechen dafür, Biomassenutzungssysteme nicht nur hinsichtlich Klimawirksamkeit zu optimieren. Ergänzend könnte Kohlenstoff auch als Ressource betrachtet und mit Effizienzkriterien bewertet werden. Biomassenutzung ließe sich so optimieren, dass gemeinsam mit Klimaschutz weitere aktuelle Handlungsfelder adressiert werden. / Biomass-based energy and materials are considered important for the mitigation of human-induced climate change and as relevant bioeconomic feedstock. This publication-based dissertation aims to contribute to the discussion about the reliability of mitigation assessment of biomass applications in an increasingly bio-based, low-carbon economy that also fulfils sustainability constraints of resource conservation. It analysed how preference of biomass use in direct comparison as well as in larger economic context is affected by single uncertainties as well as by mitigation calculation methods. A case study on stationary bioelectricity generation from poplar wood chip gasification with a Monte Carlo approach showed that such bioelectricity could emit less greenhouse gases (GHG) or even sequester carbon despite existing uncertainties. The second case study analysed biomass use in a systemic context. Besides GHG emissions also resource demand of cropland and fossil fuels were used to assess two strategies to isolate buildings. From the three criteria, none of the strategies would clearly be preferred. The third case study presented an approach to assess the efficiency of biomass carbon use (CUDe; Carbon Utilization Degree) and applied it exemplarily to a biogas and a hemp insulation system. GHG mitigation analyses of biomass use must be performed with profound knowledge of the methodology and the biomass system in its regional context. In land use change assessment, emissions resulting from deviating nitrous oxide baselines from annual and perennial crops should be considered in addition to carbon stock changes. Optimization of biomass applications only with respect to GHG emissions (or other single criteria) might overlook trade-offs. However, multi-criteria analyses might yield ambiguous results. A resource-efficient viewpoint on biogenic carbon use instead of its sole GHG implications might help to foster a transformation to bio-based, low-carbon economies.
|
875 |
Modelling of input data uncertainty based on random set theory for evaluation of the financial feasibility for hydropower projects / Modellierung unscharfer Eingabeparameter zur Wirtschaftlichkeitsuntersuchung von Wasserkraftprojekten basierend auf Random Set TheorieBeisler, Matthias Werner 24 August 2011 (has links) (PDF)
The design of hydropower projects requires a comprehensive planning process in order to achieve the objective to maximise exploitation of the existing hydropower potential as well as future revenues of the plant. For this purpose and to satisfy approval requirements for a complex hydropower development, it is imperative at planning stage, that the conceptual development contemplates a wide range of influencing design factors and ensures appropriate consideration of all related aspects.
Since the majority of technical and economical parameters that are required for detailed and final design cannot be precisely determined at early planning stages, crucial design parameters such as design discharge and hydraulic head have to be examined through an extensive optimisation process.
One disadvantage inherent to commonly used deterministic analysis is the lack of objectivity for the selection of input parameters. Moreover, it cannot be ensured that the entire existing parameter ranges and all possible parameter combinations are covered.
Probabilistic methods utilise discrete probability distributions or parameter input ranges to cover the entire range of uncertainties resulting from an information deficit during the planning phase and integrate them into the optimisation by means of an alternative calculation method.
The investigated method assists with the mathematical assessment and integration of uncertainties into the rational economic appraisal of complex infrastructure projects. The assessment includes an exemplary verification to what extent the Random Set Theory can be utilised for the determination of input parameters that are relevant for the optimisation of hydropower projects and evaluates possible improvements with respect to accuracy and suitability of the calculated results. / Die Auslegung von Wasserkraftanlagen stellt einen komplexen Planungsablauf dar, mit dem Ziel das vorhandene Wasserkraftpotential möglichst vollständig zu nutzen und künftige, wirtschaftliche Erträge der Kraftanlage zu maximieren. Um dies zu erreichen und gleichzeitig die Genehmigungsfähigkeit eines komplexen Wasserkraftprojektes zu gewährleisten, besteht hierbei die zwingende Notwendigkeit eine Vielzahl für die Konzepterstellung relevanter Einflussfaktoren zu erfassen und in der Projektplanungsphase hinreichend zu berücksichtigen.
