• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 30
  • Tagged with
  • 89
  • 89
  • 41
  • 32
  • 32
  • 27
  • 26
  • 24
  • 20
  • 19
  • 19
  • 18
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Användning av generativ AI för dokumentation av QR inom agila metoder / Use of generative AI for documentation of QR within agile methods

Al Khamisi, Sandra, Deshayes, Emil January 2024 (has links)
Agile methodologies are one of the most common approaches for companies to develop new software products. Within these methodologies, a significant focus is placed on rapid deliveryand minimal documentation. However, this focus can lead to documentation, especially that concerning quality requirements (QR), being overlooked in favor of speed. This can result in a decrease in the overall quality of the final software product. To address these issues, the suitability of Generative AI (GenAI) is examined to analyze its potential in solving these problems. The purpose of this study was to investigate whether GenAI is suitable foraddressing issues related to QR documentation within agile methodologies. The study conducted a case study on a company currently using GenAI. The data collection method used for this investigation was semi-structured interviews. The Task-Technology Fit (TTF) model was used to evaluate the suitability of GenAI for QR documentation. The results show that "Ease of Use" and "Production timeliness" are GenAI"s greatest strengths. However,other aspects such as "Quality" and "System reliability" showed weaker results. Future research should focus on exploring the broader use of GenAI within agile methodologies and developing comprehensive training programs for the effective use of GenAI.
82

Användning av ChatGPT : En intervjustudie om generativ AI som ett interaktivt bollplank hos Utvecklare / Use of ChatGPT : An Interview Study on Generative AI as an Interactive Sounding Board for Developers

Berling, Kevin January 2024 (has links)
Utvecklare ställs inför ständigt mer komplexa problem och utmaningar som kräver innovativalösningar. Traditionellt har de använt kollegor, forum och dokumentation som resurser för attbolla idéer och utarbeta lösningar. Med de senaste framstegen inom artificiell intelligens (AI)har nya möjligheter öppnats upp. AI har potentialen att fungera inte bara som ensamtalspartner utan också som en kritiker och problemlösare i utvecklarens arbetsflöde.Denna studie utforskar interaktionen mellan utvecklare och ChatGPT i deras dagliga arbetemed ett särskilt fokus på hur ChatGPT kan användas som ett bollplank. Genom en kvalitativforskningsmetod, baserad på djupgående semistrukturerade intervjuer med nio utvecklare,undersöker studien hur dessa utvecklare integrerar ChatGPT i sina arbetsflöden och vilkaverktyg och metoder de använder för att underlätta denna interaktion. Analysen belyser ocksåChatGPT bidrag till problemlösning och beslutsfattande samt de tekniska och organisatoriskautmaningar som utvecklarna möter.Resultaten visar att ChatGPT är ett värdefullt verktyg för att förbättra kodkvaliteten, skapatemplates och boilerplate-kod samt för att effektivisera dokumentation ochöversättningsprocesser. Dock identifierades begränsningar såsom långsam respons, behovetav specifika formuleringar och svårigheter med att hantera komplexa eller nischade problem.Studien konkluderar att trots dessa utmaningar har ChatGPT en betydande potential attfungera som en konstruktiv partner i utvecklares dagliga arbete, vilket kan leda till ökadeffektivitet och förbättrad kvalitet i mjukvaruutvecklingsprocessen.
83

