• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 252
  • 113
  • 44
  • 44
  • 36
  • 27
  • 19
  • 18
  • 10
  • 10
  • 7
  • 5
  • 4
  • 3
  • 2
  • Tagged with
  • 705
  • 112
  • 94
  • 79
  • 71
  • 67
  • 63
  • 62
  • 56
  • 51
  • 38
  • 36
  • 34
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
571

Strategic and environmental uncertainty in social dilemmas

Lindahl, Therese January 2005 (has links)
Social dilemmas constitute a broad class of quandaries, including, for example, common pool resource (CPR) dilemmas and public good (PG) dilemmas. CPR's are characterized by non-excludability and rivalry and are often associated with overexploitation. Through similar arguments, the features non-excludability and non-rivalry give rise to under-provision of PG's. The prevalence and inefficiencies often associated with CPR's have given rise to an extensive literature and the role of resource uncertainty has not been ignored. Uncertainty combined with rivalry is often said to augment users' incentive to overexploit. However, underlying most of the theoretical research is an explicit or implicit assumption of symmetric information, or a symmetric lack of information. In reality, people generally have access to different sources of information and they may differ in their abilities to process information. In the first two papers of this thesis, the assumption of symmetry is relaxed and both papers demonstrate that from a welfare perspective, the distribution of uncertainty is also of importance. Many CPR's and PG's are natural, which can complicate the situation. In the traditional resource management literature, the exploited resource is often assumed to be properly characterized by some concave growth function. Today, there is extensive empirical evidence suggesting that many ecosystems have more complex, often non-linear dynamics. Management of such resources can be quite challenging as the non-linear dynamics can make the ecosystem flip between alternate stable states, and even marginal changes can cause radical transformations of such ecosystems. Most of the CPR models assume the shared resource to be of fixed size or to be able to generate a constant flow of services. In the third paper we aim at providing a more complete picture of the overexploitation of a common resource, by combining the institutional structure with complex ecological dynamics. We manage to raise questions and doubts about the standard assumptions. Another feature of convex-concave resources is that a state can become highly robust and sometimes an ecosystem change may even be irreversible. This is problematic if, for example, we wish to restore a degraded ecosystem. The aim of the fourth paper is to empirically analyze this question, by eliciting peoples' preferences through a hypothetical referendum on the issue. / Diss. Stockholm : Handelshögskolan, 2005
572

The management of common-pool resources : theoretical essays and empirical evidence

Ternström, Ingela January 2002 (has links)
A large part of the poor people in the world is dependent on local natural resources for their survival. Often, these resources are managed as common-pool resources; that is, they are used in common by a limited group of people, who are dependent on each other in their use of the resource. The first two essays in this dissertation explicitly examine the effects of poverty on common-pool resource management. I show that if utility is a non-homogeneous function of consumption, both income level and income distribution affects the chances for cooperative management of common-pool resources. In the first essay, I let the S-shaped relationship between health and consumption be reflected in an S-shaped utility function, and use game theory to examine the effects on cooperation. I find that the chances for cooperation are greater if the users of the common-pool resource are relatively well off than if they are very poor, but greatest of all in groups of users just managing to get the food they need to remain in good health. In the most relevant consumption levels, a temporary decrease in consumption may cause cooperation to fail. In the second essay, I show that income inequality decreases the scope for cooperation. In poor groups of users, the poorest will be the ones unable to cooperate, while in richer groups of users, the richest will be the ones who can not commit to cooperate. Alms-giving, an unequal sharing of the gains from cooperation and even a certain amount of free-riding are ways of making cooperation possible despite inequality. In the third essay data from ten, and case studies of five, irrigation systems in Nepal are analysed. The results show a positive correlation between income level and cooperation and a negative correlation between income inequality and cooperation, which supports the results from the first two essays. However, while the theoretical essays focus on the incentives to cooperate, the empirical analysis shows that it is at least as important that the users find a way to coordinate their efforts. The case studies, in particular, emphasise the importance of having a person as a leader. Furthermore, cooperation works better when a large share of the users belongs to the same ethnic group. / <p>Diss. Stockholm : Handelshögskolan, 2002</p>
573

Koldioxidlagring - realitet eller utopi? : En komparativ fallstudie med syfte att undersöka potentialen för koldioxidlagring i geologiska formationer och biologiska sänkor och dess förmåga att bidra till hållbar utveckling

