• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 28
  • 8
  • 2
  • Tagged with
  • 101
  • 57
  • 44
  • 44
  • 44
  • 36
  • 36
  • 30
  • 28
  • 23
  • 17
  • 17
  • 17
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Herstellung anwendungsbezogener SiO2-Grabenstrukturen im sub-μm-Bereich durch RIE und ICP-Prozesse.

Schäfer, Toni 15 June 2006 (has links)
Herstellung anwendungsbezogener SiO2- Grabenstrukturen im sub-μm-Bereich durch RIE und ICP-Prozesse.
92

Herstellung von GaN-Schichten mittels Hochtemperatur-Gasphasenepitaxie

Schneider, Tom 03 August 2022 (has links)
Verbindungshalbleiter mit einer großen Bandlücke wie Galliumnitrid (GaN) sind aufgrund ihrer hervorragenden elektronischen Eigenschaften für die Halbleiterindustrie von großem Interesse. Die Hochtemperatur-Gasphasenepitaxie, die auf dem physikalischen Gasphasentransport von Gallium basiert, ist eine alternative Methode der Gasphasenepitaxie von GaN. Im Mittelpunkt der vorliegenden Arbeit standen die Weiterentwicklung der Methode hinsichtlich der Verringerung der Kontamination und die Reduzierung der Versetzungsdichte in den GaN-Schichten. Dazu wurde eine neue Verdampfungszelle entwickelt und die komplexen, mehrstufigen Nukleations- und Wachstumsprozesse systematisch untersucht. Insgesamt wurden zu kommerziell verfügbaren GaN-Schichten vergleichbare Defektdichten erreicht. Zusätzlich wurde die Methode zur Abscheidung auf Saphir-Substraten mit einem Durchmesser von bis zu 2 Zoll aufskaliert.
93

Growth of carbon nanotubes on different support/catalyst systems for advanced interconnects in integrated circuits / Wachstum von Kohlenstoffnanoröhren auf verschiedenen Untergrund/Katalysator-Systemen für zukünftige Leitungsverbindungen in integrierten Schaltkreisen