<b>Speech Forensics Using Machine Learning</b>

Kratika Bhagtani (20699921) 10 February 2025 (has links)
<p dir="ltr">High quality synthetic speech can now be generated and used maliciously. There is a need of speech forensic tools to detect synthetic speech. Besides detection, it is important to identify the synthesizer that was used for generating a given speech. This is known as synthetic speech attribution. Speech editing tools can be used to create partially synthetic speech in which only parts of speech are synthetic. Detecting these synthetic parts is known as synthetic speech localization.</p><p dir="ltr">We first propose a method for synthetic speech attribution known as the Patchout Spectrogram Attribution Transformer (PSAT). PSAT can distinguish unseen speech synthesis methods (<i>unknown </i>synthesizers) from the methods that were seen during its training (<i>known </i>synthesizers). It achieves more than 95% attribution accuracy. Second, we propose a method known as Fine-Grain Synthetic Speech Attribution Transformer (FGSSAT) that can assign different labels to different <i>unknown </i>synthesizers. Existing methods including PSAT cannot distinguish between different <i>unknown </i>synthesizers. FGSSAT improves on existing work by doing a fine-grain synthetic speech attribution analysis. Third, we propose Synthetic Speech Localization Convolutional Transformer (SSLCT) and achieve less than 10% Equal Error Rate (EER) for synthetic speech localization. Fourth, we demonstrate that existing methods do not perform well for recent diffusion-based synthesizers. We propose the Diffusion-Based Synthetic Speech Dataset (DiffSSD) consisting of about 200 hours of speech, including synthetic speech from 8 diffusion-based open-source and 2 commercial generators. We train speech forensic methods on this dataset and show its importance with respect to recent open-source and commercial generators.</p>
84

Går det att lita på ChatGPT? En kvalitativ studie om studenters förtroende för ChatGPT i lärandesammanhang

Härnström, Alexandra, Bergh, Isak Eljas January 2023 (has links)
Världens tekniska utveckling går framåt i snabb takt, inte minst när det kommer till ”smarta” maskiner och algoritmer med förmågan att anpassa sig efter sin omgivning. Detta delvis på grund av den enorma mängd data som finns tillgänglig och delvis tack vare en ökad lagringskapacitet. I november 2022 släpptes ett av de senaste AI-baserade programmen; chatboten ChatGPT. Inom två månader hade ChatGPT fått över 100 miljoner användare. Denna webbaserade mjukvara kan i realtid konversera med användare genom att besvara textbaserade frågor. Genom att snabbt och ofta korrekt besvara användarnas frågor på ett mänskligt och övertygande sätt, har tjänsten på kort tid genererat mycket uppmärksamhet. Det finns flera studier som visar på hur ett stort antal människor saknar ett generellt förtroende för AI. Vissa studier menar att de svar som ChatGPT genererar inte alltid kan antas vara helt korrekta och därför bör följas upp med en omfattande kontroll av faktan, eftersom de annars kan bidra till spridandet av falsk information. Eftersom förtroende för AI har visat sig vara en viktig del i hur väl teknologin utvecklas och integreras, kan brist på förtroende för sådana tjänster, såsom ChatGPT, vara ett hinder för en välfungerande användning. Trots att man sett på ökad produktivitet vid införandet av AI-teknologi hos företag så har det inom högre utbildning, som ett hjälpmedel för studenter, inte integrerats i samma utsträckning. Genom att ta reda på vilket förtroende studenter har för ChatGPT i lärandesammanhang, kan man erhålla information som kan vara till hjälp för integrationen av sådan AI-teknik. Dock saknas det specifik forskning kring studenters förtroende för ChatGPT i lärandesammanhang. Därför syftar denna studie till att fylla denna kunskapslucka, genom att utföra en kartläggning. Vår frågeställning är: ” Vilket förtroende har studenter för ChatGPT i lärandesammanhang?”. Kartläggningen utfördes med semistrukturerade intervjuer av åtta studenter som använt ChatGPT i lärandesammanhang. Intervjuerna genererade kvalitativa data som analyserades med tematisk analys, och resultatet visade på att studenters förtroende för ChatGPT i lärandesammanhang beror på en rad faktorer. Under analysen identifierade vi sex teman som ansågs vara relevanta för att besvara frågeställningen: ● Erfarenheter ● Användning ● ChatGPT:s karaktär ● Yttre påverkan ● Organisationer ● Framtida förtroende / The world's technological development is advancing rapidly, especially when it comes to "smart" machines and algorithms with the ability to adapt to their surroundings. This is partly due to the enormous amount of available data and partly thanks to increased storage capacity. In November 2022, one of the latest AI-based programs was released; the chatbot ChatGPT. This web-based software can engage in real-time conversations with users by answering text-based questions. By quickly, and often accurately, answering users' questions in a human-like and convincing manner, the service has generated a lot of attention in a short period of time. Within two months, ChatGPT had over 100 million users. There are several studies that show how a large number of people lack a general trust in AI. Some studies argue that the responses generated by ChatGPT may not always be assumed to be completely accurate and should therefore be followed up with extensive fact-checking, as otherwise they may contribute to the spreading of false information. Since trust in AI has been shown to be an important part of how well the technology develops and integrates, a lack of trust in services like ChatGPT can be a hindrance to effective usage. Despite the increased productivity observed in the implementation of AI technology in companies, it has not been integrated to the same extent within higher education as an aid for students. By determining the level of trust that students have in ChatGPT in an educational context, valuable information can be obtained to assist in the integration of such AI technology. However, there is a lack of specific research on students' trust in ChatGPT in an educational context. Therefore, this study aims to fill this knowledge gap by conducting a survey. Our research question is: “What trust do students have in ChatGPT in a learning context?”. The survey was conducted through semi-structured interviews with eight students who have used ChatGPT in an educational context. The interviews generated qualitative data that was analyzed using thematic analysis, and the results showed that students' trust in ChatGPT in an educational context depends on several factors. During the analysis, six themes were identified as relevant for answering the research question: • Experiences • Usage • ChatGPT’s character • Influences • Organizations • Future trust
85