Holgerson, Line January 2013 (has links)
To curb greenhouse gases and mitigate climate change is one of the biggest challenges human society face today. Carbon dioxide (CO2) has accumulated rapidly in the atmosphere as a consequence of burning of fossil fuels and deforestation. The aim of this study is to explore two methods to store carbon dioxide in geological formations and biological sinks. The aim is also to discuss the two mitigation options from a sustainable perspective and whether it can lead to a better environment and benefits for local and global societies. The research questions are: Which method to store carbon dioxide, geological or biological, is the most effective? Which method to store carbon dioxide, geological or biological, has the greatest potential to promote sustainable development for local communities? The method used is a comparative case study and presents four case studies that explore the potential for CO2 storage offshore in Norway and Brazil; and in tropical forests in Mexico and Brazil. The mitigation options are discussed from two different theoretical perspectives. The principle of the theory of ecological modernisation is that innovation and environmentally friendly technology can solve the environmental problems human societies face today, whereas the theory of common pool resources promotes local communities to govern limited resources in order to manage them sustainably. The findings suggest that ecological modernisation legitimize environmental destruction as carbon dioxide storage in geological formations (CCS) use the technology as a mean to extract more oil and gas; which results in a rebound-effect. Therefore, carbon dioxide capture in geological formations is not a realistic method unless it can prevent further emissions. Protected forest resources can be seen as biological insurance, which safeguard ecosystem services, biodiversity, and the forest potential to hold carbon. Carbon sequestration in tropical forest has the potential to store carbon dioxide given that the forests are protected and local communities have tenure rights, knowledge, and the means to protect the forest and manage them sustainably.
574

System of Systems Engineering for Policy Design

Bristow, Michele Mei-Ting January 2013 (has links)
A system of systems (SoS) framework is proposed for policy design that takes into account the value systems of multiple participants, harnesses the complexity of strategic interactions among participants, and confronts the risks and uncertainties present in participants’ decision making. SoS thinking provides an integrative and adaptive mindset, which is needed to tackle policy challenges characterized by conflict, complexity, and uncertainty. With the aim of putting SoS thinking into practice, operational methods and tools are presented herein. Specifically, SoS engineering methodologies to create value system models, agent-based models of competitive and cooperative behaviour under conflict, and risk management models are developed and integrated into the framework. The proposed structure, methods and tools can be utilized to organize policy design discourse. Communication among participants involved in the policy discussion is structured around SoS models, which are used to integrate multiple perspectives of a system and to test the effectiveness of policies in achieving desirable outcomes under varying conditions. In order to demonstrate the proposed methods and tools that have been developed to enliven policy design discourse, a theoretical common-pool resources dilemma is utilized. The generic application illustrates the methodology of constructing ordinal preferences from values. Also, it is used to validate the agent-based modeling and simulation platform as a tool to investigate strategic interactions among participants and harness the potential to influence and enable participants to achieve desirable outcomes. A real-world common pool resources dilemma in the provisioning and security considerations of the Straits of Malacca and Singapore is examined and employed as a case study for applying strategic conflict models in risk management. Overall, this thesis advances the theory and application of SoS engineering and focuses on understanding value systems, handling complexity in terms of conflict dynamics, and finally, enhancing risk management.
575