Hermann, Sascha 15 November 2011 (has links) (PDF)
Since there is a continuous shrinking of feature sizes in ultra-large scale integrated (ULSI) circuits, requirements on materials and technology are going to rise dramatically in the near future. In particular, at the interconnect system this calls for new concepts and materials. Therefore, carbon nanotubes (CNTs) are considered as a promising material to replace partly or entirely metal interconnects in such devices. The present thesis aims to make a contribution to the CNT growth control with the thermal chemical vapor deposition (CVD) method and the integration of CNTs as vertical interconnects (vias) in ULSI circuits. Different support/catalyst systems are examined in processes for catalyst pretreatment and CNT growth. The investigations focus on the catalyst formation and the interactions at the interfaces. Those effects are related to the CNT growth. To get an insight into interactions at interfaces, film structure, composition, and CNT growth characteristics, samples are extensively characterized by techniques like AFM, SEM, TEM, XRD, XPS, and Raman spectroscopy. Screening studies on nanoparticle formation and CNT growth with the well known system SiO2/Ni are presented. This system is characterized by a weak support/catalyst interaction, which leads to undirected growth of multi-walled CNTs (MWCNTs). By contrast, at the Ta/Ni system a strong interaction causes a wetting of catalyst nanoparticles and vertically aligned MWCNT growth. At the system W/Ni a strong interaction at the interface is found as well, but there it induces Stranski-Krastanov catalyst film reformation upon pretreatment and complete CNT growth inhibition. Studies on the SiO2/Cr/Ni system reveal that Cr and Ni act as a bi-catalyst system, which leads to a novel nanostructure defined as interlayer CNT (ICNT) structure. The ICNT films are characterized by well crystallized vertically aligned MWCNTs, which grow out a Cr/Ni layer lifted off as a continuous and very smooth layer from the substrate with the growth. Besides, this nanostructure offers new possibilities for the integration of CNTs in different electronic applications. Based on the presented possibilities of manipulating CNT growth, an integration technology was derived to fabricate CNT vias. The technology uses a surface mediated site-selective CVD for the growth of MWCNTs in via structures. Developments are demonstrated with the fabrication of via test vehicles and the site-selective growth of MWCNTs in vias on 4 inch wafers. Furthermore, the known resistance problem of CNT vias, caused by too low CNT density, is addressed by a new approach. A CNT/metal heterostructure is considered, where the metal is implemented through atomic layer deposition (ALD). The first results of the coating of CNTs with readily reducible copper oxide nanoparticles are presented and discussed. / Aufgrund der kontinuierlichen Verkleinerung von Strukturen in extrem hoch integrierten (engl. Ultra-Large Scale Integration − ULSI) Schaltkreisen werden die Anforderungen an die Materialien und die Technologie in naher Zukunft dramatisch ansteigen. Besonders im Leitbahnsystem sind neue Materialien und Konzepte gefragt. Kohlenstoffnanoröhren (engl. Carbon Nanotubes − CNT) stellen hierbei ein vielversprechendes Material dar, um teilweise oder sogar vollständig metallische Leitbahnen zu ersetzen. Die vorliegende Arbeit liefert einen Beitrag zur CNT-Wachstumskontrolle mit der thermischen Gasphasenabscheidung (engl. Chemical Vapor Deposition − CVD) sowie der Integration von CNTs als vertikale Leitungsverbindungen (Via) in ULSI-Schaltkreisen. Verschiedene Untergrund/Katalysator-Systeme werden in Prozessen zur Katalysatorvorbehandlung sowie zum CNT-Wachstum betrachtet. Die Untersuchungen richten sich insbesondere auf die Katalysatorformierung und die Wechselwirkungen an den Grenzflächen. Diese werden mit dem CNT-Wachstum in Verbindung gebracht. Für Untersuchungen von Grenzflächeninteraktionen, Schichtstruktur, Zusammensetzung sowie CNT-Wachstumscharakteristik werden Analysen mit AFM, REM, TEM, XRD, XPS und Raman-Spektroskopie genutzt. Zunächst werden Voruntersuchungen an dem gut bekannten System SiO2/Ni zur Nanopartikelformierung und CNTWachstum vorgestellt. Dieses