Crime Detection From Pre-crime Video Analysis

Sedat Kilic (18363729) 03 June 2024 (has links)
<p dir="ltr">his research investigates the detection of pre-crime events, specifically targeting behaviors indicative of shoplifting, through the advanced analysis of CCTV video data. The study introduces an innovative approach that leverages augmented human pose and emotion information within individual frames, combined with the extraction of activity information across subsequent frames, to enhance the identification of potential shoplifting actions before they occur. Utilizing a diverse set of models including 3D Convolutional Neural Networks (CNNs), Graph Neural Networks (GNNs), Recurrent Neural Networks (RNNs), and a specially developed transformer architecture, the research systematically explores the impact of integrating additional contextual information into video analysis.</p><p dir="ltr">By augmenting frame-level video data with detailed pose and emotion insights, and focusing on the temporal dynamics between frames, our methodology aims to capture the nuanced behavioral patterns that precede shoplifting events. The comprehensive experimental evaluation of our models across different configurations reveals a significant improvement in the accuracy of pre-crime detection. The findings underscore the crucial role of combining visual features with augmented data and the importance of analyzing activity patterns over time for a deeper understanding of pre-shoplifting behaviors.</p><p dir="ltr">The study’s contributions are multifaceted, including a detailed examination of pre-crime frames, strategic augmentation of video data with added contextual information, the creation of a novel transformer architecture customized for pre-crime analysis, and an extensive evaluation of various computational models to improve predictive accuracy.</p>
86

Enhancing Inclusivity in Swedish ESL Classrooms : Integrating Generative AI for Personalized Learning / Inkludering i engelska som andraspråk-klassrummet : Generativ AI för individualiserat lärande

Mohammad Ali, Abrar January 2024 (has links)
Focusing on personalized grammar tasks, this study dives into the integration of Generative Artificial Intelligence into English as a Second Language education. By utilizing a mixed methods approach, incorporating both qualitative and quantitative analyses the study explores how personalized learning can be improved by employing ChatGPT. Results from the study indicate that GAI-driven personalization significantly enhances student engagement and motivation. This offers a promising path for tailoring education to individual learner needs toward a more inclusive classroom. A central outcome of this study is the proposal of a new theoretical framework the Personalization-Motivation Integration Framework (PMIF). This framework clarifies the synergistic effects of integrating content and topic personalization to significantly boost student motivation and reach a more inclusive learning environment. This adds to the growing research about AI's potential in education as it indicates that these technologies can significantly enhance teaching and offer a more tailored and inclusive learning environment.
87

Examining the Privacy Aspects and Cost-Quality Balance of a Public Sector Conversational Interface