An Ocean General Circulation Model Study Of The Arabian Sea Mini Warm Pool

Kurian, Jaison 09 1900 (has links)
The most important component of the climate system over the Indian Ocean region is the southwest monsoon, which dictates the life and economy of billions of people in the tropics. Being a phenomena that involves interaction between atmosphere, ocean and land, the southwest monsoon is strongly influenced by upper ocean, primarily through warm sea surface temperature (SST). This is particularly true about the southeastern Arabian Sea (SEAS) and the onset of southwest monsoon over the peninsular India. A localized patch of warm water, known as the Arabian Sea mini warm pool (ASMWP), forms in the SEAS during February–March. It remain as the warmest spot in the northern Indian Ocean till early April. A large region, surrounding the SEAS, attains SST exceeding 30°C during April–May, with often the ASMWP as its core. The ASMWP is believed to have a critical impact on the air-sea interaction during the onset phase of southwest monsoon and on the formation of the onset vortex, during late May or early June. This thesis addresses the formation mechanisms of ASMWP, using a high-resolution Ocean General Circulation Model (OGCM) of the Indian Ocean. In addition to the formation of ASMWP, the SEAS is characterized by several features in its hydrography and circulation, which have been invoked in the past to explain the preferential warming of this oceanic region. During November–January, the prevailing surface currents transport low-salinity water from the Bay of Bengal into the SEAS and leads to strong haline stratification in the upper layer and formation of barrier layer (layer between mixed layer and isothermal layer). The vertical distribution of temperature in the SEAS exhibit inversions (higher subsurface temperature than that at surface) during December–February. A high in sea level and anticyclonic eddies develop in the SEAS during December and they propagate westward. These eddies modify the hydrography through downwelling and play an important role in the redistribution of advected low-salinity water within the SEAS. The seasonally reversing coastal and equatorial currents present in and around SEAS also have a major contribution in setting up the hydrography, through the advection and redistribution of cooler low-salinity water. These features make the SEAS a unique oceanographic region. The first hypothesis on the formation of ASMWP, which has been suggested by diagnostic studies, is based on the barrier layer mechanism. The barrier layer, caused by the influx of low-salinity water at surface, is argued to maintain a shallow mixed layer which can warm more efficiently. In addition, presence of barrier layer can prevent mixed layer cooling, by cutting off the interaction of mixed layer with cooler thermocline water below. However, a coupled model study have shown that there is no significant impact on the ASMWP formation from barrier layer, but only a weak warming effect during it mature phase during April. The second hypothesis, which is based on an OGCM study, has suggested that the temperature inversions present within the barrier layer can heat the mixed layer through turbulent entrainment and in turn lead to the formation of ASMWP during February–March. Both hypotheses rule out the possibility of air-sea heat fluxes being the primary reason in its formation. The strong salinity stratification in the SEAS during December–March is central to the hypotheses about formation of the ASMWP. Observational studies have only limited success in assessing the contribution from barrier layer and temperature inversions, as the ASMWP always form in their presence. OGCMs offer a better alternative. However, modelling processes in the northern Indian Ocean, especially that in the SEAS, is a challenging problem. Previous Indian Ocean models have had serious difficulties in simulating the low-salinity water in the Bay of Bengal and its intrusion into the SEAS. The northward advection of low-salinity water in the SEAS, along the west coast of India, is used to be absent in model simulations. Moreover, the coarse resolution inhibited those models from simulating faster surface currents and vigorous eddies as seen in the observations. In this thesis, we use an OGCM of the Indian Ocean, based on the recent version of Modular Ocean Model (MOM4p0), to study the ASMWP. The model has high resolutions in the horizontal (1/4o x 1/4o) and vertical (40 levels, with 5 m spacing in upper 60 m), and has been forced with daily values momentum, heat and freshwater fluxes. The turbulent (latent and sensible) and long wave heat fluxes have been calculated as a function of model SST. The freshwater forcing consists of precipitation, evaporation and river runoff, and there are no surface restoring or flux adjustments. The river runoff has been distributed over several grid points about the river mouth instead of discharging into a singe grid point, which has resulted in remarkable improvements in salinity simulation. The model simulates the Indian Ocean temperature, salinity and circulation remarkably well. The pattern of model temperature distribution and evolution matches very well with that in the observations. Significant improvements have been made in the salinity simulation, including the Bay of Bengal freshwater plume and intrusion of low-salinity water from the bay into the SEAS. The salinity distribution within the SEAS is also well represented in the model. The use of appropriate horizontal friction parameters has resulted in the simulation of realistic currents. The observed features in the SEAS, including the life cycle of the ASMWP, low-salinity water, barrier layer, temperature inversions, eddies and currents are well represented in the model. Present study has unraveled the processes involved in the life cycle of barrier layer and temperature inversions in the SEAS. Presence of low-salinity water is necessary for their formation. Barrier layer develops in the SEAS during November, after the intrusion of low-salinity water from the Bay of Bengal. The barrier layer is thickest during January–February, and it dissipates during March–April. The variations and peak of barrier layer thickness is controlled by variations in isothermal layer depth, which in turn is dominated by the downwelling effects of anticyclonic eddies. The intense solar heating during March–April leads to the formation of shallow isothermal layer and results in the dissipation of barrier layer. Temperature inversions starts developing in the SEAS during December, reaches its peak during January–February and dissipates in the following months. Advection of cooler low-salinity water over warmer salty water and penetrating shortwave radiation is found to cause temperature inversions within the SEAS, whereas winter cooling is also important to the north and south of the SEAS. There is significant variation in the magnitude, depth of occurrence and formation mechanisms of temperature inversions within the SEAS. Analysis of model mixed layer heat budget has shown that the SEAS SST is mainly controlled by atmospheric forcing, including the life cycle of ASMWP. It has also shown that the heating from temperature inversions do not contribute to the formation of ASMWP. In an experiment in which a constant salinity of 35 psu was maintained over the entire model domain, the ASMWP evolved very similar to that in the standard run, suggesting that the salinity effects are not necessary for the formation of ASMWP. Examination of wind field show that the winds over the SEAS during November–February are low due to the blocking of northeasterly winds by Western Ghats. Several process experiments by modifying the wind and turbulent heat fluxforcing fields have shown that these low winds lead to the formation of ASMWP in the SEAS during February–March. The low winds reduce latent heat loss, resulting in net heat gain by the ocean. This helps the SEAS to keep warmer SST while the surrounding region experience intense cooling under the strong dry northeasterly winds. As the winds are weak over the SEAS, the mixed layer is not able to feel the stratification beneath and the mixed layer depth is determined by solar heating, with or without salinity effects. In addition, the weak winds are not able to entrain the temperature inversions present in the barrier layer. The winds are weak during March–April too, and the air-sea heat fluxes dictate the SST evolution during this period. Therefore, during November–April, the SEAS acts as a low wind heat-dominated regime, where the evolution of sea surface temperature is solely determined by atmospheric forcing. We show that, in such regions, the evolution of surface layer temperature is not dependent on the characteristics of subsurface ocean, including the presence of barrier layer and temperature inversions.
576