System ist gekennzeichnet durch eine schwache Wechselwirkung zwischen Untergrund und Katalysator sowie ungerichtetem Wachstum von mehrwandigen CNTs (MWCNTs). Im Gegensatz dazu hat bei dem System Ta/Ni eine starke Interaktion an der Grenzfläche eine Katalysatornanopartikelbenetzung und vertikales MWCNT-Wachstum zur Folge. Für das W/Ni-System gelten ebenfalls starke Interaktionen an der Grenzfläche. Bei diesem System wird allerdings eine Stranski-Krastanov-Schichtformierung des Katalysators und eine vollständige Unterbindung von CNT-Wachstum erreicht. Bei dem System SiO2/Cr/Ni agieren Cr und Ni als Bi- Katalysatorsystem. Dies führt zu einer neuartigen Nanostruktur, die als Zwischenschicht-CNT (engl. Interlayer Carbon Nanotubes − ICNTs) Struktur definiert wird. Die Schichten sind durch eine gute Qualität von gerichteten MWCNTs charakterisiert, die aus einer geschlossenen, sehr glatten und von den CNTs getragenen Cr/Ni-Schicht herauswachsen. Darüber hinaus bietet die Struktur neue Möglichkeiten für die Integration von CNTs in verschiedene elektronische Anwendungen. Auf der Grundlage der vorgestellten Manipulationsmöglichkeiten von CNT-Wachstum wurde eine Integrationstechnologie für CNTs in Vias abgeleitet. Der Ansatz ist eine oberflächeninduzierte selektive CVD von vertikal gerichteten MWCNTs in Via-Strukturen. Diese Technologie wird mit der Herstellung von einem Via-Testvehikel und dem selektiven CNT-Wachstum in Vias auf 4 Zoll Wafern demonstriert. Um das Widerstandsproblem von CNT-Vias, verursacht durch eine zu niedrige CNT-Dichte, zu reduzieren, wird eine Technologieerweiterung vorgeschlagen. Der Ansatz geht von einer CNT/Metall-Heterostruktur aus, bei der das Metall mit Hilfe der Atomlagenabscheidung (engl. Atomic Layer Deposition − ALD) implementiert wird. Es werden erste Ergebnisse zur CNT-Beschichtung mit reduzierbaren Kupferoxidnanopartikeln vorgestellt und diskutiert.
94

Shapeable microelectronics

Karnaushenko, Daniil 04 July 2016 (has links) (PDF)
This thesis addresses the development of materials, technologies and circuits applied for the fabrication of a new class of microelectronic devices that are relying on a three-dimensional shape variation namely shapeable microelectronics. Shapeable microelectronics has a far-reachable future in foreseeable applications that are dealing with arbitrarily shaped geometries, revolutionizing the field of neuronal implants and interfaces, mechanical prosthetics and regenerative medicine in general. Shapeable microelectronics can deterministically interface and stimulate delicate biological tissue mechanically or electrically. Applied in flexible and printable devices shapeable microelectronics can provide novel functionalities with unmatched mechanical and electrical performance. For the purpose of shapeable microelectronics, novel materials based on metallic multilayers, photopatternable organic and metal-organic polymers were synthesized. Achieved polymeric platform, being mechanically adaptable, provides possibility of a gentle automatic attachment and subsequent release of active micro-scale devices. Equipped with integrated electronic the platform provides an interface to the neural tissue, confining neural fibers and, if necessary, guiding the regeneration of the tissue with a minimal impact. The self-assembly capability of the platform enables the high yield manufacture of three-dimensionally shaped devices that are relying on geometry/stress dependent physical effects that are evolving in magnetic materials including magentostriction and shape anisotropy. Developed arrays of giant magnetoimpedance sensors and cuff implants provide a possibility to address physiological processes locally or distantly via magnetic and electric fields that are generated deep inside the organism, providing unique real time health monitoring capabilities. Fabricated on a large scale shapeable magnetosensory systems and nanostructured materials demonstrate outstanding mechanical and electrical performance. The novel, shapeable form of electronics can revolutionize the field of mechanical prosthetics, wearable devices, medical aids and commercial devices by adding novel sensory functionalities, increasing their capabilities, reducing size and power consumption.
95