Meier Ström, Theo, Vesterlund, Marcus January 2024 (has links)
This thesis explores the implementation of a conversational user interface for Uppsala Municipality, aimed at optimising the balance between cost of usage and quality when using large language models for public services. The central issue addressed is the effective integration of large language models, such as OpenAI's GPT-4, to enhance municipal services without compromising user privacy and data security. The solution developed involves a prototype that utilises a model chooser and prompt tuner, allowing the interface to adapt the complexity of responses based on user input. This adaptive approach reduces costs while maintaining high response quality. The results indicate that the prototype not only manages costs effectively, but also adheres to standards of data privacy and security. Clear information on data use and transparency improved user trust and understanding. In addition, strategies were effectively implemented to handle sensitive and unexpected input, improving overall data security. Overall, the findings suggest that this approach to implementing conversational user interfaces in public services is viable, offering valuable insights into the cost-effective and secure integration of language models in the public sector. The success of the prototype highlights its potential to improve future municipal services, underscoring the importance of transparency and user engagement in public digital interfaces. / Den här masteruppsatsen undersöker implementeringen av ett konversationsgränssnitt för Uppsala kommun, med målet att optimera balansen mellan kostnad och kvalitet vid användning av stora språkmodeller för den offentliga sektorn. Den centrala frågan som besvaras är hur stora språkmodeller, såsom OpenAI:s GPT-4, kan integreras för att förbättra kommunala tjänster utan att kompromissa med användarnas integritet och datasäkerhet. Den utvecklade lösningen innefattar en prototyp som använder en modellväljare och promptjusterare, vilket gör det möjligt för gränssnittet att anpassa svarens komplexitet baserat på användarens meddelande. Detta tillvägagångssätt reducerar kostnaderna samtidigt som en hög svarskvalitet bibehålls. Resultaten visar att prototypen inte bara hanterar kostnaderna effektivt, utan också upprätthåller standarder för datasekretess och säkerhet. Tydlig information om dataanvändning och transparens förbättrade avsevärt användarnas förtroende och förståelse. Dessutom implementerades strategier effektivt för att hantera känslig och oväntad data, vilket förbättrade den övergripande datasäkerheten. Sammanfattningsvis tyder resultaten på att detta tillvägagångssätt för implementering av konversationsgränssnitt i offentliga tjänster är möjligt och erbjuder lärdomar om kostnadseffektiv och säker integration av språkmodeller i offentlig sektor. Prototypens framgång påvisar dess potential att förbättra framtida kommunala tjänster, men lyfter också vikten av transparens och användarengagemang i offentliga digitala gränssnitt.
88

Leveraging Large Language Models for Actionable Insights in Facility Management : An Applied Study in Commercial Housing Real Estate / Utnyttjande av stora språkmodeller för handlingsbara insikter i fastighetsförvaltning : En tillämpad studie inom kommersiella bostadsfastigheter

Andrén, Björn January 2024 (has links)
Artificial intelligence is one of the long-term trends in the twenty-first century. Historically, the real estate industry has been slow to adopt new technology, but generative AI introduces a range of innovative applications that traditional AI has not addressed. Creating a unique opportunity for the real estate industry to evolve and position itself at the forefront of technological advancements. Despite the promising potential of large language models, research applying the technology on real world problems within real estate sector is almost non-existent. Only a limited number of studies currently exist exploring the area. No applied studies of the technology have yet to be made in Europe to the authors knowledge. The purpose of this study was thus to contribute with an applied study of the technology within the context of facility management. Exploring how generative AI can increase efficiency within facility management by utilizing large language models to analyse tenant matters. Execution consisted of partnering with a real estate company, developing propritary frameworks, technology, and testing these on real world data. A design based researched method was adjusted to fit this study. In total 822 tenant matters where analyzed by a large language model (LLM). The findings show that a large language model can be utilized to analyze tenant matters. Furthermore, that model outputs can be trusted and utilized to improve services for tenants. This study highlights the importance of original data quality, data selection, understanding data inputs and contextualizing instructions for the large language model to achieve successfull automated information extraction. Concluding that analysing tenant matters with generative AI makes it possible to identify and quantify how a real estate company functions, performs, and meets tenants’ needs as a whole —not just from a facility management perspective. / Artificiell intelligens är en av de långsiktiga trenderna under tjugoförsta århundradet. Historiskt har fastighetsbranschen varit långsam med att anamma ny teknik, men generativ AI introducerar en rad innovativa tillämpningar som traditionell AI inte har adresserat. Detta skapar en unik möjlighet för fastighetsbranschen att utvecklas och positionera sig i framkanten av tekniska framsteg. Trots den lovande potentialen hos stora språkmodeller är forskning som tillämpar tekniken, på verkliga problem inom branschen, nästan obefintlig. Endast ett begränsat antal studier existerar för närvarande som utforskar området. Ingen tillämpad studie av tekniken har ännu gjorts i Europa, enligt författarens kännedom. Syftet med denna studie var således att bidra med en tillämpad studie av tekniken inom ramen för fastighetsförvaltning. Utforska hur generativ AI kan öka effektiviteten inom fastighetsförvaltning genom att använda stora språkmodeller för att analysera hyresgäst- ärenden. Genomförandet bestod av att samarbeta med ett fastighetsbolag, utveckling av proprietära ramverk, teknik och testa dessa på verkliga data. En designbaserad forskningsmetod justerades för att passa studien. Totalt analyserades 822 hyresgästärenden av en stor språkmodell (LLM). Resultaten visar att en stor språkmodell kan användas för att analysera hyresgästärenden. Vidare att modellens svar går att lita på och kan användas för att förbättra tjänster mot hyresgäster. Studien framhäver vikten av originaldatakvalitet, val av data, förståelse för datainmatning samt kontextualisering av instruktioner för att den stora språkmodellen ska uppnå framgångsrik automatisk informationsutvinning. Slutsatsen är att AI-analys av hyresgästärenden gör det möjligt att identifiera och kvantifiera hur ett fastighetsbolag som helhet fungerar, presterar och möter hyresgästernas behov—inte bara ur ett fastighetsförvaltningsperspektiv.
89