Microstructure Development During Laser And Electron Beam Welding Of Ti/Ni Dissimilar Joints

Chatterjee, Subhradeep 07 1900 (has links)
Fusion welding of dissimilar metals constitutes a crucial processing stage in a variety of applications, and the use of high energy beams (HEB) like lasers and electron beams for such welding applications has several advantages, such as, precision, narrow heat affected zone, and consequently, low distortion. An understanding of microstructural evolution in the weld is a prerequisite for producing sound joints with desired properties. HEB welding of similar metals have been studied extensively. In contrast, fewer studies have been directed toward understanding the fundamental aspects of solidification of dissimilar welds. This thesis presents an effort in that direction by exploring microstructural evolution in Ti/Ni dissimilar welds. Welding of Ti/Ni serves to illustrate the fundamental differences that distinguish dissimilar welding from the welding of similar metals. These are: (i) Thermophysical properties of the base metals are, in general, different, and this can have important consequences in the heat transfer conditions. (ii) Composition can vary over an wide range, the extreme being for the case of a pure binary couple, and the solid–liquid interface cannot be defined by a single liquidus isotherm. (iii) In addition to the surface energy driven Marangoni convection, a strong solutal convection can arise due to a large difference in the density of the base metals. (iv) Nucleation of phases assumes greater importance, especially in systems with intermediate phases. We have carried out laser and electron beam welding (LW and EBW) experiments in a butt welding geometry to join Ti/Ni dissimilar couples. Weld microstructures were characterised using scanning and transmission electron microscopy (SEM and TEM); composition information was obtained from energy dispersive spectroscopy (EDS) of Xrays in the SEM. In addition to the pure binary couple, we have also studied electron beam welding of Ti/Ni with a thin Ta interlayer. We summarise our findings in each set of experiments in the following sections. Laser welding of Ti/Ni We have studied partial penetration welds obtained within the range of experimental parameters used in our study. These welds show the following interesting features: 1. The welds are asymmetric with respect to the initial joint. Despite its higher melting point, Ti melts more than Ni due to its lower thermal diffusivity, making the average composition of the weld richer in Ti (Ti–40at.%Ni). 2. Composition changes very steeply near the fusion interfaces in both Ti and Ni with associated microstructural changes. The variation is of much lesser magnitude in the rest of the weld, reflecting a well mixed melt pool on a macroscopic scale. 3. Growth of base metal grains into the weld pool at the fusion interfaces is severely restricted at both Ti and Ni ends. 4. The Ti fusion interface is marked by a band consisting of Ti2Ni dendrites which grow toward the Ti base metal. 5. Layered structures form at the Ni fusion interface. The sequence of the layers is: solid solution (Ni)→ Ni3Ti→ Ni3Ti+NiTi eutectic → NiTi. We note the absence of the (Ni)+Ni3Ti eutectic in this sequence. 6. NiTi and Ti2Ni are the major phases that appear in the bulk of the weld. Volume fraction and morphology of NiTi vary almost periodically to form microstructural bands. 7. Solid state transformation of NiTi results in the formation of the Rphase and martensite, which reflect the composition heterogeneity in the weld. Sometimes, Ni4Ti3 precipitates are observed also, providing indirect evidence of nonequilibrium solidification. 