Growth of carbon nanotubes on different support/catalyst systems for advanced interconnects in integrated circuits: Growth of carbon nanotubes on different support/catalystsystems for advanced interconnects in integrated circuits

Hermann, Sascha 19 September 2011 (has links)
Since there is a continuous shrinking of feature sizes in ultra-large scale integrated (ULSI) circuits, requirements on materials and technology are going to rise dramatically in the near future. In particular, at the interconnect system this calls for new concepts and materials. Therefore, carbon nanotubes (CNTs) are considered as a promising material to replace partly or entirely metal interconnects in such devices. The present thesis aims to make a contribution to the CNT growth control with the thermal chemical vapor deposition (CVD) method and the integration of CNTs as vertical interconnects (vias) in ULSI circuits. Different support/catalyst systems are examined in processes for catalyst pretreatment and CNT growth. The investigations focus on the catalyst formation and the interactions at the interfaces. Those effects are related to the CNT growth. To get an insight into interactions at interfaces, film structure, composition, and CNT growth characteristics, samples are extensively characterized by techniques like AFM, SEM, TEM, XRD, XPS, and Raman spectroscopy. Screening studies on nanoparticle formation and CNT growth with the well known system SiO2/Ni are presented. This system is characterized by a weak support/catalyst interaction, which leads to undirected growth of multi-walled CNTs (MWCNTs). By contrast, at the Ta/Ni system a strong interaction causes a wetting of catalyst nanoparticles and vertically aligned MWCNT growth. At the system W/Ni a strong interaction at the interface is found as well, but there it induces Stranski-Krastanov catalyst film reformation upon pretreatment and complete CNT growth inhibition. Studies on the SiO2/Cr/Ni system reveal that Cr and Ni act as a bi-catalyst system, which leads to a novel nanostructure defined as interlayer CNT (ICNT) structure. The ICNT films are characterized by well crystallized vertically aligned MWCNTs, which grow out a Cr/Ni layer lifted off as a continuous and very smooth layer from the substrate with the growth. Besides, this nanostructure offers new possibilities for the integration of CNTs in different electronic applications. Based on the presented possibilities of manipulating CNT growth, an integration technology was derived to fabricate CNT vias. The technology uses a surface mediated site-selective CVD for the growth of MWCNTs in via structures. Developments are demonstrated with the fabrication of via test vehicles and the site-selective growth of MWCNTs in vias on 4 inch wafers. Furthermore, the known resistance problem of CNT vias, caused by too low CNT density, is addressed by a new approach. A CNT/metal heterostructure is considered, where the metal is implemented through atomic layer deposition (ALD). The first results of the coating of CNTs with readily reducible copper oxide nanoparticles are presented and discussed. / Aufgrund der kontinuierlichen Verkleinerung von Strukturen in extrem hoch integrierten (engl. Ultra-Large Scale Integration − ULSI) Schaltkreisen werden die Anforderungen an die Materialien und die Technologie in naher Zukunft dramatisch ansteigen. Besonders im Leitbahnsystem sind neue Materialien und Konzepte gefragt. Kohlenstoffnanoröhren (engl. Carbon Nanotubes − CNT) stellen hierbei ein vielversprechendes Material dar, um teilweise oder sogar vollständig metallische Leitbahnen zu ersetzen. Die vorliegende Arbeit liefert einen Beitrag zur CNT-Wachstumskontrolle mit der thermischen Gasphasenabscheidung (engl. Chemical Vapor Deposition − CVD) sowie der Integration von CNTs als vertikale Leitungsverbindungen (Via) in ULSI-Schaltkreisen. Verschiedene Untergrund/Katalysator-Systeme werden in Prozessen zur Katalysatorvorbehandlung sowie zum CNT-Wachstum betrachtet. Die Untersuchungen richten sich insbesondere auf die Katalysatorformierung und die Wechselwirkungen an den Grenzflächen. Diese werden mit dem CNT-Wachstum in Verbindung gebracht. Für Untersuchungen von Grenzflächeninteraktionen, Schichtstruktur, Zusammensetzung sowie CNT-Wachstumscharakteristik werden Analysen mit AFM, REM, TEM, XRD, XPS und Raman-Spektroskopie genutzt. Zunächst werden Voruntersuchungen an dem gut bekannten System SiO2/Ni zur Nanopartikelformierung und CNTWachstum vorgestellt. Dieses System ist gekennzeichnet durch eine schwache Wechselwirkung zwischen Untergrund und Katalysator sowie ungerichtetem Wachstum von mehrwandigen CNTs (MWCNTs). Im Gegensatz dazu hat bei dem System Ta/Ni eine starke Interaktion an der Grenzfläche eine Katalysatornanopartikelbenetzung und vertikales MWCNT-Wachstum zur Folge. Für das W/Ni-System gelten ebenfalls starke Interaktionen an der Grenzfläche. Bei diesem System wird allerdings eine Stranski-Krastanov-Schichtformierung des Katalysators und eine vollständige Unterbindung von CNT-Wachstum erreicht. Bei dem System SiO2/Cr/Ni agieren Cr und Ni als Bi- Katalysatorsystem. Dies führt zu einer neuartigen Nanostruktur, die als Zwischenschicht-CNT (engl. Interlayer Carbon Nanotubes − ICNTs) Struktur definiert wird. Die Schichten sind durch eine gute Qualität von gerichteten MWCNTs charakterisiert, die aus einer geschlossenen, sehr glatten und von den CNTs getragenen Cr/Ni-Schicht herauswachsen. Darüber hinaus bietet die Struktur neue Möglichkeiten für die Integration von CNTs in verschiedene elektronische Anwendungen. Auf der Grundlage der vorgestellten Manipulationsmöglichkeiten von CNT-Wachstum wurde eine Integrationstechnologie für CNTs in Vias abgeleitet. Der Ansatz ist eine oberflächeninduzierte selektive CVD von vertikal gerichteten MWCNTs in Via-Strukturen. Diese Technologie wird mit der Herstellung von einem Via-Testvehikel und dem selektiven CNT-Wachstum in Vias auf 4 Zoll Wafern demonstriert. Um das Widerstandsproblem von CNT-Vias, verursacht durch eine zu niedrige CNT-Dichte, zu reduzieren, wird eine Technologieerweiterung vorgeschlagen. Der Ansatz geht von einer CNT/Metall-Heterostruktur aus, bei der das Metall mit Hilfe der Atomlagenabscheidung (engl. Atomic Layer Deposition − ALD) implementiert wird. Es werden erste Ergebnisse zur CNT-Beschichtung mit reduzierbaren Kupferoxidnanopartikeln vorgestellt und diskutiert.
96