In frühen Planungsstadien kann ein Großteil der für die Detailplanung entscheidenden, technischen und wirtschaftlichen Parameter meist nicht exakt bestimmt werden, wodurch maßgebende Designparameter der Wasserkraftanlage, wie Durchfluss und Fallhöhe, einen umfangreichen Optimierungsprozess durchlaufen müssen.
Ein Nachteil gebräuchlicher, deterministischer Berechnungsansätze besteht in der zumeist unzureichenden Objektivität bei der Bestimmung der Eingangsparameter, sowie der Tatsache, dass die Erfassung der Parameter in ihrer gesamten Streubreite und sämtlichen, maßgeblichen Parameterkombinationen nicht sichergestellt werden kann.
Probabilistische Verfahren verwenden Eingangsparameter in ihrer statistischen Verteilung bzw. in Form von Bandbreiten, mit dem Ziel, Unsicherheiten, die sich aus dem in der Planungsphase unausweichlichen Informationsdefizit ergeben, durch Anwendung einer alternativen Berechnungsmethode mathematisch zu erfassen und in die Berechnung einzubeziehen.
Die untersuchte Vorgehensweise trägt dazu bei, aus einem Informationsdefizit resultierende Unschärfen bei der wirtschaftlichen Beurteilung komplexer Infrastrukturprojekte objektiv bzw. mathematisch zu erfassen und in den Planungsprozess einzubeziehen. Es erfolgt eine Beurteilung und beispielhafte Überprüfung, inwiefern die Random Set Methode bei Bestimmung der für den Optimierungsprozess von Wasserkraftanlagen relevanten Eingangsgrößen Anwendung finden kann und in wieweit sich hieraus Verbesserungen hinsichtlich Genauigkeit und Aussagekraft der Berechnungsergebnisse ergeben.
|
876 |
Modelling of input data uncertainty based on random set theory for evaluation of the financial feasibility for hydropower projectsBeisler, Matthias Werner 25 May 2011 (has links)
The design of hydropower projects requires a comprehensive planning process in order to achieve the objective to maximise exploitation of the existing hydropower potential as well as future revenues of the plant. For this purpose and to satisfy approval requirements for a complex hydropower development, it is imperative at planning stage, that the conceptual development contemplates a wide range of influencing design factors and ensures appropriate consideration of all related aspects.
Since the majority of technical and economical parameters that are required for detailed and final design cannot be precisely determined at early planning stages, crucial design parameters such as design discharge and hydraulic head have to be examined through an extensive optimisation process.
One disadvantage inherent to commonly used deterministic analysis is the lack of objectivity for the selection of input parameters. Moreover, it cannot be ensured that the entire existing parameter ranges and all possible parameter combinations are covered.
Probabilistic methods utilise discrete probability distributions or parameter input ranges to cover the entire range of uncertainties resulting from an information deficit during the planning phase and integrate them into the optimisation by means of an alternative calculation method.
The investigated method assists with the mathematical assessment and integration of uncertainties into the rational economic appraisal of complex infrastructure projects. The assessment includes an exemplary verification to what extent the Random Set Theory can be utilised for the determination of input parameters that are relevant for the optimisation of hydropower projects and evaluates possible improvements with respect to accuracy and suitability of the calculated results. / Die Auslegung von Wasserkraftanlagen stellt einen komplexen Planungsablauf dar, mit dem Ziel das vorhandene Wasserkraftpotential möglichst vollständig zu nutzen und künftige, wirtschaftliche Erträge der Kraftanlage zu maximieren. Um dies zu erreichen und gleichzeitig die Genehmigungsfähigkeit eines komplexen Wasserkraftprojektes zu gewährleisten, besteht hierbei die zwingende Notwendigkeit eine Vielzahl für die Konzepterstellung relevanter Einflussfaktoren zu erfassen und in der Projektplanungsphase hinreichend zu berücksichtigen.