8. Nitrogen pickup from the atmosphere during welding leads to the formation titanium nitride dendrites in the weld. 9. Solutal convection and buoyancy forces manifest themselves through the segregation of the lighter nitride and Ti2Ni phases toward the top surface of the weld; the heavier liquid forms blocky NiTi in the bottom half of the weld. These observations stand in striking contrast with the microstructures of conventional welds. We have proposed a set of composition and temperature profiles in the weld which reflect the diffusive and advective transport processes; when combined with thermodynamic information from the Ti–Ni phase diagram to yield spatial liquidus temperature profiles, these profiles can adequately explain most of the results. Our observations illustrate the importance of (a) nucleation, and (b) the inhomogeneous nature of the melt in which growth takes place. They also highlight the role of convective currents in bringing about local fluctuations in composition and temperature leading to ‘low velocity bands’. Electron beam welding of Ti/Ni We have carried out full penetration EBW of thin plates of Ti and Ni. The major observations are: (i) Average composition of the weld is in the Ni–rich side of the phase diagram (Ni–40at.%Ti). (ii) Fusion interface microstructures are very similar to that in LW exhibiting restricted base metal growth (although little amount of epitaxy can be seen in the Ni side), growth of Ti2Ni dendrites toward the base metal at the Ti fusion interface and the sequence of layers at the Ni interface: (Ni)→ Ni3Ti→ Ni3Ti+NiTi. Unlike LW, however, Ni3Ti, instead of NiTi, reappeared after the third layer on the Ni side. (iii) General microstructure consists of the Ni3Ti+NiTi eutectic, which appears in several anomalous as well as regular morphologies. (iv) Formation of NiTi is restricted mostly to regions near the Ti fusion interface. (v) Segregation of Ni3Ti was observed in a few places. The most prominent change in the microstructure compared to LW is a shift from the Ti2Ni– NiTi phases in the bulk of the weld to a Ni3Ti+NiTi eutectic structure. This is a direct consequence of the shift in the average composition of the weld to the Ni– rich side. The occurrence of different anomalous and regular eutectic structures bear similarity with bulk undercooling experiments conducted on eutectic systems having a strongly faceting phase as one of its constituents. The asymmetric coupled zone, along with composition and temperature fluctuation due to fluid flow, can be attributed to the origin of these structures. Electron beam welding of Ti/Ni with a Ta interlayer Motivated by the report of superior mechanical properties of Ti/Ni welds with an interlayer of Ta, whose melting point is much higher than those Ni and Ti, we performed EBW experiments using a Ni–Ta– Ti configuration. The key observations are: (i) The process is inherently unsteady in nature, and results in partial and irregular melting of the Ta interlayer. This partial melting essentially divides the weld into Ni–rich and Ti–rich halves. (ii) Microstructure near the fusion interface in Ni and Ti show similarities with that of the pure binary Ti/Ni welds; the phases here, however, contain Ta as a ternary addition. (iii) Microstructure in the Ti–rich half consists of dendrites of the Ni(Ti,Ta) phase with a high Ti:Ta ratio, and an eutectic formed between this phase and a (Ti,Ta)2Ni phase having significant amount of Ta. Two Ni(Ti,Ta) type phases dominate the microstructure in the Ni–rich half: the phase having a higher Ti:Ta ratio forms cells and dendrites, whereas the one of a lower Ti:Ta ratio creates an interdendritic network. (iv) Regions near the unmolten Ta layer in the middle show the formation of a sawtoothlike Ta–rich faceted phase of composition (Ta,Ti)3Ni2. Since very scarce thermodynamic data exist for the Ni–Ta–Ti ternary system, we have taken cues from the binary phase diagrams to understand the microstructural evolution. Such extrapolation, although successful to some extent, fails where phases which have no binary equivalents start to appear. In summary, in this thesis, we explore microstructural evolution in the Ti/Ni dissimilar welds under the different settings of laser and electron beam welding processes. This study reveals a variety of phenomena occurring during dissimilar welding which lead to the formation of an extensive range of microstructural features. Although a few questions do remain, most results can be rationalised by drawing from, and extending the knowledge gained from previous studies by introducing physical and thermodynamic arguments.
577