Entwurf, Herstellung und Charakterisierung von GaN/AlGaN/GaN High Electron Mobility Transistoren für Leistungsanwendungen im GHz-Bereich

Wächtler, Thomas 28 December 2005 (has links)
High Electron Mobility Transistoren (HEMTs), basierend auf dem Materialsystem GaN/AlGaN/GaN, wurden entworfen, hergestellt und elektrisch charakterisiert. Für das Maskendesign kam das CAD-Programm LasiCAD zum Einsatz. Das Design umfasste bis zu sechs Lithographieebenen. Die Herstellung der Bauelemente geschah unter Reinraumbedingungen und unter Nutzung einer vorhandenen Technologie für Transistoren mit kleiner Gate-Peripherie (Doppelgate-Transistoren), die teilweise optimiert wurde. Daneben wurden Prozesse zur Herstellung von Multifinger-HEMTs entwickelt, wobei die Metallisierung der Drainkontakte mittels Electroplating von Gold vorgenommen wurde. Zur elektrischen Charakterisierung der Bauelemente wurden sowohl Gleichstromcharakteristiken, d.h. die Ausgangskennlinienfelder und Verläufe der Steilheit, als auch das Großsignalverhalten für cw-Betrieb bei 2 GHz gemessen. Dabei zeigten die Transistoren eine auf die Gatebreite bezogene Ausgangsleistungsdichte von mehr als 8 W/mm und eine Effizienz größer als 40%, einhergehend mit vernachlässigbarer Drainstromdispersion der unpassivierten Bauelemente.
97