In frühen Planungsstadien kann ein Großteil der für die Detailplanung entscheidenden, technischen und wirtschaftlichen Parameter meist nicht exakt bestimmt werden, wodurch maßgebende Designparameter der Wasserkraftanlage, wie Durchfluss und Fallhöhe, einen umfangreichen Optimierungsprozess durchlaufen müssen.
Ein Nachteil gebräuchlicher, deterministischer Berechnungsansätze besteht in der zumeist unzureichenden Objektivität bei der Bestimmung der Eingangsparameter, sowie der Tatsache, dass die Erfassung der Parameter in ihrer gesamten Streubreite und sämtlichen, maßgeblichen Parameterkombinationen nicht sichergestellt werden kann.
Probabilistische Verfahren verwenden Eingangsparameter in ihrer statistischen Verteilung bzw. in Form von Bandbreiten, mit dem Ziel, Unsicherheiten, die sich aus dem in der Planungsphase unausweichlichen Informationsdefizit ergeben, durch Anwendung einer alternativen Berechnungsmethode mathematisch zu erfassen und in die Berechnung einzubeziehen.
Die untersuchte Vorgehensweise trägt dazu bei, aus einem Informationsdefizit resultierende Unschärfen bei der wirtschaftlichen Beurteilung komplexer Infrastrukturprojekte objektiv bzw. mathematisch zu erfassen und in den Planungsprozess einzubeziehen. Es erfolgt eine Beurteilung und beispielhafte Überprüfung, inwiefern die Random Set Methode bei Bestimmung der für den Optimierungsprozess von Wasserkraftanlagen relevanten Eingangsgrößen Anwendung finden kann und in wieweit sich hieraus Verbesserungen hinsichtlich Genauigkeit und Aussagekraft der Berechnungsergebnisse ergeben.
|
877 |
Temporal Variations in the Compliance of Gas Hydrate FormationsRoach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time.
A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.
|
878 |
Temporal Variations in the Compliance of Gas Hydrate FormationsRoach, Lisa Aretha Nyala 20 March 2014 (has links)
Seafloor compliance is a non-intrusive geophysical method sensitive to the shear modulus of the sediments below the seafloor. A compliance analysis requires the computation of the frequency dependent transfer function between the vertical stress, produced at the seafloor by the ultra low frequency passive source-infra-gravity waves, and the resulting displacement, related to velocity through the frequency. The displacement of the ocean floor is dependent on the elastic structure of the sediments and the compliance function is tuned to different depths, i.e., a change in the elastic parameters at a given depth is sensed by the compliance function at a particular frequency. In a gas hydrate system, the magnitude of the stiffness is a measure of the quantity of gas hydrates present. Gas hydrates contain immense stores of greenhouse gases making them relevant to climate change science, and represent an important potential alternative source of energy. Bullseye Vent is a gas hydrate system located in an area that has been intensively studied for over 2 decades and research results suggest that this system is evolving over time.
A partnership with NEPTUNE Canada allowed for the investigation of this possible evolution. This thesis describes a compliance experiment configured for NEPTUNE Canada’s seafloor observatory and its failure. It also describes the use of 203 days of simultaneously logged pressure and velocity time-series data, measured by a Scripps differential pressure gauge, and a Güralp CMG-1T broadband seismometer on NEPTUNE Canada’s seismic station, respectively, to evaluate variations in sediment stiffness near Bullseye. The evaluation resulted in a (- 4.49 x10-3± 3.52 x 10-3) % change of the transfer function of 3rd October, 2010 and represents a 2.88% decrease in the stiffness of the sediments over the period. This thesis also outlines a new algorithm for calculating the static compliance of isotropic layered sediments.