Introducing Generative Artificial Intelligence in Tech Organizations : Developing and Evaluating a Proof of Concept for Data Management powered by a Retrieval Augmented Generation Model in a Large Language Model for Small and Medium-sized Enterprises in Tech / Introducering av Generativ Artificiell Intelligens i Tech Organisationer : Utveckling och utvärdering av ett Proof of Concept för datahantering förstärkt av en Retrieval Augmented Generation Model tillsammans med en Large Language Model för små och medelstora företag inom Tech

Lithman, Harald, Nilsson, Anders January 2024 (has links)
In recent years, generative AI has made significant strides, likely leaving an irreversible mark on contemporary society. The launch of OpenAI's ChatGPT 3.5 in 2022 manifested the greatness of the innovative technology, highlighting its performance and accessibility. This has led to a demand for implementation solutions across various industries and companies eager to leverage these new opportunities generative AI brings. This thesis explores the common operational challenges faced by a small-scale Tech Enterprise and, with these challenges identified, examines the opportunities that contemporary generative AI solutions may offer. Furthermore, the thesis investigates what type of generative technology is suitable for adoption and how it can be implemented responsibly and sustainably. The authors approach this topic through 14 interviews involving several AI researchers and the employees and executives of a small-scale Tech Enterprise, which served as a case company, combined with a literature review.  The information was processed using multiple inductive thematic analyses to establish a solid foundation for the investigation, which led to the development of a Proof of Concept. The findings and conclusions of the authors emphasize the high relevance of having a clear purpose for the implementation of generative technology. Moreover, the authors predict that a sustainable and responsible implementation can create the conditions necessary for the specified small-scale company to grow.  When the authors investigated potential operational challenges at the case company it was made clear that the most significant issue arose from unstructured and partially absent documentation. The conclusion reached by the authors is that a data management system powered by a Retrieval model in a LLM presents a potential path forward for significant value creation, as this solution enables data retrieval functionality from unstructured project data and also mitigates a major inherent issue with the technology, namely, hallucinations. Furthermore, in terms of implementation circumstances, both empirical and theoretical findings suggest that responsible use of generative technology requires training; hence, the authors have developed an educational framework named "KLART".  Moving forward, the authors describe that sustainable implementation necessitates transparent systems, as this increases understanding, which in turn affects trust and secure use. The findings also indicate that sustainability is strongly linked to the user-friendliness of the AI service, leading the authors to emphasize the importance of HCD while developing and maintaining AI services. Finally, the authors argue for the value of automation, as it allows for continuous data and system updates that potentially can reduce maintenance.  In summary, this thesis aims to contribute to an understanding of how small-scale Tech Enterprises can implement generative AI technology sustainably to enhance their competitive edge through innovation and data-driven decision-making.

Page generated in 0.0585 seconds