Shapeable microelectronics

Karnaushenko, Daniil 08 June 2016 (has links)
This thesis addresses the development of materials, technologies and circuits applied for the fabrication of a new class of microelectronic devices that are relying on a three-dimensional shape variation namely shapeable microelectronics. Shapeable microelectronics has a far-reachable future in foreseeable applications that are dealing with arbitrarily shaped geometries, revolutionizing the field of neuronal implants and interfaces, mechanical prosthetics and regenerative medicine in general. Shapeable microelectronics can deterministically interface and stimulate delicate biological tissue mechanically or electrically. Applied in flexible and printable devices shapeable microelectronics can provide novel functionalities with unmatched mechanical and electrical performance. For the purpose of shapeable microelectronics, novel materials based on metallic multilayers, photopatternable organic and metal-organic polymers were synthesized. Achieved polymeric platform, being mechanically adaptable, provides possibility of a gentle automatic attachment and subsequent release of active micro-scale devices. Equipped with integrated electronic the platform provides an interface to the neural tissue, confining neural fibers and, if necessary, guiding the regeneration of the tissue with a minimal impact. The self-assembly capability of the platform enables the high yield manufacture of three-dimensionally shaped devices that are relying on geometry/stress dependent physical effects that are evolving in magnetic materials including magentostriction and shape anisotropy. Developed arrays of giant magnetoimpedance sensors and cuff implants provide a possibility to address physiological processes locally or distantly via magnetic and electric fields that are generated deep inside the organism, providing unique real time health monitoring capabilities. Fabricated on a large scale shapeable magnetosensory systems and nanostructured materials demonstrate outstanding mechanical and electrical performance. The novel, shapeable form of electronics can revolutionize the field of mechanical prosthetics, wearable devices, medical aids and commercial devices by adding novel sensory functionalities, increasing their capabilities, reducing size and power consumption.
98

Electronic Transport in Metallic Carbon Nanotubes with Metal Contacts / Elektronischer Transport in metallischen Kohlenstoffnanoröhren mit Metallkontakten

Zienert, Andreas 19 March 2013 (has links) (PDF)
The continuous migration to smaller feature sizes puts high demands on materials and technologies for future ultra-large-scale integrated circuits. Particularly, the copper-based interconnect system will reach fundamental limits soon. Their outstanding properties make metallic carbon nanotubes (CNTs) an ideal material to partially replace copper in future interconnect architectures. Here, a low contact resistance to existing metal lines is crucial. The present thesis contributes to the theory and numerical description of electronic transport in metallic CNTs with metal contacts. Different theoretical approaches are applied to various contact models and electrode materials (Al, Cu, Pd, Ag, Pt, Au) are compared. Ballistic transport calculations are based on the non-equilibrium Greens function formalism combined with tight-binding (TB), extended Hückel theory (EHT) and density functional theory (DFT). Simplified contact models allow a qualitative investigation of both the influence of geometry and CNT length, and the strength and extent of the contact on the transport properties. In addition, such simple contact models are used to compare the influence of different electronic structure methods on transport. It is found that the semiempirical TB and EHT are inadequate to quantitatively reproduce the DFT-based results. Based on this observation, an improved set of Hückel parameters is developed, which remedies this insufficiency. A systematic investigation of different contact materials is carried out using well defined atomistic metal-CNT-metal structures, optimized in a systematic way. Analytical models for the CNT-metal interaction are proposed. Based on that, electronic transport calculations are carried out, which can be extended to large systems by applying the computationally cheap improved EHT. The metal-CNT-metal systems can then be ranked by average conductance: Ag ≤ Au < Cu < Pt ≤ Pd < Al. This corresponds qualitatively with calculated contact distances, binding energies and work functions of CNTs and metals. To gain a deeper understanding of the transport properties, the electronic structure of the metal-CNT-metal systems and their respective parts is analyzed in detail. Here, the energy resolved local density of states is a valuable tool to investigate the CNT-metal interaction and its influences on the transport. / Die kontinuierliche Verkleinerung der Strukturgrößen stellt hohe Anforderungen an Materialen und Technologien zukünftiger hochintegrierter Schaltkreise. Insbesondere die Leistungsfähigkeit kupferbasierte Leitbahnsystem wird bald an fundamentale Grenzen stoßen. Aufgrund ihrer hervorragenden Eigenschaften könnten metallische Kohlenstoffnanoröhren (engl. Carbon Nanotubes, CNTs) Kupfer in zukünftigen Leitbahnsystemen teilweise ersetzen. Dabei ist ein geringer Kontaktwiderstand mit vorhandenen Leitbahnen von entscheidender Bedeutung. Die vorliegende Arbeit liefert grundlegende Beiträge zur Theorie und zur numerischen Beschreibung elektronischer Transporteigenschaften metallischer CNTs mit Metallkontakten. Dazu werden verschiedene theoretische Ansätze auf diverse Kontaktmodelle angewandt und eine Auswahl von Elektrodenmaterialen (Al, Cu, Pd, Ag, Pt, Au) verglichen. Die Beschreibung ballistischen Elektronentransports erfolgt mittels des Formalismus der Nichtgleichgewichts-Green-Funktionen in Kombination mit Tight-Binding (TB), erweiterter Hückel-Theorie (EHT) und Dichtefunktionaltheorie (DFT). Vereinfachte Kontaktmodelle dienen der qualitativen Untersuchung des Einflusses von Geometrie und Länge der Nanoröhren, sowie von Stärke und Ausdehnung des Kontaktes. Darüber hinaus erlauben solch einfache Modelle mit geringem numerischen Aufwand den Einfluss verschiedener Elektronenstrukturmethoden zu untersuchen. Es zeigt sich, dass die semiempirischen Methoden TB und EHT nicht in der Lage sind die Ergebnisse der DFT quantitativ zu reproduzieren. Ausgehend von diesen Ergebnissen wird ein verbesserter Satz von Hückel-Parametern generiert, der diesen Mangel behebt. Die Untersuchung verschiedener Kontaktmaterialien erfolgt an wohldefinierten atomistischen Metall-CNT-Metall-Strukturen, welche systematisch optimiert werden. Analytische Modelle zur Beschreibung der CNT-Metall-Wechselwirkung werden vorgeschlagen. Darauf aufbauende Berechnungen der elektronischen Transporteigenschaften, können mit Hilfe der verbesserten EHT auf große Systeme ausgedehnt werden. Die Ergebnisse ermöglichen eine Reihung der Metall-CNT-Metall-Systeme hinsichtlich ihrer Leitfähigkeit: Ag ≤ Au < Cu < Pt ≤ Pd < Al. Dies korrespondiert qualitativ mit berechneten Kontaktabständen, Bindungsenergien und Austrittarbeiten der CNTs und Metalle. Zum tieferen Verständnis der Transporteigenschaften erfolgt eine detaillierte Analyse der elektronischen Struktur der Metall-CNT-Metall-Systeme und ihrer Teilsysteme. Dabei erweist sich die energieaufgelöste lokale Zustandsdichte als nützliches Werkzeug zur Visulisierung und zur Charakterisierung der Wechselwirkung zwischen CNT und Metall sowie deren Einfluss auf den Transport.
99