|
879 |
Utvecklingen av marknadsvärdet för svenska frekvenshållningsreserver 2024–2030 : En prognos för utvecklingen av marknadsvärdet för frekvenshållningsreserverna FCR-N, FCR-D upp och FCR-D ned på den svenska balansmarknaden mellan 2024 och 2030 / The Development of the Market Value of Swedish Frequency Containment Reserves 2024–2030 : A forecast for the development of the market value for the frequency containment reserves FCR-N, FCR-D up and FCR-D down in the Swedish balancing market between 2024 and 2030Ludvig, Aldén, Gustav, Espefält, Gabriel, Gabro January 2024 (has links)
I takt med en ökad andel variabel förnybar elproduktion i Sveriges energimix blir elnätets flexibilitet allt viktigare för att upprätthålla en stabil elförsörjning. Detta arbete undersöker framtida prognoser för priser och volymer på de svenska frekvenshållningsreserverna FCR-N, FCR-D upp och FCR-D ned fram till år 2030. Prognoser för sådan utveckling är viktiga för elmarknadens aktörer och deras beslut att investera i flexibilitetsresurser. SARIMAX-modeller utvecklades baserade på historisk data och antaganden om framtida utvecklingar, vilka i sin tur grundades på en intervju med en branschexpert samt aktuella kartläggningar och rapporter. Resultaten visar på en markant nedåtgående pristrend. För FCR-N prognostiseras priserna sjunka med 367 % från 2024 till 2030, från 29 euro/MW till 5 euro/MW. FCR-D upp förväntas följa en liknande trend med ett prisfall på 325 %, från 20 euro/MW år 2024 till 4 euro/MW år 2030. Den kraftigaste prisnedgången prognostiseras för FCR-D ned, där priserna beräknas rasa med över 1900 % under samma period - från 61 euro/MW år 2024 till endast 3 euro/MW år 2030. Vad gäller volymer visar prognoserna på en relativt stabil utveckling kring upphandlingsplanerna, med en viss ökning för FCR-D ned på 44 % från 2024 till 2030. Den pågående etableringen av batterilager förutses ha stor påverkan genom att öka konkurrensen och pressa priserna nedåt. De låga prisnivåerna 2030 kan dock göra det utmanande att motivera investeringar enbart baserat på intäkter från FCR-marknader. Vidare diskuteras modellernas begränsningar samt behovet av framtida forskning kring batteriteknik, råvaruaspekter och avancerade simuleringsmodeller för att bättre förstå marknadsdynamiken. / As the share of variable renewable electricity production increases in Sweden's energy mix, the flexibility of the power grid becomes increasingly important to maintain a stable electricity supply. This study aims to forecast prices and volumes of the Swedish frequency containment reserves FCR-N, FCR-D up, and FCR-D down until 2030. Forecasts of such developments are important for electricity market participants and their decisions to invest in flexibility resources. SARIMAX models were developed based on historical data and assumptions about future developments, which in turn were based on an interview with an industry expert as well as current reports. The results indicate a significant downward price trend. For FCR-N, prices are forecasted to decrease by 367% from 2024 to 2030, dropping from 29 euros/MW to 5 euros/MW. FCR-D up is expected to follow a similar trend with a 325% price drop, from 20 euros/MW in 2024 to 4 euros/MW in 2030. The sharpest price decline is forecasted for FCR-D down, where prices are estimated to plummet by over 1900% during the same period - from 61 euros/MW in 2024 to only 3 euros/MW in 2030. Regarding volumes, the forecasts show a relatively stable development around the procurement plans, with a certain increase for FCR-D down by 44% from 2024 to 2030. The ongoing establishment of battery storage is expected to have a major impact by increasing competition and putting downward pressure on prices. However, the low price levels in 2030 may make it challenging to justify investments based solely on revenues from FCR markets. Furthermore, the limitations of the models are discussed, as well as the need for future research on battery technology, raw material aspects, and advanced simulation models to better understand market dynamics.
|
Page generated in 0.0548 seconds