Engineering nanomaterials with enhanced functionality

Li, Shanghua January 2006 (has links)
<p>This thesis deals with the engineering of novel nanomaterials, particularly nanocomposites and nanostructured surfaces with enhanced functionalities. The study includes two parts; in the first part, an in situ sol-gel polymerization approach is used for the synthesis of polymer-inorganic hybrid material and its exceptional transparent UV-shielding effect has been investigated. In the second part, electrodeposition process has been adapted to engineer surfaces and the boiling performance of the fabricated nanostructured surfaces is evaluated.</p><p>In the first part of the work, polymer-inorganic hybrid materials composed of poly(methylmethacrylate) (PMMA) and zinc compounds were prepared by in situ sol-gel transition polymerization of zinc complex in PMMA matrix. The immiscibility of heterophase of solid organic and inorganic constituents was significantly resolved by an in situ sol-gel transition polymerization of ZnO nanofillers within PMMA in the presence of dual functional agent, monoethanolamine, which provided strong secondary interfacial interactions for both complexing and crosslinking of constituents.</p><p>In the second part of the work, nanoengineering on the surface of copper plates has been performed in order to enhance the boiling heat transfer coefficient. Micro-porous surfaces with dendritic network of copper nanoparticles have been obtained by electrodeposition with dynamic templates. To further alter the grain size of the dendritic branches, the nanostructured surfaces underwent a high temperature annealing treatment.</p><p>Comprehensive characterization methods of the polymer-inorganic hybrid materials and nanoengineered surfaces have been undertaken. XRD, 1H NMR, FT-IR, TGA, DSC, UV-Vis, ED, SEM, TEM and HRTEM have been used for basic physical properties. Pool boiling tests were performed to evaluate the boiling performance of the electrodeposited nanostructured micro-porous structures.</p><p>The homogeneous PZHM exhibited enhanced UV-shielding effects in the entire UV range even at very low ZnO content of 0.02 wt%. Moreover, the relationship between band gap and particle size of incorporated ZnO by sol-gel process was in good agreement with the results calculated from the effective mass model between bandgap and particle size. The fabricated enhanced surface has shown an excellent performance in nucleate boiling. At heat flux of 1 W/cm2, the heat transfer coefficient is enhanced over 15 times compared to a plain reference surface. A model has been presented to explain the enhancement based on the structure characteristics.</p>
578

Development, validation and application of an effective convectivity model for simulation of melt pool heat transfer in a light water reactor lower head

Tran, Chi Thanh January 2007 (has links)
<p>Severe accidents in a Light Water Reactor (LWR) have been a subject of the research for the last three decades. The research in this area aims to further understanding of the inherent physical phenomena and reduce the uncertainties surrounding their quantification, with the ultimate goal of developing models that can be applied to safety analysis of nuclear reactors. The research is also focusing on evaluation of the proposed accident management schemes for mitigating the consequences of such accidents.</p><p>During a hypothetical severe accident, whatever the scenario, there is likelihood that the core material will be relocated and accumulated in the lower plenum in the form of a debris bed or a melt pool. Physical phenomena involved in a severe accident progression are complex. The interactions of core debris or melt with the reactor structures depend very much on the debris bed or melt pool thermal hydraulics. That is why predictions of heat transfer during melt pool formation in the reactor lower head are important for the safety assessment.</p><p>The main purpose of the present study is to advance a method for describing turbulent natural convection heat transfer of a melt pool, and to develop a computational platform for cost-effective, sufficiently-accurate numerical simulations and analyses of Core Melt-Structure-Water Interactions in the LWR lower head during a postulated severe core-melting accident.</p><p>Given the insights gained from Computational Fluid Dynamics (CFD) simulations, a physics-based model and computationally-efficient tools are developed for multi-dimensional simulations of transient thermal-hydraulic phenomena in the lower plenum of a Boiling Water Reactor (BWR) during the late phase of an in-vessel core melt progression. A model is developed for the core debris bed heat up and formation of a melt pool in the lower head of the reactor vessel, and implemented in a commercial CFD code. To describe the natural convection heat transfer inside the volumetrically decay-heated melt pool, we advanced the Effective Convectivity Conductivity Model (ECCM), which was previously developed and implemented in the MVITA code. In the present study, natural convection heat transfer is accounted for by only the Effective Convectivity Model (ECM). The heat transport and interactions are represented through an energy-conservation formulation. The ECM then enables simulations of heat transfer of a high Rayleigh melt pool in 3D large dimension geometry.</p><p>In order to describe the phase-change heat transfer associated with core debris, a temperature-based enthalpy formulation is employed in the ECM (the phase-change ECM or so called the PECM). The PECM is capable to represent possible convection heat transfer in a mushy zone. The simple approach of the PECM method allows implementing different models of the fluid velocity in a mushy zone for a non-eutectic mixture. The developed models are validated by a dual approach, i.e., against the existing experimental data and the CFD simulation results.</p><p>The ECM and PECM methods are applied to predict thermal loads to the vessel wall and Control Rod Guide Tubes (CRGTs) during core debris heat up and melting in the BWR lower plenum. Applying the ECM and PECM to simulations of reactor-scale melt pool heat transfer, the results of the ECM and PECM calculations show an apparent effectiveness of the developed methods that enables simulations of long term accident transients. It is also found that during severe accident progression, the cooling by water flowing inside the CRGTs plays a very important role in reducing the thermal load on the reactor vessel wall. The results of the CFD, ECM and PECM simulations suggest a potential of the CRGT cooling as an effective mitigative measure during a severe accident progression.</p>
579