Electronic Transport in Metallic Carbon Nanotubes with Metal Contacts

Zienert, Andreas 11 January 2013 (has links)
The continuous migration to smaller feature sizes puts high demands on materials and technologies for future ultra-large-scale integrated circuits. Particularly, the copper-based interconnect system will reach fundamental limits soon. Their outstanding properties make metallic carbon nanotubes (CNTs) an ideal material to partially replace copper in future interconnect architectures. Here, a low contact resistance to existing metal lines is crucial. The present thesis contributes to the theory and numerical description of electronic transport in metallic CNTs with metal contacts. Different theoretical approaches are applied to various contact models and electrode materials (Al, Cu, Pd, Ag, Pt, Au) are compared. Ballistic transport calculations are based on the non-equilibrium Greens function formalism combined with tight-binding (TB), extended Hückel theory (EHT) and density functional theory (DFT). Simplified contact models allow a qualitative investigation of both the influence of geometry and CNT length, and the strength and extent of the contact on the transport properties. In addition, such simple contact models are used to compare the influence of different electronic structure methods on transport. It is found that the semiempirical TB and EHT are inadequate to quantitatively reproduce the DFT-based results. Based on this observation, an improved set of Hückel parameters is developed, which remedies this insufficiency. A systematic investigation of different contact materials is carried out using well defined atomistic metal-CNT-metal structures, optimized in a systematic way. Analytical models for the CNT-metal interaction are proposed. Based on that, electronic transport calculations are carried out, which can be extended to large systems by applying the computationally cheap improved EHT. The metal-CNT-metal systems can then be ranked by average conductance: Ag ≤ Au < Cu < Pt ≤ Pd < Al. This corresponds qualitatively with calculated contact distances, binding energies and work functions of CNTs and metals. To gain a deeper understanding of the transport properties, the electronic structure of the metal-CNT-metal systems and their respective parts is analyzed in detail. Here, the energy resolved local density of states is a valuable tool to investigate the CNT-metal interaction and its influences on the transport. / Die kontinuierliche Verkleinerung der Strukturgrößen stellt hohe Anforderungen an Materialen und Technologien zukünftiger hochintegrierter Schaltkreise. Insbesondere die Leistungsfähigkeit kupferbasierte Leitbahnsystem wird bald an fundamentale Grenzen stoßen. Aufgrund ihrer hervorragenden Eigenschaften könnten metallische Kohlenstoffnanoröhren (engl. Carbon Nanotubes, CNTs) Kupfer in zukünftigen Leitbahnsystemen teilweise ersetzen. Dabei ist ein geringer Kontaktwiderstand mit vorhandenen Leitbahnen von entscheidender Bedeutung. Die vorliegende Arbeit liefert grundlegende Beiträge zur Theorie und zur numerischen Beschreibung elektronischer Transporteigenschaften metallischer CNTs mit Metallkontakten. Dazu werden verschiedene theoretische Ansätze auf diverse Kontaktmodelle angewandt und eine Auswahl von Elektrodenmaterialen (Al, Cu, Pd, Ag, Pt, Au) verglichen. Die Beschreibung ballistischen Elektronentransports erfolgt mittels des Formalismus der Nichtgleichgewichts-Green-Funktionen in Kombination mit Tight-Binding (TB), erweiterter Hückel-Theorie (EHT) und Dichtefunktionaltheorie (DFT). Vereinfachte Kontaktmodelle dienen der qualitativen Untersuchung des Einflusses von Geometrie und Länge der Nanoröhren, sowie von Stärke und Ausdehnung des Kontaktes. Darüber hinaus erlauben solch einfache Modelle mit geringem numerischen Aufwand den Einfluss verschiedener Elektronenstrukturmethoden zu untersuchen. Es zeigt sich, dass die semiempirischen Methoden TB und EHT nicht in der Lage sind die Ergebnisse der DFT quantitativ zu reproduzieren. Ausgehend von diesen Ergebnissen wird ein verbesserter Satz von Hückel-Parametern generiert, der diesen Mangel behebt. Die Untersuchung verschiedener Kontaktmaterialien erfolgt an wohldefinierten atomistischen Metall-CNT-Metall-Strukturen, welche systematisch optimiert werden. Analytische Modelle zur Beschreibung der CNT-Metall-Wechselwirkung werden vorgeschlagen. Darauf aufbauende Berechnungen der elektronischen Transporteigenschaften, können mit Hilfe der verbesserten EHT auf große Systeme ausgedehnt werden. Die Ergebnisse ermöglichen eine Reihung der Metall-CNT-Metall-Systeme hinsichtlich ihrer Leitfähigkeit: Ag ≤ Au < Cu < Pt ≤ Pd < Al. Dies korrespondiert qualitativ mit berechneten Kontaktabständen, Bindungsenergien und Austrittarbeiten der CNTs und Metalle. Zum tieferen Verständnis der Transporteigenschaften erfolgt eine detaillierte Analyse der elektronischen Struktur der Metall-CNT-Metall-Systeme und ihrer Teilsysteme. Dabei erweist sich die energieaufgelöste lokale Zustandsdichte als nützliches Werkzeug zur Visulisierung und zur Charakterisierung der Wechselwirkung zwischen CNT und Metall sowie deren Einfluss auf den Transport.
100

Evaluation of novel metalorganic precursors for atomic layer deposition of Nickel-based thin films / Evaluierung neuartiger metallorganischen Präkursoren für Atomlagenabscheidung von Nickel-basierten Dünnschichten