原住民地區共用資源保育與利用之分析─以新竹縣尖石鄉後山的泰雅族部落為例 / Analysis of indigenous Conservation and Utilization on CPR:Two CPR Self Governing Cases of Atayal Tribe in Taiwan Indigenes

孫稚堤, Sun,Chih-ti Unknown Date (has links)
從共用資源理論觀點暨公共選擇角度而言,原住民部落資源與傳統領域土地乃一「封閉式共用資源」,若由原住民部落團體共有並自主經營管理,社群內部將可能透過個體的合作,創造共同利益,發揮傳統生態知識、善用在地組織,避免原住民地權流失,並進一步達到資源永續發展的目的。但由於受限於「經濟人」與「國家理性主義」之假設,且忽視了人與自然資源會相互影響、相互限制的事實,人們常引用Hardin(1968)的「共用地悲劇」,指出共用資源必將陷於過度使用的危險之中,最終肇致環境的退化。 為釐清此議題,本研究以新竹縣尖石鄉後山兩個具有共用資源自主治理個案的泰雅族部落為例,選取現今既有的「部落地景」、「河川魚群」、「森林產物」等三種形式之共用資源進行觀察;在時間上則以這些資源在保育目的下被部落共同維持開始,到被賦予促進部落經濟期待後的發展為主要的範圍。以新制度經濟學為理論基礎,藉由實證調查和比較,並經「組織中的個人制度選擇」、「社會中的共管組織」以及「社會生態系統」等三個層面的分析,討論有哪些因素影響個人遵守集體的正式與非正式規範?群體如何制定符合當地條件的共用資源治理規範,並維持組織的長期存續?而社會與自然生態之間的互動關係又是如何形成?冀以探討影響「以部落為基礎的自然資源自主治理」之內外部因素及其互動關係,俾提供後續共用資源管理制度設計思考的基礎。 / From the perspective of “common pool resources” (CPR) theory and public choices, the tribal resources of aboriginals and traditional territories are a “closed-access” type of common pool resources. If aboriginal tribes manage the CPR in a self-governing way, the communities may be able to, through the cooperation of individuals within, create collective interests, leverage traditional knowledge regarding the ecosystem, utilize local organizations in order to avoid the lapse of aboriginal land, and achieve the sustainable development of resources. However, people are limited to the hypotheses of “homo economicus” and “raison d’état” along with an overlook of the fact that mutual influences and restrictions lie between humans and natural resources. They often quote the essay “Tragedy of the Commons” by Hardin (1968), according to which common resources are under the constant threat of overuse that will eventually degrade the environment. To establish clarity on this issue, this paper uses an Atayal county with two CPR self-governing cases to observe three types of common pool resources currently seen today: tribe landscape, river fish and forest produce. The time horizon starts at the time point when these resources were placed under tribal management for conservation purposes, and ends at the time point when these resources are expected to prompt economic development. This paper conducts empirical investigations and comparisons based on the theoretical foundations of new institutional economics, and analyzes three aspects of these issues: choice of personal systems within an organization, collective management organizations in a society, and Social-Ecological Systems (SESs). This paper discusses the factors that affect how individuals conform to social norms, formal and informal. How a public choice is made to design the rules which are proper to local CPR situation and maintains the organization long-term sustainability? How do the interactions between society and the natural ecosystem come into being? By exploring the internal and external factors of self-governance of natural resources by tribes and the resulting interactions, this paper aims to provide a foundation for subsequent studies in the design of the management systems for common resources.
580

The Effective Convectivity Model for Simulation and Analysis of Melt Pool Heat Transfer in a Light Water Reactor Pressure Vessel Lower Head

Tran, Chi Thanh January 2009 (has links)
Severe accidents in a Light Water Reactor (LWR) have been a subject of intense research for the last three decades. The research in this area aims to reach understanding of the inherent physical phenomena and reduce the uncertainties in their quantification, with the ultimate goal of developing models that can be applied to safety analysis of nuclear reactors, and to evaluation of the proposed accident management schemes for mitigating the consequences of severe accidents.  In a hypothetical severe accident there is likelihood that the core materials will be relocated to the lower plenum and form a decay-heated debris bed (debris cake) or a melt pool. Interactions of core debris or melt with the reactor structures depend to a large extent on the debris bed or melt pool thermal hydraulics. In case of inadequate cooling, the excessive heat would drive the structures' overheating and ablation, and hence govern the vessel failure mode and timing. In turn, threats to containment integrity associated with potential ex-vessel steam explosions and ex-vessel debris uncoolability depend on the composition, superheat, and amount of molten corium available for discharge upon the vessel failure. That is why predictions of transient melt pool heat transfer in the reactor lower head, subsequent vessel failure modes and melt characteristics upon the discharge are of paramount importance for plant safety assessment.  The main purpose of the present study is to develop a method for reliable prediction of melt pool thermal hydraulics, namely to establish a computational platform for cost-effective, sufficiently-accurate numerical simulations and analyses of core Melt-Structure-Water Interactions in the LWR lower head during a postulated severe core-melting accident. To achieve the goal, an approach to efficient use of Computational Fluid Dynamics (CFD) has been proposed to guide and support the development of models suitable for accident analysis.   The CFD method, on the one hand, is indispensable for scrutinizing flow physics, on the other hand, the validated CFD method can be used to generate necessary data for validation of the accident analysis models. Given the insights gained from the CFD study, physics-based models and computationally-efficient tools are developed for multi-dimensional simulations of transient thermal-hydraulic phenomena in the lower plenum of a LWR during the late phase of an in-vessel core melt progression. To describe natural convection heat transfer in an internally heated volume, and molten metal layer heated from below and cooled from the top (and side) walls, the Effective Convectivity Models (ECM) are developed and implemented in a commercial CFD code. The ECM uses directional heat transfer characteristic velocities to transport the heat to cooled boundaries. The heat transport and interactions are represented through an energy-conservation formulation. The ECM then enables 3D heat transfer simulations of a homogeneous (and stratified) melt pool formed in the LWR lower head. In order to describe phase-change heat transfer associated with core debris or binary mixture (e.g. in a molten metal layer), a temperature-based enthalpy formulation is employed in the Phase-change ECM (so called the PECM). The PECM is capable to represent natural convection heat transfer in a mushy zone. Simple formulation of the PECM method allows implementing different models of mushy zone heat transfer for non-eutectic mixtures. For a non-eutectic binary mixture, compositional convection associated with concentration gradients can be taken into account. The developed models are validated against both existing experimental data and the CFD-generated data. ECM and PECM simulations show a superior computational efficiency compared to the CFD simulation method. The ECM and PECM methods are applied to predict thermal loads imposed on the vessel wall and Control Rod Guide Tubes (CRGTs) during core debris heatup and melting in a Boiling Water Reactor (BWR) lower plenum. It is found that during the accident progression, the CRGT cooling plays a very important role in reducing the thermal loads on the reactor vessel wall. Results of the ECM and PECM simulations suggest a high potential of the CRGT cooling to be an effective measure for severe accident management in BWRs. / <p>QC 20100812</p>

Page generated in 0.0577 seconds