Sharma, Varun 04 June 2015 (has links) (PDF)
Nickel und Nickel (II) -oxid werden in großem Umfang in fortgeschrittenen elektronischen Geräten verwendet. In der Mikroelektronik-Industrie wird Nickel verwendet werden, um Nickelsilizid bilden. Die Nickelmono Silizid (NiSi) wurde als ausgezeichnetes Material für Source-Drain-Kontaktanwendungen unter 45 nm-CMOS-Technologie entwickelt. Im Vergleich zu anderen Siliziden für die Kontaktanwendungen verwendet wird NiSi wegen seines niedrigen spezifischen Widerstand, niedrigen Kontaktwiderstand, relativ niedrigen Bildungstemperatur und niedrigem Siliziumverbrauchs bevorzugt. Nickel in Nickelbasis-Akkus und ferromagnetischen Direktzugriffsspeicher (RAMs) verwendet. Nickel (II) oxid wird als Transistor-Gate-Oxid und Oxid in resistive RAM genutzt wird. Atomic Layer Deposition (ALD) ist eine spezielle Art der Chemical Vapor Deposition (CVD), das verwendet wird, um sehr glatte sowie homogene Dünnfilme mit hervorragenden Treue auch bei hohen Seitenverhältnissen abzuscheiden. Es basiert auf selbstabschließenden sequentielle Gas-Feststoff-Reaktionen, die eine präzise Steuerung der Filmdicke auf wenige Angström lassen sich auf der Basis. Zur Herstellung der heutigen 3D-elektronische Geräte, sind Technologien wie ALD erforderlich. Trotz der Vielzahl von praktischen Anwendungen von Nickel und Nickel (II) -oxid, sind einige Nickelvorstufen zur thermischen basierend ALD erhältlich. Darüber hinaus haben diese Vorstufen bei schlechten Filmeigenschaften führte und die Prozesseigenschaften wurden ebenfalls begrenzt. Daher in dieser Masterarbeit mussten die Eigenschaften verschiedener neuartiger Nickelvorstufen zu bewerten. Alle neuen Vorstufen heteroleptische (verschiedene Arten von Liganden) und Komplexe wurden vom Hersteller speziell zur thermischen basierend ALD aus reinem Nickel mit H 2 als ein Co-Reaktionsmittel gestaltet. Um die neuartige Vorläufer zu untersuchen, wurde eine neue Methode entwickelt, um kleine Mengen in einer sehr zeitsparend (bis zu 2 g) von Ausgangsstoffen zu testen. Diese Methodologie beinhaltet: TGA / DTA-Kurve analysiert der Vorstufen, thermische Stabilitätstests in dem die Vorläufer (<0,1 g) wurden bei erhöhter Temperatur in einer abgedichteten Umgebung für mehrere Stunden wurde die Abscheidung Experimenten und Film Charakterisierungen erhitzt. Die Abscheidungen wurden mit Hilfe der in situ Quarzmikrowaage überwacht, während die anwendungsbezogenen Filmeigenschaften, wie chemische Zusammensetzung, physikalische Phase, Dicke, Dichte, Härte und Schichtwiderstand wurden mit Hilfe von ex situ Messverfahren untersucht. Vor der Evaluierung neuartiger Nickelvorstufen ein Benchmark ALD-Prozess war vom Referenznickelvorläufer (Ni (AMD)) und Luft als Reaktionspartner entwickelt. Das Hauptziel der Entwicklung und Optimierung von solchen Benchmark-ALD-Prozess war es, Standard-Prozessparameter wie zweite Reaktionspartner Belichtungszeiten, Argonspülung Zeiten, gesamtprozessdruck, beginnend Abscheidungstemperatur und Gasströme zu extrahieren. Diese Standard-Prozessparameter mussten verwendet, um die Prozessentwicklung Aufgabe (das spart Vorläufer Verbrauch) zu verkürzen und die Sublimationstemperatur Optimierung für jede neuartige Vorstufe werden. Die ALD Verhalten wurde in Bezug auf die Wachstumsrate durch Variation des Nickelvorläuferbelichtungszeit, Vorläufer Temperatur und Niederschlagstemperatur überprüft. / Nickel and nickel(II) oxide are widely used in advanced electronic devices . In microelectronic industry, nickel is used to form nickel silicide. The nickel mono-silicide (NiSi) has emerged as an excellent material of choice for source-drain contact applications below 45 nm node CMOS technology. As compared to other silicides used for the contact applications, NiSi is preferred because of its low resistivity, low contact resistance, relatively low formation temperature and low silicon consumption. Nickel is used in nickel-based rechargeable batteries and ferromagnetic random access memories (RAMs). Nickel(II) oxide is utilized as transistor gate-oxide and oxide in resistive RAMs. Atomic Layer Deposition (ALD) is a special type of Chemical Vapor Deposition (CVD) technique, that is used to deposit very smooth as well as homogeneous thin films with excellent conformality even at high aspect ratios. It is based on self-terminating sequential gas-solid reactions that allow a precise control of film thickness down to few Angstroms. In order to fabricate todays 3D electronic devices, technologies like ALD are required. In spite of huge number of practical applications of nickel and nickel(II) oxide, a few nickel precursors are available for thermal based ALD. Moreover, these precursors have resulted in poor film qualities and the process properties were also limited. Therefore in this master thesis, the properties of various novel nickel precursors had to be evaluated. All novel precursors are heteroleptic (different types of ligands) complexes and were specially designed by the manufacturer for thermal based ALD of pure nickel with H 2 as a co-reactant. In order to evaluate the novel precursors, a new methodology was designed to test small amounts (down to 2 g) of precursors in a very time efficient way. This methodology includes: TGA/DTA curve analyses of the precursors, thermal stability tests in which the precursors (< 0.1 g) were heated at elevated temperatures in a sealed environment for several hours, deposition experiments, and film characterizations. The depositions were monitored with the help of in situ quartz crystal microbalance, while application related film properties like chemical composition, physical phase, thickness, density, roughness and sheet resistance were investigated with the help of ex situ measurement techniques. Prior to the evaluation of novel nickel precursors, a benchmark ALD process was developed from the reference nickel precursor (Ni(amd)) and air as a co-reactant. The main goal of developing and optimizing such benchmark ALD process was to extract standard process parameters like second-reactant exposure times, Argon purge times, total process pressure, starting deposition temperature and gas flows. These standard process parameters had to be utilized to shorten the process development task (thus saving precursor consumption) and optimize the sublimation temperature for each novel precursor. The ALD behaviour was checked in terms of growth rate by varying the nickel precursor exposure time, precursor temperature and deposition temperature.

Page generated in 0.082 seconds